高中数学北师大版必修三习题:课后能力提升(十五)含答案
- 格式:doc
- 大小:91.50 KB
- 文档页数:3
一、选择题1.“某彩票的中奖概率为1100”意味着( ) A .买100张彩票就一定能中奖B .买100张彩票能中一次奖C .买100张彩票一次奖也不中D .购买彩票中奖的可能性为11002.抛掷一枚骰子两次,用随机模拟方法估计上面的点数和为7的概率,共进行了两次试验,第一次产生了60组随机数,第二次产生了200组随机数,那么这两次估计的结果相比较( )A .第一次准确B .第二次准确C .两次的准确率相同D .无法比较3.下列结论正确的是( )A .事件A 发生的概率P (A )满足0<P (A )<1B .事件A 发生的概率P (A )=0.999,则事件A 是必然事件C .用某种药物对患有胃溃疡的500 名病人进行治疗,结果有380人有明显的疗效,现有胃溃疡的病人服用此药,则估计有明显疗效的可能性为76%D .某奖券的中奖率为50%,则某人购买此奖券10张,一定有5张中奖4.给出下列三个命题,其中正确命题的个数为( )①设有一批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面朝上,则硬币出现正面朝上的概率是37;③随机事件发生的频率就是这个随机事件发生的概率.A .0B .1C .2D .35.在给病人动手术之前,外科医生会告知病人或家属一些情况,其中有一项是说这种手术的成功率大约是99%,下列解释正确的是( )A .100个手术有99个手术成功,有1个手术失败B .这个手术一定成功C .99%的医生能做这个手术,另外1%的医生不能做这个手术D .这个手术成功的可能性是99%二、填空题6.一个口袋装有除颜色外其他均相同的白球、红球共100个,若摸出一个球为白球的概率为34,则估计这100个球内,有白球________个. 7.在200件产品中,有192件一级品,8件二级品,则下列事件:。
一、选择题1.以下程序S=0For x=-1 To 11S=x*xNext输出S.该程序输出结果是( )A.-1 B.11 C.100 D.1212.下列程序的运行结果为( )i=0S=0Doi=i+1S=S+iLoop While S<=20输出i.A.5 B.6 C.7 D.83.下列程序中的For语句终止循环时,S等于( ) S=1For M=1 To 13 Step 3S=S+MNext输出S.A.1 B.5 C.10 D.354.下列算法的运行结果是( )S=0For i=1 To 5S=S+1/iNext输出S.A.13760B.160C.13060D.35.下列算法运行后的输出结果为( ) i=1Doi=i+2S=3+2*ii=i+1Loop While i<=8输出S.A.17B.19C.21D.23二、填空题6.S=0For i=0 To 10 000 Step 2S=S+iNext输出S.则循环10次的结果是________.7.S=0For i=1 To 100S=S+i*iNext输出S则该语句的算法功能为______________.8.把求11×4+12×5+13×6+…+150×53的值的下列程序补充完整,则(1)____________;(2)____________.i=1S=0Do1i=i+1Loop While __(2)__输出S.三、解答题9.据下列框图写出对应算法语句.10.猴子第一天摘下若干个桃子,当即吃了一半,还不过瘾,又多吃了一个,第二天又将剩下的桃子吃掉一半,又多吃了一个,以后每天早上都吃前一天剩下的一半零一个,到第五天早上想吃时,见只剩一个桃子了,求第一天共摘了多少桃子?画出算法框图,并用语句描述.答 案1. 解析:选D 由For 语句的算法特点可知,S =11×11=121.2. 解析:选B 由于0+1+2+3+4+5=15,0+1+2+3+4+5+6=21,∴i =6.3. 解析:选D S =1+4+7+10+13=35.4. 解析:选 A 本算法是求1+12+13+14+15的和.5. 解析:选C 这是用Do Loop 语句编写的算法,按Do Loop 语句的运行程序可知最后一次执行循环体时S =3+2×(7+2)=21.6. 解析:算法程序实际是在计算S =0+2+4+…+10 000,如果循环10次,则有S =0+2+4+6+8+…+18=90.答案:907. 解析:S =12+22+…+1002. 答案:计算12+22+…+1002的值 8. 答案:(1)S =S +1/i *(i +3) (2)i <=50 9. 解:S =0i =1 DoS =S +ii =i +1Loop While i <=1 000输出S.10. 解:算法框图如图所示.程序如下:S=1For i=1 To 4S=2*(S+1)Next输出S.。
一、选择题1.设有一个回归方程y =2-1.5x ,当x 增加1个单位时( ) A .y 平均增加1.5个单位 B .y 平均减少1.5个单位 C .y 平均增加2个单位 D .y 平均减少2个单位2.对有线性相关关系的两个变量建立的线性回归方程y =a +bx 中,回归系数b ( ) A .可以小于0 B .只能大于0 C .只能等于0 D .只能小于03.由一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )得到线性回归方程y =bx +a ,那么下面说法不.正确的是( ) A .直线y =bx +a 必经过点(x ,y )B .直线y =bx +a 至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个点C .直线y =bx +a 的斜率为D .直线y =bx +a 与各点(x 1,y 1),(x 2,y 2),…,(x n ,y n )的接近程度[y i -(bx i +a )]2是该坐标平面上所有直线与这些点的最接近的直线4.(湖南高考)设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=0.85x -85.71,则下列结论中不正确的是( )A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg 5.(山东高考)某产品的广告费用x 与销售额y 的统计数据如下表:广告费用x (万元) 4 2 3 5 销售额y (万元)49263954根据上表可得回归方程y=bx+a中的b为9.4,据此模型预报广告费用为6万元时销售额为( )A.63.6万元 B.65.5万元C.67.7万元 D.72.0万元二、填空题6.(辽宁高考改编)调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元).调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:y=0.254x+0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.7.对一质点的运动过程观测了4次,得到如表所示的数据,则刻画y与x的关系的线性回归方程为________.8.(广东高考)为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x(单位:小时)与当天投篮命中率y之间的关系:小李这5天的平均投篮命中率为________;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率为________.三、解答题9.在7块并排、形状大小相同的试验田上进行施化肥量对水稻产量(单位:千克)影响的试验,得到如下一组数据:(1)作出这些数据的散点图;(2)由(1)分析两变量关系得出什么结论?