当前位置:文档之家› 计步器的工作原理和电路

计步器的工作原理和电路

计步器的工作原理和电路
计步器的工作原理和电路

随着社会的发展,人们越来越注重自己的健康,跑步成为一种方便而又有效的锻炼方式。但是如何知道自己跑了多少步,多远的路程?计步器可以帮助人们实时掌握锻炼情况。它的主要功能是检测步数,通过步数和步幅可计算行走的路程。步幅信息可通过行走固定的距离如20m 来计算或是直接输入,高级的计步器还可以计算人体消耗的热量。但这些计算的主要依据是步数的检测。下面介绍一种加速度传感器ADXL202在步数检测中的应用。

计步器原理

要实现检测步数首先要对人走路的姿态有一定了解。行走时,脚、腿、腰部,手臂都在运动,它们的运动都会产生相应的加速度,并且会在某点有一个峰值。从脚的加速度来检测步数是最准确的,但是考虑到携带的方便,我们选择利用腰部的运动来检测步数。如图1所示,行走时腰部有上下的垂直运动,每步开始时会有一个比较大的加速度,利用对加速度的峰值检测可以得到行走的步数。

图2是将计步器佩戴在腰间采集到的垂直加速度曲线图,从图上可以清楚地看出有四个峰值,代表行走了四步,说明利用腰部的垂直加速度来检测步数是可行的。

根据资料显示,人行走的垂直加速度在±1g之间(1g为9.8m/s即重力加速度),考虑到还有重力加速度的影响,可选择测量范围在±2g之间的加速度传感器ADXL202来实现计步器。ADXL202是美国AD公司的一种低功耗、二维加速度传感器,输出如图3所示占空比(T1/T2)与加速度成一定比例的数字信号,因此信号可以直接用单片机的计数器来测量,无需AD转换电路或是其它特殊电路。

硬件设计

计步器的整机原理框图如图4所示,ADXL202采集加速度信息并将数据送到单片机进行处理;单片机控制整个系统的工作并从数据中检测出步数送到LCD进行显示;外部控制按键进行开关机控制以及功能选择等。

本文不对电源转换、LCD显示等电路做详细介绍,重点介绍ADXL202芯片的电路设计。ADXL202可以输出X、Y两路信号,由于我们只测量垂直方向上的加速度,只用一路信号即可,需要注意的是,设计PCB时要摆放好芯片位置,保证使用时此路与水平面垂直。从图5可以看出ADXL202的电路设计并不复杂,在使用时我们要得到有用的信号需要设定它的采样频率和采样带宽。上述两个量是由电路图中的电阻Rset和电容Cx的取值所决定的。

采样频率过低,不能准确反应数据的变化情况;过高则引入很多无用信息,增加了系统运算量,需要根据实际情况选择合适的采样频率。根据资料显示,人行走的频率一般在110步/分钟(1.8Hz),跑步时的频率不会超过5Hz,选择100Hz的采样频率可以比较准确地反应加速度变化。1/T2即为数据的采样频率,计算方法为T2=RSET(Ω)/125MΩ。RSET的范围可从500kΩ~2MΩ,这里我们选择RSET=1.25MΩ,采样频率为100Hz。

滤波带宽定义为需要检测的最高频率, 由滤波电容Cx设定,带宽的设定会影响噪声的大小和分辨率。从附表中可以看出,带宽越小,噪声就越小,而分辨率会越高,减小滤波带宽对减小噪声和提高分辨率都是有利的。但是,图2的数据曲线中越尖的地方含有的高频分量就越多,滤波带宽减小,采集到的数据曲线就变光滑,峰值相应变小,这对我们进行峰值检测是不利的。因此我们折中取滤波带宽50Hz,根据公式F-3dB=1/(2π(32kΩ×C(x,y))计算,Cx选择0.10μF。

设定了采样频率和滤波带宽,按芯片手册连好电路图,应该得到如图3所示的数据波形,此时T2为10ms。

软件设计

根据得到的X轴数据通,过软件处理可以获得我们需要的加速度信息。

加速度的计算公式如下:

一般情况下0g(即加速度为零)时的占空比为50%,1g时的占空比为12.5%,则A(g)=(T1/T2-0.5)/0.125。

从芯片手册上可以看出0g时的占空比芯片个体差异很大,从25%~75% 都有可能,要准确地计算加速度必须对0g和1g时的占空比进行校准。另外,计算加速度需要进行两次除法运算。以上两个因素使加速度的获取需要经过复杂的计算,考虑到我们的最终目的是检测加速度的峰值个数,而对加速度的具体值究竟是多少并不关心,T1完全可以反应加速度的变化趋势,因此选择对T1进行测量和检测峰值即可得到我们所需的步数。