(3)求出回归直线方程.10.(福建高考改编)某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)求回归直线方程y =bx +a ,其中b =-20,a =y --b x -;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)答 案1. 解析:选B y ′=2-1.5(x +1)=2-1.5x -1.5=y -1.5,即x 增加1个单位,y 平均减少1.5个单位.2. 解析:选A ∵b =x 1y 1+x 2y 2+…+x n y n -n x -y-x 21+x 22+…+x 2n -n x-2,∴b 的取值是任意的. 3. 解析:选B 直线y =bx +a 一定过点(x ,y ),但不一定要过样本点.4. 解析:选D 当x =170时,y ^=0.85×170-85.71=58.79,体重的估计值为58.79 kg ,故D 不正确.5. 解析:选B 容易计算得x -=3.5,y -=42,故a =y --b x -=42-9.4×3.5=9.1,所以当广告费用为6万元时销售额为9.4×6+9.1=65.5(万元).6. 解析:由回归直线方程的意义知,x 每增加1万元,y 平均增加0.254万元. 答案:0.2547. 解析:x -=2.5,y -=3.75,∑4i =1x i y i =46,∑4i =1x 2i =30, b =46-4×2.5×3.7530-4×2.52=1.7,a =y --b x -=-0.5, 所以所求的线性回归方程为:y =1.7x -0.5. 答案:y =1.7x -0.58. 解析:小李这5天的平均投篮命中率为(0.4+0.5+0.6+0.6+0.4)÷5=0.5. 又x -=3,y -=0.5, 由表中数据,得b =0.01,a =y --b x -=0.47,故回归直线方程为y =0.01x +0.47. 令x =6,则有y =0.01×6+0.47=0.53. 答案:0.5 0.53 9. 解:(1)如图所示.(2)由(1)可看出,各点散布在从左下角到右上角的区域内,为正相关,也可以说在适量限制范围内水稻产量随施肥量的增大而增大,但不是直线递增.(3)用科学计算器可求得x -=30,y -=399.3,∑7i =1x 2i =7 000,∑7i =1x i y i =87 175.于是b =∑7i =1x i y i -7x - y -∑7i =1x 2i -7x -2=87 175-7×30×399.37 000-7×302≈4.75.a =y --b x -=399.3-4.75×30≈257.因此所求回归直线方程为y =4.75x +257.10. 解:(1)由于x =16(x 1+x 2+x 3+x 4+x 5+x 6)=8.5,y =16(y 1+y 2+y 3+y 4+y 5+y 6)=80.所以a =y -b x =80-(-20)×8.5=250,从而回归直线方程为y =-20x +250. (2)设工厂获得的利润为L 元,依题意得L =x (-20x +250)-4(-20x +250)=-20x 2+330x -1 000 =-20(x -334)2+361.25.当且仅当x=8.25时,L取得最大值.故当单价定为8.25元时,工厂可获得最大利润.。
第一章 算法初步 1.1算法与程序框图练习(P5) 1、算法步骤:第一步,给定一个正实数r .第二步,计算以r 为半径的圆的面积2S r π=.第三步,得到圆的面积S .2、算法步骤:第一步,给定一个大于1的正整数n .第二步,令1i =.第三步,用i 除n ,等到余数r .第四步,判断“0r =”是否成立. 若是,则i 是n 的因数;否则,i 不是n 的因数.第五步,使i 的值增加1,仍用i 表示.第六步,判断“i n >”是否成立. 若是,则结束算法;否则,返回第三步.练习(P19)算法步骤:第一步,给定精确度d ,令1i =.第二步,i 位的不足近似值,赋给a ;小数点后第i 位的过剩近似值,赋给b . 第三步,计算55bam =-.第四步,若m d <,则得到5a;否则,将i 的值增加1,仍用i 表示.返回第二步. 第五步,输出5a.程序框图:习题1.1 A 组(P20)1、下面是关于城市居民生活用水收费的问题.为了加强居民的节水意识,某市制订了以下生活用水收费标准:每户每月用水未超过7 m 3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m 3的部分,每立方收费1.5元,并加收0.4元的城市污水处理费. 设某户每月用水量为x m 3,应交纳水费y 元,那么y 与x 之间的函数关系为 1.2,071.9 4.9,7x x y x x ≤≤⎧=⎨->⎩我们设计一个算法来求上述分段函数的值.算法步骤:第一步:输入用户每月用水量x .第二步:判断输入的x 是否不超过7. 若是,则计算 1.2y x =;若不是,则计算 1.9 4.9y x =-.第三步:输出用户应交纳的水费y .程序框图:2、算法步骤:第一步,令i =1,S=0.第二步:若i ≤100成立,则执行第三步;否则输出S. 第三步:计算S=S+i 2.第四步:i = i +1,返回第二步.程序框图:3、算法步骤:第一步,输入人数x ,设收取的卫生费为m 元.第二步:判断x 与3的大小. 若x >3,则费用为5(3) 1.2m x =+-⨯;若x ≤3,则费用为5m =.第三步:输出m .程序框图:B 组 1、算法步骤:第一步,输入111222,,,,,a b c a b c ..第二步:计算21121221b c b c x a b a b -=-.第三步:计算12211221a c a c y ab a b -=-.第四步:输出,x y .程序框图:2、算法步骤:第一步,令n=1第二步:输入一个成绩r,判断r与6.8的大小. 若r≥6.8,则执行下一步;若r<6.8,则输出r,并执行下一步.第三步:使n的值增加1,仍用n表示.第四步:判断n与成绩个数9的大小. 若n≤9,则返回第二步;若n>9,则结束算法.程序框图:说明:本题在循环结构的循环体中包含了一个条件结构.1.2基本算法语句练习(P24) 123练习(P29) 12、本程序的运行过程为:输入整数x . 若x 是满足9<x <100的两位整数,则先取出x 的十位,记作a ,再取出x 的个位,记作b ,把a ,b 调换位置,分别作两位数的个位数与十位数,然后输出新的两位数. 如输入25,则输出52. 34、4练习(P32)12习题1.2 A组(P33)1、1(0)0(0)1(0)x xy xx x-+<⎧⎪==⎨⎪+>⎩23、程序:习题1.2 B组(P33)1、程序:23、 4、1.3算法案例 练习(P45) 1、(1)45; (2)98; (3)24; (4)17. 2、2881.75.3、2200811111011000=() ,820083730=() 习题1.3 A 组(P48) 1、(1)57; (2)55. 2、21324.3、(1)104; (2)7212() (3)1278; (4)6315().4、习题1.3 B 组(P48)1、算法步骤:第一步,令45n =,1i =,0a =,0b =,0c =.第二步,输入()a i .第三步,判断是否0()60a i ≤<. 若是,则1a a =+,并执行第六步. 第四步,判断是否60()80a i ≤<. 若是,则1b b =+,并执行第六步. 第五步,判断是否80()100a i ≤≤. 若是,则1c c =+,并执行第六步. 第六步,1i i =+. 判断是否45i ≤. 若是,则返回第二步.第七步,输出成绩分别在区间[0,60),[60,80),[80,100]的人数,,a b c .2、如“出入相补”——计算面积的方法,“垛积术”——高阶等差数列的求和方法,等等.第二章复习参考题A组(P50)1、(1)程序框图:程序:1、(2)程序框图:程序:INPUT “x=”;x IF x<0 THENy=0ELSEIF x<1 THENy=1ELSEy=xEND IFEND IFPRINT “y=”;y ENDINPUT “x=”;x IF x<0 THENy=(x+2)^2 ELSEIF x=0 THENy=4ELSEy=(x-2)^2 END IFEND IFPRINT “y=”;y END2、见习题1.2 B组第1题解答. 34、程序框图: 程序:5、 (1)向下的运动共经过约199.805 m (2)第10次着地后反弹约0.098 m (3)全程共经过约299.609 m 第二章 复习参考题B 组(P35)1、 2、 INPUT “n=”;n i=1 S=0WHILE i<=n S=S+1/i i=i+1 WENDPRINT “S=”;S ENDi=100 sum=0 k=1 WHILE k<=10 sum=sum+i i=i /2 k=k+1 WEND PRINT “(1)”;sum PRINT “(2)”;i PRINT “(3)”;2*sum -100 ENDINPUT “n=”;n IF n MOD 7=0 THENPRINT “Sunday ”3、算法步骤:第一步,输入一个正整数x 和它的位数n . 第二步,判断n 是不是偶数,如果n 是偶数,令2nm =;如果n 是奇数,令12n m -=. 第三步,令1i =第四步,判断x 的第i 位与第(1)n i +-位上的数字是否相等. 若是,则使i 的值增加1,仍用i 表示;否则,x 不是回文数,结束算法.第五步,判断“i m >”是否成立. 若是,则n 是回文数,结束算法;否则,返回第四步.第二章 统计 2.1随机抽样 练习(P57)抽样调查的好处是可以节省人力、物力和财力,可能出现的问题是推断的结果与实际情况之间有误差. 如抽取的部分个体不能很好地代表总体,那么我们分析出的结果就会有偏差.2、(1)抽签法:对高一年级全体学生450人进行编号,将学生的名字和对应的编号分别写在卡片上,并把450张卡片放入一个容器中,搅拌均匀后,每次不放回地从中抽取一张卡片,连续抽取50次,就得到参加这项活动的50名学生的编号.(2)随机数表法:第一步,先将450名学生编号,可以编为000,001, (449)第二步,在随机数表中任选一个数. 例如选出第7行第5列的数1(为了便于说明,下面摘取了附表的第6~10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5457 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数1开始向右读,得到一个三位数175,由于175<450,说明号码175在总体内,将它取出;继续向右读,得到331,由于331<450,说明号码331在总体内,将它取出;继续向右读,得到572,由于572>450,将它去掉. 按照这种方法继续向右读,依次下去,直到样本的50个号码全部取出,这样我们就得到了参加这项活动的50名学生.3、用抽签法抽取样本的例子:为检查某班同学的学习情况,可用抽签法取出容量为5的样本. 用随机数表法抽取样本的例子:部分学生的心理调查等.抽签法能够保证总体中任何个体都以相同的机会被选到样本之中,因此保证了样本的代表性.4、与抽签法相比,随机数表法抽取样本的主要优点是节省人力、物力、财力和时间,缺点是所产生的样本不是真正的简单样本.练习(P59)1、系统抽样的优点是:(1)简便易行;(2)当对总体结构有一定了解时,充分利用已有信息对总体中的个体进行排队后再抽样,可提高抽样调查;(3)当总体中的个体存在一种自然编号(如生产线上产品的质量控制)时,便于施行系统抽样法.系统抽样的缺点是:在不了解样本总体的情况下,所抽出的样本可能有一定的偏差.2、(1)对这118名教师进行编号;(2)计算间隔1187.37516k==,由于k不是一个整数,我们从总体中随机剔除6个样本,再来进行系统抽样. 例如我们随机剔除了3,46,59,57,112,93这6名教师,然后再对剩余的112位教师进行编号,计算间隔7k=;(3)在1~7之间随机选取一个数字,例如选5,将5加上间隔7得到第2个个体编号12,再加7得到第3个个体编号19,依次进行下去,直到获取整个样本.3、由于身份证(18位)的倒数第二位表示性别,后三位是632的观众全部都是男性,所以这样获得的调查结果不能代表女性观众的意见,因此缺乏代表性.练习(P62)1、略2、这种说法有道理,因为一个好的抽样方法应该能够保证随着样本容量的增加,抽样调查结果会接近于普查的结果. 因此只要根据误差的要求取相应容量的样本进行调查,就可以节省人力、物力和财力.3、可以用分层抽样的方法进行抽样. 将麦田按照气候、土质、田间管理水平的不同而分成不同的层,然后按照各层麦田的面积比例及样本容量确定各层抽取的面积,再在各层中抽取个体(这里的个体是单位面积的一块地). 习题2.1 A 组(P63)1、产生随机样本的困难:(1)很难确定总体中所有个体的数目,例如调查对象是生产线上生产的产品. (2)成本高,要产生真正的简单随机样本,需要利用类似于抽签法中的抽签试验来产生非负整值随机数.(3)耗时多,产生非负整数值随机数和从总体中挑选出随机数所对的个体都需要时间.2、调查的总体是所有可能看电视的人群.学生A 的设计方案考虑的人数是:上网而且登录某网址的人群,那些不能上网的人群,或者不登录某网址的人群就被排除在外了. 因此A 方案抽取的样本的代表性差.学生B 的设计方案考虑的人群是小区内的居民,有一定的片面性. 因此B 方案抽取的样本的代表性差.学生C 的设计方案考虑的人群是那些有电话的人群,也有一定的片面性. 因此C 方案抽取的样本的代表性.所以,这三种调查方案都有一定的片面性,不能得到比较准确的收视率. 3、(1)因为各个年级学习任务和学生年龄等因素的不同,影响各年级学生对学生活动的看法,所以按年级分层进行抽样调查,可以得到更有代表性的样本.(2)在抽样的过程中可能遇到的问题如敏感性问题:有些学生担心提出意见对自己不利;又如不响应问题:由于种种原因,有些学生不能发表意见;等等. (3)前面列举的两个问题都可能导致样本的统计推断结果的误差.(4)为解决敏感性问题,可以采用阅读与思考栏目“如何得到敏感性问题的诚实反应”中的方法设计调查问卷;为解决不响应问题,可以事先向全体学生宣传调查的意义,并安排专人负责发放和催收调查问卷,最大程度地回收有效调查问卷. 4、将每一天看作一个个体,则总体由365天组成. 假设要抽取50个样本,将一年中的各天按先后次序编号为0~364天用简单随机抽样设计方案:制作365个号签,依次标上0~364. 将号签放到容器内充分搅拌均匀,从容器中任意不放回取出50个号签. 以签上的号码所对应的那些天构成样本,检测样本中所有个体的空气质量. 用系统抽样设计抽样方案:先通过简单随机抽样方法从365天中随机抽出15天,再把剩下的350天重新按先后次序编号为0~349. 制作7个分别标有0~7的号签,放在容器中充分搅拌均匀. 从容器中任意取出一个号签,设取出的号签的编号为a ,则编号为7(050)a k k +≤<所对应的那些天构成样本,检测样本中所有个体的空气质量.显然,系统抽样方案抽出的样本中个体在一年中排列的次序更规律,因此更好实施,更受方案的实施者欢迎.5、田径队运动员的总人数是564298+=(人),要得到28人的样本,占总体的比例为27.于是,应该在男运动员中随机抽取256167⨯=(人),在女运动员中随机抽取281612-=(人).