T1的测量可利用单片机的中断和计数器来实现。如图3所示,在上升沿Ta时刻开始计数,下降沿Tb时刻停止计数,读取数据并将计数器清零等待下一次上升沿再次开始计数。得到T1的数据,通过单片机进行峰值检测就可以确定步数。

峰值的检测通过门限判断实现。判断门限的选择非常关键,选择偏高会造成漏判;而偏低会造成误判。单一门限要实现准确的判断并不是很容易,解决的方法是如图6所示选择两个门限A和B,当数据大于门限B并且接下来变化小于门限A时判为一步,这样可以有效地排除干扰影响。

结语

本文介绍了利用人行走时腰部产生的加速度变化来检测步数的计步器实现方案,利用加速度传感器ADXL202设计简单,实现方便。该芯片也可以扩展到其它需要测量加速度的应用场合,具有广阔的应用前景。

摘自:《电子世界》2004

计步器的摆锤机构

<<中华人民共和国国家知识产权局>>2006年

发明人: 李鹏生, 申请人: 李鹏生,

实用新型申请号: CN200620016922.2

一种计步器的摆锤机构,包括游丝1,由旋转锤面21和旋转锤座22构成的摆锤主体2和金属导电圈3,所述导电主体2的旋转锤面21和旋转锤座22是通过连接轴5,旋转锤面21的孔A211与旋转锤座22的孔B221可旋转连接;在旋转锤面21上有中孔A212,在旋转锤座22上有中孔B222,旋转锤面21和旋转锤座22通过连接柱4活动定位连接;所述游丝1的一端挂在旋转锤面21的挂钩213上,其另一端挂在旋转锤座22的挂钩B222上;所述摆锤主体2位于金属导电圈3的中央。本实用新型具有摆锤方向不受限制,可以360度旋转、并给出计步信号的优点。

国际专利分类:G01C > 物理> 测量;测试> 测量距离、水准或者方位;勘测;导航;陀螺仪;摄影测量学或视频测量学

相似文献:

局2006年

- 多功能计步器发明人:李鹏生,申请人:李鹏生,,实用新型中华人民共和国国家知识产权局2006年

- 发明人:黄学崇,申请人:超群电子股份有限公司,,实用新型中华人民共和

国国家知识产权局2001年

- 发明人:田波, 李祥兴,申请人:湖南省城步苗族自治县电子控制器厂,,实用新型中华人民共和国国家知识产权局1990年

- 发明人:杨永升,申请人:哈尔滨电影机械厂,,实用新型中华人民共和国国家知识产权局2004年

- 发明人:王泰,申请人:王泰,,实用新型中华人民共和国国家知识产权局1996年

权局2006年

2006年

共和国国家知识产权局2000年

- 发明人:奥莱克西·P·瑟奇延科,詹姆斯·D·马歇尔,罗伯特·沃特斯,马库斯·博希,罗德·缪尔,申请人:布莱克和戴克公司,,发明专利中华人民共和国国家知识产权局2005年

- 发明人:刘兴志,申请人:刘兴志,,实用新型中华人民共和国国家知识产权局1995年

年02期作者:庞晶牟为华

1. 计步器的原理是什么?

它里面有一个机械的震子,运动时会产生上下震动,机器通过收集震子运动的频率来计算数值,计算消耗卡路里。计步器和距离计量器的工作原理也是相同的。

2. 计步器的原理

电子记步器主要由振动传感器和电子计数器组成。

人在步行时重心都要有一点上下移动。以腰部的上下位移最为明显,所以记步器挂在腰带上最为适宜。所谓的振动传感器其实就是一个平衡锤在上下振动时平衡被破坏使一个触点能出现通/断动作,由电子计数器记录并显示就完成了主要功能,其他的热量消耗,路程换算均由电路完成在现今科技已是小儿科。