这样我们就可以得到一个容量为28的样本.6、以10为分段间隔,首先在1~10的编号中,随机地选取一个编号,如6,那么这个获奖者奖品的编号是:6,16,26,36,46.7、说明:可以按年级分层抽样的方法设计方案. 习题2.1 B 组(P64)1、说明:可以按年级分层抽样的方法设计方案,调查问卷由学生所关心的问题组成.例如:(1)你最喜欢哪一门课程? (2)你每月的零花钱平均是多少? (3)你最喜欢看《新闻联播》吗? (4)你每天早上几点起床? (5)你每天晚上几点睡觉?要根据统计的结果和具体的情况解释结论,主要从引起结论的可能原因及结论本身含义来解释.2、说明:这是一个开放性的题目,没有一个标准的答案. 2.2用样本估计总体 练习(P71)1、说明:由于样本的极差为364.41362.51 1.90-=,取组距为0.19,将样本分为10组. 可以按照书上的方法制作频率分布表、频率分布直观图和频率折线图.2、说明:此题目属于应用题,没有标准的答案.3、茎叶图为:由该图可以看出30名工人的日加工零件个数稳定在120件左右. 练习(P74)这里应该采用平均数来表示每一个国家项目的平均金额,因为它能反应所有项目的信息. 但平均数会受到极端数据2000万元的影响,所以大多数项目投资金额都和平均数相差比较大. 练习(P79)1、甲乙两种水稻6年平均产量的平均数都是900,但甲的标准差约等于23.8,乙的标准差约等于41.6,所以甲的产量比较稳定.2、(1)平均重量496.86x ≈,标准差 6.55s ≈.(2)重量位于(,)x s x s -+之间有14袋白糖,所占的百分比约为66.67%. 3、(1)略. (2)平均分19.25x ≈,中位数为15.2,标准差12.50s ≈.这些数据表明这些国家男性患该病的平均死亡率约为19.25,有一半国家的死亡率不超过15.2,15.2x >说明存在大的异常数据,值得关注. 这些异常数据使标准差增大. 习题2.2 A 组(P81)。
一、选择题1.下列语句所表示的事件中的因素不具有相关关系的是( )A.瑞雪兆丰年B.名师出高徒C.吸烟有害健康 D.喜鹊叫喜,乌鸦叫丧2.试从下面四个图中的点在散点图上的分布状态,直观上初步判断两个变量之间有线性相关关系的是( )3.下列两个变量间的关系,是相关关系的是( )A.任意实数和它的平方B.圆半径和圆的面积C.正多边形的边数和对角线的条数D.天空中的云量和下雨4.下列说法正确的是( )A.相关关系是函数关系B.函数关系是相关关系C.线性相关关系是一次函数关系D.相关关系有两种,分别是线性相关关系和非线性相关关系5.2003年春季,我国部分地区SARS流行,党和政府采取果断措施,防治结合,很快使病情得到控制.根据某同学记载的5月1日至5月12日每天北京市SARS病患者治愈的数据绘制出的散点图如图所示.下列说法:①根据此散点图,可以判断日期与人数具有线性相关关系;②根据此散点图,可以判断日期与人数具有一次函数关系.其中正确的个数为( )A.①② B.① C.② D.以上都不对二、填空题6.下列两个变量之间的关系不是函数关系的是________.①圆的周长和它的半径②正方体的表面积与它的棱长③正n边形的边数和内角和④人的体重和身高7.下面各组变量之间具有相关关系的是________(填上正确答案的序号).①高原含氧量与海拔高度.②速度一定时,汽车行驶的路程和所用的时间.③学生的成绩和学生的学号.④父母的身高和子女的身高.8.下列两个变量之间的关系,是函数关系的有________.①球的体积和它的半径②人的血压和体重③底面积为定值的长方体的体积和高④城镇居民的消费水平和平均工资三、解答题9.某个男孩的年龄与身高的统计数据如下:画出散点图,并判断它们是否具有相关关系.10.有时候,一些东西吃起来口味越好,对我们的身体越有害,下表给出了不同类型的某种食品的数据.第二行表示此种食品所含热量的百分比,第三行数据表示由一些美食家以百分制给出的对此种食品口味的评价:所含热量25342019262019241913 的百分比口味记录89898078757165626052(1)作出散点图;(2)你能从散点图中发现两者之间的近似关系吗?(3)如果近似成线性关系,请画出一条直线来近似地表示这种线性关系;(4)对于这种食品,为什么人们更喜欢吃位于直线上方的食品而不是下方的?答案1. 解析:选D 瑞雪兆丰年和名师出高徒是根据多年经验总结归纳出来的,吸烟有害健康具有科学根据,所以它们都是相关关系,所以A、B、C三项具有相关关系;结合生活经验知喜鹊和乌鸦发出叫声是它们自身的生理反应,与人无任何关系,不具有相关关系.2. 答案:C3. 解析:选D 很明显A、B、C三项都是函数关系;根据生活经验,天空中的云量和下雨之间不是确定性关系,虽然有云彩不一定下雨,但是如果没有云彩一定不下雨,这说明它们之间是相关关系.4. 解析:选D 函数关系和相关关系互不包含,所以A、B、C三项不正确;根据定义,相关关系有两种,分别是线性相关关系和非线性相关关系.5. 解析:选B ①正确.6. 答案:④7. 答案:①④8. 答案:①③9. 解:散点图如下.由散点图可清楚地看到,在一定的范围内,这个男孩的年龄与身高具有明显的正相关关系,即该男孩的身高随着年龄的增大而增大.10. 解:(1)散点图如图所示.(2)从上图看基本近似成线性相关关系.(3)所画直线如上图所示.(4)因为当直线上方的食品和下方的食品所含热量相同时,直线上方的食品口味更好.。
课下能力提升10一、选择题1.如图所示的选择结构,下列说法错误的是( )A .当条件为假时,执行步骤甲B .当条件为真时,执行步骤乙C .无论条件是真是假,只能执行步骤甲和步骤乙中的一个D .可能同时执行步骤甲和步骤乙2.已知函数y =⎩⎪⎨⎪⎧x -1,x <0,0,0≤x ≤6,3x ,x >6,输入自变量x 的值,求对应的函数值,设计算法框图时所含有的基本逻辑结构是( )A .顺序结构B .选择结构C .顺序结构、选择结构D .以上都不是3.如图所示的算法框图,输入x =2,则输出的结果是( )A .1B .2C .3D .44.如图所示,算法框图运行的结果为s =( )A.25B.52C .1D .2 5.如图所示的算法框图中,当输入a 1=3时,输出的b =7,则a 2的值是( ) A .11 B .17 C .0.5 D .12二、填空题6.如图所示的算法功能是____________________________________________________.7.已知函数y =⎩⎪⎨⎪⎧x -2,x >0,0, x =0,x +2, x <0,如图是计算函数值y 的算法框图,则在空白的判断框中应填________.8.阅读算法框图(如图所示),若a =50.6,b =0.65,c =log 0.65,则输出的数是________.三、解答题9.已知函数y =⎩⎪⎨⎪⎧-1 x >,0 x =,x <,写出求函数值的算法并画出算法框图.10.阅读如图所示的算法框图,根据该图和各问题的条件回答下面几个小题:(1)该算法框图解决一个什么问题?(2)若当输入的x 值为0和4时,输出的值相等.问当输入的x 值为3时,输出的值为多大? (3)依据(2)的条件,要想使输出的值最大,输入x 的值为多大?答 案1. 解析:选D 步骤甲和乙不能同时执行.2. 解析:选C 任何算法框图中都有顺序结构,由于自变量在不同的范围内,有不同的对应法则,用选择结构.3. 解析:选B 输入x =2;则x =2>1,∴y =2+2=2,输出y =2.4. 解析:选B 由框图可知s =a b +b a =24+42=12+2=52.5. 解析:选A b =a 1+a 22=3+a 22=7,∴a 2=11.6. 答案:求两个实数a 、b 差的绝对值7. 解析:由函数y =⎩⎪⎨⎪⎧x -2,x >0,0, x =0,x +2, x <0,可知第一个判断框的否定条件为x ≤0,第二个判断框的肯定条件的结果为y =0,因此空白判断框内应填“x =0”.8. 解析:算法框图的功能是输出a ,b ,c 中最大的数,又因为a >1,0<b <1,c <0,所以输出的数为50.6.答案:50.69. 解:算法如下: 1.输入x ;2.如果x >0,那么y =-1;如果x =0,那么y =0;如果x <0,那么y =1; 3.输出函数值y . 算法框图如图所示:10. 解:(1)该算法框图是求二次函数y =-x 2+mx 的函数值.(2)当输入的x 值为0和4时,输出的值相等,即f (0)=f (4),可得m =4.∴f (x )=-x 2+4x .∴f (3)=3.(3)由(2),知f (x )=-x 2+4x =-(x -2)2+4, ∴当输入的x 值为2时,函数输出最大值4.。
一、选择题1.赋值语句描述的算法如下:a=3;a=5;输出a.则运行结果是( )A.5 B.3C.a D.82.将两个数a=1,b=2交换,使a=2,b=1,下面语句正确的是( )A.a=b,b=aB.b=a,a=bC.a=c,c=b,b=aD.c=b,b=a,a=c3.阅读如图所示的算法框图,若输入的a,b,c分别为21,32,75,则输出的a,b,c分别是( )A.75,21,32 B.21,32,75 C.32,21,75 D.75,32,214.下列算法语句执行后的结果是( )i=2;j=5;i=i+j;j=i+j;输出i,j.A.i=12,j=7 B.i=12,j=4C.i=7,j=7 D.i=7,j=125.如图所示的算法框图中,如果输入三个实数a,b,c,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的( )A.c>x B.x>cC.c>b D.b>c二、填空题6.执行下列赋值语句后,变量A=________.A=1A=A+1A=2A7.下列语句执行完后,A、B、C的值分别为________.A=1B=2C=A-BB=A+C-B8.阅读如图所示的算法框图,若输入a=12,则输出a=________.三、解答题9.下列语句运行后,a,b,c的值各等于什么?(1)a=3 (2) a=3b=-5 b=-5c=8 c=8a=b a=bb=c b=c输出a,b,c. c=a输出a,b,c10.已知一个正三棱柱的底面边长为a,高为h,写出求正三棱柱的表面积和体积的一个算法,并画出框图.答案1. 解析:选A 此算法中用到了赋值语句.虽然a=3是把3赋予a,但是接下来的语句a =5,又把5赋予a,所以输出a的值为5.2. 解析:选D “a=b”的含义是把b的值赋给a.选项A得到的结果是a=2,b=2;选项B得到的结果是a=1,b=1;选项C中c的值不明确;选项D正确.3. 解析:选A 算法框图的运行过程是:a=21;b=32;c=75;x=21;a=75;c=32;b=21;则输出75,21,32.4. 解析:选D 算法中i=i+j是2+5=7赋值给i,j=i+j是7+5=12赋值给j,两处的i+j取值不同.5. 解析:选A 该算法框图执行空白处的判断框时,x是a,b的最大值,空白处的判断框内的条件不成立时x大于c,则输出最大值x,所以空白处的判断框内应填入c>x.6. 答案:47. 解析:阅读程序,由语句C=A-B及A=1、B=2得C=-1,又根据B=A+C-B得B=-2,所以语句执行完后,A、B、C的值分别为1,-2,-1.答案:1,-2,-18. 解析:输入a=12,该算法框图的执行过程是:a=12,b=12-6=6,a=12-6=6,输出a=6.答案:69. 解:(1)把b的值-5赋予a(取代a原来的值),把c的值8赋予b(取代b原来的值),c 的值不变.所以最后结果为a=-5,b=8,c=8;(2)把b的值-5赋予a,c的值8赋予b,又把a的新值-5赋予c,所以最后结果为a=-5,b=8,c=-5.10. 解:根据正三棱柱的表面积及体积公式来完成,算法如下:第一步,输入a,h.第二步:计算正三棱柱的表面积:S=34a2,C=3a,T=Ch,P=T+2S;体积为V=Sh.第三步:输出表面积P和体积V,算法结束.算法框图如图所示:。
课下能力提升1一、选择题1.现从80件产品中随机抽出10件进行质量检验,下列说法正确的是( )A.80件产品是总体B.10件产品是样本C.样本容量是80D.样本容量是102.下列调查时,必须采用“抽样调查”的是( )A.调查某城市今年7月份的温度变化情况B.调查某一品牌5万瓶化妆品是否符合质量标准C.调查我国所有城市中哪些是第一批沿海开放城市D.了解全班50名学生100米短跑的成绩3.下列哪个问题不宜用普查( )A.为了缓解城市的交通情况,某市准备出台限制私家车的政策,为此要进行民意调查B.对你所在学校的学生最喜欢的体育活动情况的调查C.某轮胎厂要对一个批次轮胎的寿命进行调查D.对上海市常住人口家庭收入情况的调查4.为了调查北京市2015年家庭的收入情况,在该问题中总体是( )A.北京市B.北京市的所有家庭的收入C.北京市的所有人口D.北京市的工薪阶层5.下列调查中属于抽样调查的是( )①每隔5年进行一次人口普查;②某商品的质量优劣;③某报社对某个事件进行舆论调查;④高考考生的身体检查.A.②③ B.①④C.③④ D.①②6.下面的各事件中,适合抽样调查的有________.①调查除夕之夜我国有多少人观看中央电视台春节联欢晚会;②调查某工厂生产的一万件西服中有无不合格产品;③评价一个班级升学考试的成绩;④调查当今中学生中,对交通法规的了解情况;⑤调查山东省初中生每人每周的零花钱数.7.随着人们健康意识的提高,有色食品的质量引起消费者的特别关注,检验员为了检查彩色豆腐是否具有染色现象,应采用__________的方法检验.8.某地区发现了新型流感病毒,在病毒发作区,对与病毒携带者亲密接触的人要进行检查,所采用的方法是________.三、解答题9.有人说“如果抽样方法设计得好,用样本进行视力调查与对24 300名学生进行视力普查的结果会差不多,而且对于教育部门掌握学生视力状况来说,因为节省了人力、物力和财力,抽样调查更可取”,你认为这种说法有道理吗?为什么?10.为了了解高一一班语文老师的教学情况,从全班50名同学中抽取了成绩在前10名的10名同学进行问卷调查,这种抽样方法合理吗?为什么?答案1. 解析:选D 在该问题中,80件产品的质量是总体,所以A错误;所抽取的10件产品的质量是样本,所以B错误;总体容量是80,所以C错误;样本容量是10,所以D正确.2. 解析:选B 调查化妆品是否符合质量标准,具有“破坏性”,必须使用抽样调查.3. 答案:C4. 答案:B5. 解析:选A ①④为普查,②③为抽样调查.6. 答案:①②④⑤7. 解析:这是破坏性的检验,不可能进行普查,应当采取抽样调查的方法进行检验,对随机抽取的部分产品进行检验,根据得到的检验结果,就可以得到这批产品是否具有染色现象,因为同一批豆腐,从中随机抽取一部分代表全体产品的质量是合理的.答案:抽样调查8. 答案:普查9. 解:这种说法有道理,因为一个好的抽样方法能够保证调查结果接近于普查的结果,因此只要根据误差的要求取合适的样本进行调查会和普查的结果差不多,而且抽样调查还可以节省人力、物力和财力.10. 解:这种抽样方法不合理,它不具有随机性,不能保证每个个体被抽到的机会相等,并且成绩的好坏也可能会影响到对老师印象的偏见.在抽样时,一定要做到随机性,尽量避免人为的主观因素的影响.。