但是由于每个人走路的姿态、步幅不一样所以除了步数较为准确以外其他的数据并不准确(一般可能是按

体重65公斤每步0.7米这个标准换算的)。

对于步态呈病状(比如脑萎缩、半身不遂)来讲可能连步数也不准确

(振幅不够大、一步两颠等)。

总之对健康人只能做参考,对病人很可能无用。

3. 关于计步器

1、计步器中一般采用一种加速度计来感受外界的震动。

常用的加速度计原理如下:在一段塑料管中密封着一小块磁铁,管外缠绕着线圈,当塑料管运动时,磁铁由于惯性在管中反向运动,切割线圈,由于电磁感应,线圈中产生电流,人体运动时,上下起伏的加速度近似为正弦过程,线圈的输出电流也是正弦波,测量正弦波的频率就可以得出运动的步数,再计算的出速

度,距离,和消耗卡路里。

电感滤波电路作用原理

电感滤波电路作用原理 Final revision by standardization team on December 10, 2020.

电容滤波电路电感滤波 电路作用原理 整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉动成分,称为纹波。为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤除整流电路输出电压中的脉动成分以获得直流电压。 常用的滤波电路有无源滤波和有源滤波两大类。无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。 脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量。 半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流的输出电压的脉动系数S≈O.67。对于全波和桥式整流电路采用C型滤波电路后,其脉动系数S=1/(4(RLC/T-1)。(T为整流输出的直流脉动电压的周期。) 一、电阻滤波电路: RC-π型滤波电路,实质上是在电容滤波的基础上再加一级RC滤波电路组成的。如图1(B)RC滤波电路。若用S表示C1两端电压的脉动系数,则输出电压两端的脉动系数 S=(1/ωC2R)S。

由分析可知,电阻R的作用是将残余的纹波电压降落在电阻两端,最后由C2再旁路掉。在ω值一定的情况下,R愈大,C2愈大,则脉动系数愈小,也就是滤波效果就越好。而R值增大时,电阻上的直流压降会增大,这样就增大了直流电源的内部损耗;若增大C2的电容量,又会增大电容器的体积和重量,实现起来也不现实。这种电路一般用于负载电流比较小的场合。 二、电感滤波电路: 根据电抗性元件对交、直流阻抗的不同,由电容C及电感L所组成的滤波电路的基本形式如图1所示。因为电容器C对直流开路,对交流阻抗小,所以C并联在负载两端。电感器L对直流阻抗小,对交流阻抗大,因此L应与负载串联。 并联的电容器C在输入电压升高时,给电容器充电,可把部分能量存储在电容器中。而当输入电压降低时,电容两端电压以指数规律放电,就可以把存储的能量释放出来。经过滤波电路向负载放电,负载上得到的输出电压就比较平滑,起到了平波作用。若采用电感滤波,当输入电压增高时,与负载串联的电感L中的电流增加,因此电感L将存储部分磁场能量,当电流减小时,又将能量释放出来,使负载电流变得平滑,因此,电感L也有平波作用。 利用储能元件电感器L的电流不能突变的特点,在整流电路的负载回路中串联一个电感,使输出电流波形较为平滑。因为电感对直流的阻抗小,交流的阻抗大,因此能够得到较好的滤波效果而直流损失小。电感滤波缺点是体积大,成本高。

数字电子健身计步器设计

沈阳工程学院 课程设计 设计题目:电子健身计步器 系别电气工程系班级供电本102 学生姓名吴智昂学号 2010208231 指导教师黄硕职称讲师 起止日期:2012年 12月 10日起——至 2010年 12 月 14 日止

沈阳工程学院 课程设计任务书 课程设计题目:健身计步器 系别电气系班级供电本102 学生姓名吴智昂学号2010208231 指导教师黄硕职称讲师 课程设计进行地点:B 419 任务下达时间:2012年12 月1 日 起止日期:2012年12 月10 日起——至2012年12 月14日止