一、选择题1.下面的框图中是循环结构的是( )A.①②B.②③C.③④D.②④2.(天津高考)阅读下边的程序框图,运行相应的程序,则输出S的值为( )A.8 B.18 C.26 D.803.(北京高考)执行如图所示的程序框图,输出的S值为( )A.2 B.4 C.8 D.164.图中所示的是一个算法的框图,则其表达式为( )A.11+2+3+…+99B.11+2+3+…+100C.199D.11005.(天津高考)阅读如图所示的算法框图,运行相应的算法.若输入x的值为1, 则输出S 的值为( )A.64 B.73 C.512 D.585二、填空题6.阅读如图所示的框图,若输入m=4,n=3,则输出a=________,i=________.7.(江西高考)下图是某算法的程序框图,则程序运行后输出的结果是________.8.若算法框图所给的程序运行的结果为S=90,那么判断框中应填入的关于k的判断条件是________.三、解答题9.设计求1+4+7+10+…+40的一个算法,并画出相应的算法框图.10.以下是某次考试中某班15名同学的数学成绩:72, 91, 58, 63, 84, 88, 90, 55, 61, 73, 64, 77, 82, 94, 60.要求将80分以上的同学的平均分求出来,画出算法框图.答 案1. 解析:选C ①是顺序结构,②是选择结构,③④是循环结构.2. 解析:选C 程序执行情况为S =31-30=2,n =2;S =2+32-31=8,n =3;S =8+33-32=26,n =4≥4,跳出循环.故输出26.3. 解析:选C 框图的功能为计算S =1·20·21·22的值,计算结果为8. 4. 解析:选 A 依题意当i ≤99时,S =1+2+…+99,当i =100时,S =11+2+3+…+99.5. 解析:选B 第1次循环,S =1,不满足判断框内的条件,x =2;第2次循环,S =9,不满足判断框内的条件,x =4;第3次循环,S =73,满足判断框内的条件,跳出循环,输出S =73.6. 解析:由算法框图可知,当a =m ×i =4×i 能被n =3整除时输出a 和i 并结束程序.显然,当i =3时,a 可以被3整除,故i =3,此时a =4×3=12.答案:12 37. 解析:此框图依次执行如下循环:第一次:T =0,k =1,sin π2>sin 0成立,a =1,T =T +a =1,k =2,2<6,继续循环;第二次:sin π>sin π2不成立,a =0,T =T +a =1,k =3,3<6,继续循环;第三次:sin 3π2>sin π不成立,a =0,T =T +a =1,k =4,4<6,继续循环;第四次:sin 2π>sin 3π2成立,a =1,T =T +a =2,k =5,5<6,继续循环;第五次:sin 5π2>sin 2π成立,a =1,T =T +a =3,k =6,跳出循环,输出的结果是3.答案:38. 解析:由算法框图可知其作用是计算S=1×10×9×…,当运行结果为S=90时,应有S =1×10×9,∴当k=8时应符合条件且k>8不符合条件,∴条件应为k≤8或k<9.答案:k≤8或k<99. 解:算法:1.令S=0,i=1.2.S=S+i.3.i=i+3.4.若i≤40,返回第2步;重新执行第2、3、4步;若i>40,执行第5步.5.输出S的值.算法框图如图所示:法一:法二:10. 解:算法框图如下所示:。
模块提升卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是()①必然事件的概率等于1;②互斥事件一定是对立事件;③球的体积与半径的关系是正相关;④汽车的重量和百公里耗油量成正相关.A.①②B.①③C.①④D.③④解析:互斥事件不一定是对立事件,②错;③中球的体积与半径是函数关系,不是正相关关系,③错;①④正确,选C.答案:C2.某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为()类别人数老年教师900中年教师1800青年教师1600合计4300A.90 B.100C.180 D.300解析:设样本中的老年教师人数为x,则3201600=x900,解得x=180.故选C.答案:C3.已知变量x和y满足关系y=-0.1x+1,变量y与z正相关,下列结论中正确的是() A.x与y正相关,x与z负相关B.x与y正相关,x与z正相关C.x与y负相关,x与z负相关D.x与y负相关,x与z正相关解析:因为变量x和y满足关系y=-0.1x+1,其中-0.1<0,所以x与y成负相关;又因为变量y与z正相关,不妨设z=ky+b(k>0),则将y=-0.1x+1代入即可得到:z=k(-0.1x+1)+b=-0.1kx+(k+b),所以-0.1k<0,所以x与z负相关.答案:C4.一个射手进行射击,记事件E1:“脱靶”,E2:“中靶”,E3:“中靶环数大于4”,E4:“中靶环数不小于5”,则在上述事件中,互斥而不对立的事件共有() A.1对B.2对C.3对D.4对解析:E1与E3,E1与E4均为互斥而不对立的事件.答案:B5.阅读如图所示的程序框图,运行相应的程序,若输入x的值为1,则输出S的值为()A .64B .73C .512D .585解析:依题意,执行题中的程序框图,当输入x 的值为1时,进行第一次循环,S =1<50,x =2;进行第二次循环,S =1+23=9<50,x =4;进行第三次循环,S =9+43=73>50,此时结束循环,输出S 的值为73,选B . 答案:B 6.用秦九韶算法求多项式f(x)=0.5x 5+4x 4-3x 2+x -1当x =3的值时,先算的是( ) A .3×3=9B .0.5×35=121.5C .0.5×3+4=5.5D .(0.5×3+4)×3=16.5 解析:按递推方法,从里到外先算0.5x +4的值. 答案:C7.如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别是( )A .12.5 12.5B .12.5 13C .13 12.5D .13 13 解析:根据频率分布直方图特点可知,众数是最高矩形的中点,由图可知为12.5,中位数是10+0.5-0.20.1=13.答案:B8.下列说法错误的是( )A .回归直线过样本点的中心(x -,y -)B .两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1C .对分类变量X 与Y ,随机变量K 2的观测值k 越大,则判断“X 与Y 有关系”的把握程度越小D .在回归直线方程y ^=0.2x +0.8中,当解释变量x 每增加1个单位时,预报变量y ^平均增加0.2个单位解析:本题考查命题真假的判断.根据相关定义分析知A ,B ,D 正确;C 中对分类变量X 与Y 的随机变量K 2的观测值k 来说,k 越大,判断“X 与Y 有关系”的把握程度越大,故C 错误,故选C .熟练掌握基本概念是解答本题的前提条件.答案:C9.把一枚骰子投掷两次,观察出现的点数,记第一次出现的点数为a ,第二次出现的点数为b ,则方程组⎩⎪⎨⎪⎧ax +by =3,x +2y =2只有一个解的概率为( )A .512B .1112 C .513 D .913解析:点(a ,b)取值的集合共有36个元素,方程组只有一个解等价于直线ax +by =3与x +2y =2相交,即a 1≠b2,即b ≠2a ,而满足b =2a 的点只有(1,2),(2,4),(3,6),共3个,故方程组⎩⎪⎨⎪⎧ax +by =3,x +2y =2只有一个解的概率为3336=1112.答案:B10.在区间[0,10]内随机取出两个数,则这两个数的平方和也在区间[0,10]内的概率是( )A .110B .1010C .π40D .π4解析:在区间[0,10]内随机取出两个数,设这两个数为x ,y ,则⎩⎪⎨⎪⎧0≤x ≤10,0≤y ≤10,若这两个数的平方和也在区间[0,10]内,则⎩⎪⎨⎪⎧0≤x ≤10,0≤y ≤10,0≤x 2+y 2≤10,画出其可行域,由可行域知,这两个数的平方和也在区间[0,10]内的概率是10π×14100=π40.故选C .答案:C11.运行如图的程序框图,设输出数据构成的集合为A ,从集合A 中任取一个元素α,则函数y =x α,x ∈[0,+∞)是增函数的概率为( )A .37B .45C .35D .34解析:当x 依次取值-3,-2,-1,0,1,2,3时,对应的y 的值依次为:3,0,-1,0,3,8,15, 所以集合A ={-1,0,3,8,15},因为α∈A ,所以使y =x α在x ∈[0,+∞)上为增函数的α的值为3,8,15,故所求概率P =35. 答案:C12.下表是某厂1~4月份用水量(单位:百吨)的一组数据:月份x 1 2 3 4 用水量y 4.5 4 3 2.5由散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其回归直线方程是y ^=-0.7x +a ^,则a ^等于( )A .10.5B .5.15C .5.2D .5.25解析:由于回归直线必经过点(x -,y -),而x -=52,y -=72,所以72=-0.7×52+a ^,∴a ^=5.25.答案:D二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中横线上)13.为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体.如果用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本,则该样本平均数与总体平均数之差的绝对值不超过0.5的概率为________.解析:总体平均数为16(5+6+7+8+9+10)=7.5,设事件A 表示“样本平均数与总体平均数之差的绝对值不超过0.5”.从总体中抽取2个个体全部可能的结果有:(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10),共15个.事件A 包含的结果有:(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),共7个.所以所求的概率为P(A)=715.答案:71514.阅读如图所示的程序框图,运行相应的程序,输出的结果i =________.解析:a =10≠4且a 是偶数,则a =102=5,i =2;a =5≠4且a 是奇数,则a =3×5+1=16,i =3;a =16≠4且a 是偶数,则a =162=8,i =4;a =8≠4且a 是偶数,则a =82=4,i =5.所以输出的结果是i =5. 答案:515.由正整数组成的一组数据x 1,x 2,x 3,x 4,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)解析:不妨设x 1≤x 2≤x 3≤x 4,x 1,x 2,x 3,x 4∈N *,依题意得x 1+x 2+x 3+x 4=8, s =14[(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2] =1,即(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2=4, 所以x 4≤3,则只能x 1=x 2=1,x 3=x 4=3, 所以这组数据为1,1,3,3. 答案:1,1,3,316.设p 在[0,5]上随机地取值,则方程x 2+px +p 4+12=0有实根的概率为________.解析:一元二次方程有实数根⇔Δ≥0,而Δ=p 2-4⎝⎛⎭⎫p 2+12 =(p +1)(p -2),解得p ≤-1或p ≥2,故所求概率为P =[0,5]∩{(-∞,-1]∪[2,+∞)}的长度[0,5]的长度=35. 答案:35三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)某初级中学共有学生2 000名,各年级男生、女生人数如表:初一年级 初二年级 初三年级 女生 373 x y 男生 377 370 z已知在全校学生中随机抽取1名,抽到的是初二年级女生的概率是0.19. (1)求x 的值.(2)现用分层抽样法在全校抽取48名学生,问应在初三年级学生中抽取多少名? (3)已知y ≥245,z ≥245,求初三年级女生比男生多的概率.解析:(1)由x2 000=0.19,得x =380.(2)初三年级人数为y +z =2 000-(373+377+380+370)=500,现用分层抽样法在全校抽取48名学生,应在初三年级学生中抽取的人数为482 000×500=12,即抽取初三年级学生12名.(3)记“初三年级女生比男生多”为事件A,由(2)知y+z=500,又已知y≥245,z≥245,则所有的基本事件(前一个数表示女生人数,后一个数表示男生人数)有(245,255),(246,254),(247,253),…,(255,245),共11个.其中事件A包含的基本事件有(251,249),(252,248),(253,247),(254,246),(255,245),共5个,则P(A)=511.18.(12分)已知某算法的程序框图如图所示,若将输出的(x,y)值依次记为(x1,y1),(x2,y2),…,(x n,y n),….(1)若程序运行中输出的一个数组是(9,t),求t的值;(2)程序结束时,共输出(x,y)的组数为多少;(3)写出程序框图的程序语句.解析:(1)开始时x=1时,y=0;接着x=3,y=-2;最后x=9,y=-4,所以t=-4.(2)当n=1时,输出一对,当n=3时,又输出一对,…,当n=2 009时,输出最后一对,共输出(x,y)的组数为1 005.(3)程序框图的程序语句如下:19.(12分)随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.(1)计算甲班的样本方差;(2)现从乙班10名同学中随机抽取两名身高不低于173 cm 的同学,求身高为176 cm 的同学被抽中的概率.解析:(1)x -=158+162+163+168+170+171+179+179+18210=170(cm ). 甲班的样本方差s 2=110[(158-170)2+(162-170)2+(163-170)2+(168-170)2+(168-170)2+(170-170)2+(171-170)2+(179-170)2+(179-170)2+(182-170)2]=57.2.(2)设“身高为176 cm 的同学被抽中”为事件A.从乙班10名同学中随机抽取两名身高不低于173 cm 的同学有:(181,173),(181,176),(181,178),(181,179),(179,173),(179,176),(179,178),(178,173),(178,176),(176,173),共10个基本事件,而事件A 含有4个基本事件:(181,176),(179,176),(178,176),(176,173).所以P(A)=410=25.20.(12分)一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c.(1)求“抽取的卡片上的数字满足a +b =c ”的概率.(2)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率.解析:(1)由题意,(a ,b ,c)所有的可能为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a +b =c ”为事件A ,则事件A 包括(1,1,2),(1,2,3),(2,1,3),共3种.所以P(A)=327=19.