健身计步器的设计 1.设计任务描述 1.1设计题目:健身计步器 1.2设计要求 1.2.1 设计目的 (1)掌握健身计步器的构成、原理与设计方法; (2)熟悉集成电路的使用方法。 1.2.2 基本要求 (1)健身计步器中的传感器将人每走(跑)一步的振动以脉冲形式发出,将此脉冲整形作为基准计步脉冲; (2) 可以记录走(跑)步数,最大值为9999; (3) 假设每走25步可以消耗1卡的热量,所消耗卡路里的计数译码显示; (4) 记录本次健身时间。(可以分钟为单位) 1.2.3 发挥部分 (1)计步值的预置,当达到预置值时,发出庆祝的声音; (2)每走一千步发出提示音; (3)其他。 2 设计过程及论文的基本要求: 2.1 设计过程的基本要求 (1)基本部分必须完成,发挥部分可任选2 个方向: (2)符合设计要求的报告一份,其中包括逻辑电路图、实际接线图各一份; (3)设计过程的资料、草稿要求保留并随设计报告一起上交;报告的电子档需全班统一存盘上交。 2.2 课程设计论文的基本要求 (1)参照毕业设计论文规范打印,文字中的小图需打印。项目齐全、不许涂改,不少于3000 字。图纸为A3,附录中的大图可以手绘,所有插图不允许复印。 (2)装订顺序:封面、任务书、成绩评审意见表、中文摘要、关键词、目录、正文(设计题目、设计任务、设计思路、设计框图、各部分电路及参数计(重要)、工作过程分析、元器件清单、主要器件介绍)、小结、参考文献、附录(逻辑电路图与实际接线图)。

电感滤波电路作用原理精选文档

电感滤波电路作用原理 精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

电容滤波电路电感滤波 电路作用原理 整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉动成分,称为纹波。为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤除整流电路输出电压中的脉动成分以获得直流电压。 常用的滤波电路有无源滤波和有源滤波两大类。无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。 脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量。 半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流的输出电压的脉动系数S≈O.67。对于全波和桥式整流电路采用C型滤波电路后,其脉动系数S=1/(4(RLC/T-1)。(T为整流输出的直流脉动电压的周期。) 一、电阻滤波电路:

RC-π型滤波电路,实质上是在电容滤波的基础上再加一级RC滤波电路组成的。如图1(B)RC滤波电路。若用S表示C1两端电压的脉动系数,则输出电压两端的脉动系数S=(1/ωC2R)S。 由分析可知,电阻R的作用是将残余的纹波电压降落在电阻两端,最后由C2再旁路掉。在ω值一定的情况下,R愈大,C2愈大,则脉动系数愈小,也就是滤波效果就越好。而R值增大时,电阻上的直流压降会增大,这样就增大了直流电源的内部损耗;若增大C2的电容量,又会增大电容器的体积和重量,实现起来也不现实。这种电路一般用于负载电流比较小的场合。 二、电感滤波电路: 根据电抗性元件对交、直流阻抗的不同,由电容C及电感L所组成的滤波电路的基本形式如图1所示。因为电容器C对直流开路,对交流阻抗小,所以C并联在负载两端。电感器L对直流阻抗小,对交流阻抗大,因此L应与负载串联。 并联的电容器C在输入电压升高时,给电容器充电,可把部分能量存储在电容器中。而当输入电压降低时,电容两端电压以指数规律放电,就可以把存储的能量释放出来。经过滤波电路向负载放电,负载上得到的输出电压就比较平滑,起到了平波作用。若采用电感滤波,当输入电压增高时,与负载串联的电感L中的电流增加,因此电感L将存储部分

健康计步器毕业设计

健康计步器毕业设计

2017届电子信息工程专业本科毕业论文 健康计步器的设计 摘要:改革开放三十年来,随着社会的不断进步,人们的生活水平也不断的提高了,许多人把健身当做每天的一门必修的功课,在诸多的健身方法中,跑步便成了他们最有效,最简单的运动方法。计步器是一种颇受欢迎的日常锻炼进度监控器,可以激励人们挑战自己,增强体质,帮助瘦身,也成了计量跑步时间、步数和里程的最简易、有效的工具。计步器功能可以根据计算人的运动情况来分析人体的健康状况。而人的运动情况可以通过很多特性来进行分析。与传统的机械式传感器不同,MMA7455是微机械式三轴传感器,由它捕获人体运动时加速度信号,更加准确。信号通过低通滤波器滤波,由单片机内置A/D转换器对信号进行采样、A/D转换。软件采用自适应算法实现计步功能,减少误计数,更加精确。单片机STC89C52控制液晶显示计步状态。整机工作电流只有1-1.5mA,实现超低功耗。 关键字:计步器 MMA7455 加速度传感器低功耗 Abstract: Thirty years of reform and opening up, with the constant progress of the society, people’s living standard has been improved, many people consider fitness as every one of the compulsory courses, in many fitness method,

running as their most effective, the most simple method, pedometer is a popular daily exercise progress monitor, can motivate people to challenge themselves, enhance physical fitness, to help lose weight. pedometer also became the running time, measurement step number and calories burned the most simple, effective tool. Pedometer function can calculate the movement of people to analyze the situation of human health. And the movement of people can be analyzed by many features. With the traditional mechanical sensors differ, MMA7455 three-axis sensor is a capacitive acceleration signal by its human motion capture, and more accurate. Signal through a low pass filter, the microcontroller built-in A / D converter for signal sampling, A / D conversion. Software uses an adaptive algorithm pedometer function, reduce error count is more accurate. STC89C52 SCM control LCD pedometer state. Machine