(2)设“抽取的卡片上的数字a ,b ,c 不完全相同”为事件B ,则事件B -包括(1,1,1),(2,2,2),(3,3,3),共3种,所以P(B)=1-P(B -)=1-327=89.因此,“抽取的卡片上的数字a ,b ,c 不完全相同”的概率为89.21.(12分)为选拔选手参加“中国谜语大会”,某中学举行了一次“谜语大赛”活动,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图(图1),并作出样本分数的茎叶图(图2),图中仅列出了得分在[50,60),[90,100]的数据.(1)求样本容量n 和频率分布直方图中的x ,y 的值. (2)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生参加“中国谜语大会”,求所抽取的2名学生中至少有一人得分在[90,100]内的概率.解:(1)由题意可知,样本容量n =80.016×10=50,y =250×10=0.004,x =0.100-0.004-0.010-0.016-0.040=0.030.(2)由题意可知,分数在[80,90)内的学生有5人,记这5人分别为a 1,a 2,a 3,a 4,a 5,分数在[90,100]内的学生有2人,记这2人分别为b 1,b 2,抽取的2名学生的所有情况有21种,分别为:(a 1,a 2),(a 1,a 3),(a 1,a 4),(a 1,a 5),(a 1,b 1),(a 1,b 2),(a 2,a 3),(a 2,a 4),(a 2,a 5),(a 2,b 1),(a 2,b 2),(a 3,a 4),(a 3,a 5),(a 3,b 1),(a 3,b 2),(a 4,a 5),(a 4,b 1),(a 4,b 2),(a 5,b 1),(a 5,b 2),(b 1,b 2).两人都在[80,90)的情况有10种,所以所求概率为P =1-1021=1121.22.(12分)某城市理论预测2016年到2020年人口总数(单位:十万)与年份的关系如下表所示:年份2016+x 0 1 2 3 4 人口总数y 5 7 8 11 19(1)请画出上表数据的散点图.(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的回归方程y ^=b ^x +a ^. (3)据此估计2021年该城市人口总数.(参考数据:0×5+1×7+2×8+3×11+4×19=132,02+12+22+32+42=30)解析:(1)由题意可得散点图.(2)由题中数表,知x -=15(0+1+2+3+4)=2,y -=15(5+7+8+11+19)=10.所以b ^=∑i =15x i y i -5x -y-∑i =15x 21-5x -2=3.2, a ^=y --b ^x -=3.6,所以回归方程为y ^=3.2x +3.6.(3)当x =5时,y ^=3.2×5+3.6=19.6(十万)=196(万). 答:估计2021年该城市人口总数约为196万.。
一、选择题
1.“某彩票的中奖概率为1
100”意味着( )
A .买100张彩票就一定能中奖
B .买100张彩票能中一次奖
C .买100张彩票一次奖也不中
D .购买彩票中奖的可能性为
1100
2.抛掷一枚骰子两次,用随机模拟方法估计上面的点数和为7的概率,共进行了两次试验,第一次产生了60组随机数,第二次产生了200组随机数,那么这两次估计的结果相比较( )
A .第一次准确
B .第二次准确
C .两次的准确率相同
D .无法比较 3.下列结论正确的是( )
A .事件A 发生的概率P (A )满足0<P (A )<1
B .事件A 发生的概率P (A )=0.999,则事件A 是必然事件
C .用某种药物对患有胃溃疡的500 名病人进行治疗,结果有380人有明显的疗效,现有胃溃疡的病人服用此药,则估计有明显疗效的可能性为76%
D .某奖券的中奖率为50%,则某人购买此奖券10张,一定有5张中奖 4.给出下列三个命题,其中正确命题的个数为( )
①设有一批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面朝上,则硬币出现正面朝上的概率是3
7;③随机事件发生的频率
就是这个随机事件发生的概率.
A .0
B .1
C .2
D .3
5.在给病人动手术之前,外科医生会告知病人或家属一些情况,其中有一项是说这种手术的成功率大约是99%,下列解释正确的是( )
A .100个手术有99个手术成功,有1个手术失败
B .这个手术一定成功
C .99%的医生能做这个手术,另外1%的医生不能做这个手术
D .这个手术成功的可能性是99% 二、填空题
6.一个口袋装有除颜色外其他均相同的白球、红球共100个,若摸出一个球为白球的概率为3
4
,则估计这100个球内,有白球________个. 7.在200件产品中,有192件一级品,8件二级品,则下列事件:
①在这200件产品中任意选出9件,全部是一级品;②在这200件产品中任意选出9件,全部是二级品;③在这200件产品中任意选出9件,不全是二级品;④在这200件产品中任意选出9件,其中不是一级品的件数小于10;
其中________是必然事件;________是不可能事件;________是随机事件.
8.下列说法:
①一年按365天计算,两名学生的生日相同的概率是
1 365
;
②甲乙两人做游戏:抛一枚骰子,向上的点数是奇数,甲胜,向上的点数是偶数,乙胜,这种游戏是公平的;
③乒乓球比赛前,决定谁先发球,抽签方法是从1~10共10个数字中各抽取1个,再比较大小,这种抽签方法是公平的;
④昨天没有下雨,则说明昨天气象局的天气预报“降水概率为90%”是错误的.
其中正确的有________(填序号).
三、解答题
9.高一(2)班有50名同学,其中男、女各25人,今有这个班的一个学生在街上碰到一位同班同学,试问:碰到异性同学的概率大还是碰到同性同学的概率大?有人说可能性一样大,这种说法对吗?
10.某公司在过去几年内使用某种型号的灯管1 000支,该公司对这些灯管的使用寿命(单位:小时)进行了统计,统计结果如下表所示:
(1)将各组的频率填入表中;
(2)根据上述统计结果,估计灯管使用寿命不足1 500小时的概率.
答案
1. 答案:D
2. 解析:选B 用随机模拟方法估计概率时,产生的随机数越多,估计的结果越准确.
3. 解析:选C A不正确,因为0≤P(A)≤1;B不正确,若事件A是必然事件,则P(A)=1;
D 不正确,某奖券的中奖率为50%,10张奖券可能会有5张中奖,但不一定会发生.
4. 解析:选A ①②③均不正确.
5. 解析:选D 成功率大约是99%,说明手术成功的可能性是99%.
6. 解析:100×3
4=75.
答案:75
7. 解析:200件产品中,8件是二级品,现从中任意选出9件,当然不可能全是二级品,不是一级品的件数最多为8,小于10.
答案:③④ ② ①
8. 解析:对于②,甲胜、乙胜的概率都是1
2,是公平的;对于④,降水概率为90%只说明下
雨的可能性很大,但也可能不下雨,故④错误.
答案:①②③
9. 解:这种说法不正确.这个同学在街上碰到的同班同学是除了自己以外的49个人中的一个,其中碰到同性同学有24种可能,碰到异性同学有25种可能,每碰到一个同学相当于做了一次试验,因为每次试验的结果是随机的,所以碰到异性同学的可能性大,碰到同性同学的可能性小.
10. 解:(1)频率依次是0.048,0.121,0.208,0.223,0.193,0.165,0.042. (2)样本中寿命不足1 500小时的频数是 48+121+208+223=600,
所以样本中寿命不足1 500小时的频率是600
1 000=0.6,即灯管使用寿命不足1 500小时的概
率约为0.6.。