手机电路原理,通俗易懂

第二部分原理篇 第一章手机的功能电路 ETACS、GSM蜂窝手机是一个工作在双工状态下的收发信机。一部移动电话包括无线接收机(Receiver)、发射机(Transmitter)、控制模块(Controller)及人机界面部分(Interface)和电源(Power Supply)。 数字手机从电路可分为,射频与逻辑音频电路两大部分。其中射频电路包含从天线到接收机的解调输出,与发射的I/Q调制到功率放大器输出的电路;逻辑音频包含从接收解调到,接收音频输出、发射话音拾取(送话器电路)到发射I/Q调制器及逻辑电路部分的中央处理单元、数字语音处理及各种存储器电路等。见图1-1所示 从印刷电路板的结构一般分为:逻辑系统、射频系统、电源系统,3个部分。在手机中,这3个部分相互配合,在逻辑控制系统统一指挥下,完成手机的各项功能。 图1-1手机的结构框图 注:双频手机的电路通常是增加一些DCS1800的电路,但其中相当一部分电路是DCS 与GSM通道公用的。 第二章射频系统 射频系统由射频接收和射频发射两部分组成。射频接收电路完成接收信号的滤波、信号放大、解调等功能;射频发射电路主要完成语音基带信号的调制、变频、功率放大等功能。手机要得到GSM系统的服务,首先必须有信号强度指示,能够进入GSM网络。手机电路中不管是射频接收系统还是射频发射系统出现故障,都能导致手机不能进入GSM网络。 对于目前市场上爱立信、三星系列的手机,当射频接收系统没有故障但射频发射系统有故障时,手机有信号强度值指示但不能入网;对于摩托罗拉、诺基亚等其他系列的手机,不管哪一部分有故障均不能入网,也没有信号强度值指示。当用手动搜索网络的方式搜索网络时,如能搜索到网络,说明射频接收部分是正常的;如果不能搜索到网络,首先可以确定射频接收部分有故障。 而射频电路则包含接收机射频处理、发射机射频处理和频率合成单元。 第一节接收机的电路结构 移动通信设备常采用超外差变频接收机,这是因为天线感应接收到的信号十分微弱,而鉴频器要求的输人信号电平较高,且需稳定。放大器的总增益一般需在120dB以上,这么大的放大量,要用多级调谐放大器且要稳定,实际上是很难办得到的,另外高频选频放大器的通带宽度太宽,当频率改变时,多级放大器的所有调谐回路必须跟着改变,而且要做到统一调谐,

电容、电感滤波电路

滤波电路 交流电经过二极管整流之后,方向单一了,但是大小(电流强度)还是处在不断地变化之中。这种脉动直流一般是不能直接用来给无线电装供电的。要把脉动直流变成波形平滑的直流,还需要再做一番“填平取齐”的工作,这便是滤波。换句话说,滤波的任务,就是把整流器输出电压中的波动成分尽可能地减小,改造成接近恒稳的直流电。 一、电容滤波 电容器是一个储存电能的仓库。在电路中,当有电压加到电容器两端的时候,便对电容器充电,把电能储存在电容器中;当外加电压失去(或降低)之后,电容器将把储存的电能再放出来。充电的时候, 电容器两端的电压逐渐升高,直到接近充电电 压;放电的时候,电容器两端的电压逐渐降低, 直到完全消失。电容器的容量越大,负载电阻值 越大,充电和放电所需要的时间越长。这种电容 带两端电压不能突变的特性,正好可以用来承担 滤波的任务。 图5-9是最简单的电容滤波电路,电容器与负载电阻并联,接在整流器后面,下面以图5-9(a)所示半波整施情况说明电容滤波的工作过程。在二极管导通期间,e2 向负载电阻R fz提供电流的同时,向电容器C充电,一直充到最大值。e2 达到最大值以后逐渐下降;而电容器两端电压不能突然变化,仍然保持较高电压。这时,D受反向电压,不能导通,于是Uc便 通过负载电阻R fz放电。由于C和R fz较大,放电 速度很慢,在e2 下降期间里,电容器C上的电压降 得不多。当e2 下一个周期来到并升高到大于Uc时, 又再次对电容器充电。如此重复,电容器C两端(即 负载电阻R fz:两端)便保持了一个较平稳的电压, 在波形图上呈现出比较平滑的波形。 图5-10(a)(b)中分别示出半波整流和全波整流时电容滤波前后的输出波形。

共模滤波电感原理分析

共模滤波电感器不是电感量越大越好.主要看你要滤除的共模干扰的频率范围,先说一下共模电感器滤波原理:共模电感器对共模干扰信号的衰减或者说滤除有两个原理,一是靠感抗的阻挡作用,但是到高频电感量没有了靠的是磁心的损耗吸收作用;他们的综合效果是滤波的真实效果.当然在低频段靠的是电感量产生的感抗.同样的电感器磁心材料绕制成的电感器,随着电感量的增加,Z阻抗与频率曲线变化的趋势是随着你绕制的电感器的电感量的增加,Z 阻抗峰值电时的频率就会下降,也就是说电感量越高所能滤除的共模干扰的频率越低,换句话说对低频共模干扰的滤除效果越好,对高频共模信号的滤除效果越差甚至不起作用. 这就是为什么有的滤波器使用两级滤波共模电感器的原因一级是用低磁导率(磁导率7K以下铁氧体材料甚至可以使用1000的NiZn材料) 材料作成共模滤波电感器,滤出几十MHz 或更高频段的共模干扰信号,另一级采用高导磁材料(如磁导率10000h00的铁氧体材料或着非晶体材料)来滤除1MHz以下或者几百kHz的共模干扰信号. 因此首先要确认你要滤除共模干扰的频率范围然后再选择合适的滤波电感器材料. 共 模电感的测量与诊断 电源滤波器的设计通常可从共模和差模两方面来考虑。共模滤波器 最重要的部分就是共模扼流圈,与差模扼流圈相比,共模扼流圈的一个 显著优点在于它的电感值极高,而且体积又小,设计共模扼流圈时要考 虑的一个重要问题是它的漏感,也就是差模电感。通常,计算漏感的办 法是假定它为共模电感的1%,实际上漏感为共模电感的 0.5% ~ 4%之 间。在设计最优性能的扼流圈时,这个误差的影响可能是不容忽视的。 漏感的重要性 漏感是如何形成的呢?紧密绕制,且绕满一周的环形线圈,即 使没有磁芯,其所有磁通都集中在线圈“芯”内。但是,如果环形线圈 没有绕满一周,或者绕制不紧密,那么磁通就会从芯中泄漏出来。这种 效应与线匝间的相对距离和螺旋管芯体的磁导率成正比。共模扼流圈有 两个绕组,这两个绕组被设计成使它们所流过的电流沿线圈芯传导时方 向相反,从而使磁场为0。如果为了安全起见,芯体上的线圈不是双线 绕制,这样两个绕组之间就有相当大的间隙,自然就引起磁通“泄漏”, 这即是说,磁场在所关心的各个点上并非真正为0。共模扼流圈的漏感 是差模电感。事实上,与差模有关的磁通必须在某点上离开芯体,换句 话说,磁通在芯体外部形成闭合回路,而不仅仅只局限在环形芯体内。 如果芯体具有差模电感,那么,差模电流就会使芯体内的磁通 发生偏离零点,如果偏离太大,芯体便会发生磁饱和现象,使共模电感 基本与无磁芯的电感一样。结果,共模辐射的强度就如同电路中没有扼 流圈一样。差模电流在共模环形线圈中引起的磁通偏离可由下式得出:

基于单片机的计步器设计及实现模板

基于单片机的计步器设计及实现 摘要: 计步器是一种颇受欢迎的日常锻炼进度监控器,可以激励人们挑战自己,增强体质,帮助瘦身。早期设计利用加重的机械开关检测步伐,并带有一个简单的计数器。晃动这些装置时,可以听到有一个金属球来回滑动,或者一个摆锤左右摆动敲击挡块。 计步器功能可以根据计算人的运动情况来分析人体的健康状况。而人的运动情况可以通过很多特性来进行分析。与传统的机械式传感器不同,ADXL345是电容式三轴传感器,由它捕获人体运动时加速度信号,更加准确。信号通过低通滤波器滤波,由单片机内置A/D转换器对信号进行采样、A/D转换。软件采用自适应算法实现计步功能,减少误计数,更加精确。单片机STC89C51控制液晶显示计步状态。整机工作电流只有1-1.5mA,实现超低功耗。 关键字:计步器;加速度传感器;ADXL345;低功耗

Design and realization of pedometer-based microcontrollers Abstract:Pedometer is a popular daily exercise progress monitor, can motivate people to challenge themselves, enhance physical fitness, to help lose weight. Early designs used a weighted mechanical switch detects the pace, and with a simple counter. When shaking the device, you can hear a metal ball to slide back and forth, left and right, or a pendulum swinging percussion stopper. Pedometer function can calculate the movement of people to analyze the situation of human health. And the movement of people can be analyzed by many features. With the traditional mechanical sensors differ, ADXL345 three-axis sensor is a capacitive acceleration signal by its human motion capture, and more accurate. Signal through a low pass filter, the microcontroller built-in A / D converter for signal sampling, A / D conversion. Software uses an adaptive algorithm pedometer function, reduce error count is more accurate. STC89C51 SCM control LCD pedometer state. Machine operating current of only 1-1.5mA, ultra-low power consumption. Key Words: pedometer; Acceleration sensor; ADXL345; low power

电感滤波电路作用原理

电感滤波电路作用原理 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

电容滤波电路电感滤波 电路作用原理 整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉动成分,称为纹波。为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤除整流电路输出电压中的脉动成分以获得直流电压。 常用的滤波电路有无源滤波和有源滤波两大类。无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。 脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量。 半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流的输出电压的脉动系数S≈O.67。对于全波和桥式整流电路采用C型滤波电路后,其脉动系数S=1/(4(RLC/T-1)。(T为整流输出的直流脉动电压的周期。) 一、电阻滤波电路:

RC-π型滤波电路,实质上是在电容滤波的基础上再加一级RC滤波电路组成的。如图1(B)RC滤波电路。若用S表示C1两端电压的脉动系数,则输出电压两端的脉动系数S=(1/ωC2R)S。 由分析可知,电阻R的作用是将残余的纹波电压降落在电阻两端,最后由C2再旁路掉。在ω值一定的情况下,R愈大,C2愈大,则脉动系数愈小,也就是滤波效果就越好。而R值增大时,电阻上的直流压降会增大,这样就增大了直流电源的内部损耗;若增大C2的电容量,又会增大电容器的体积和重量,实现起来也不现实。这种电路一般用于负载电流比较小的场合。 二、电感滤波电路: 根据电抗性元件对交、直流阻抗的不同,由电容C及电感L所组成的滤波电路的基本形式如图1所示。因为电容器C对直流开路,对交流阻抗小,所以C并联在负载两端。电感器L对直流阻抗小,对交流阻抗大,因此L应与负载串联。 并联的电容器C在输入电压升高时,给电容器充电,可把部分能量存储在电容器中。而当输入电压降低时,电容两端电压以指数规律放电,就可以把存储的能量释放出来。经过滤波电路向负载放电,负载上得到的输出电压就比较平滑,起到了平波作用。若采用电感滤波,当输入电压增高时,与负载串联的电感L中的电流增加,因此电感L将存储部分

基带电路原理图

FLASH电路 FLASH信号作用描述 数据总线:ED0-ED15,共16根数据线,用于传输数据。 地址总线:EA00-EA23,共24根地址线,用于存储单元寻址。控制总线: ERD:写控制信号; EWR:读控制信号; /WATCHODG:复位信号,用于FLASH的软件复位; /CE_F1、/CE_F2:FLASH存储区域选择信号; /ECS1_PSRAM:PSRAM片选信号; /ELB、/EUB:PSRAM存取区域选择信号; 电源供电信号:VMEM。

照相电路

主屏LCD显示电路 SIM卡电路

马达电路 PWM2_VIB_EN经过PMIC转换后变成马达的驱动信号VIB_DRV,R409为限流电阻,马达可以和键盘灯通过调整限流电阻R或者调整

占空比调整背光亮度一样调整马达的震感。马达电路上的二极管 D403是由于马达为线圈,运作时会产生反向电动势,若无二极管反 向电动势无法消耗,会影响马达的寿命,二极管可以在马达停震后 把反向电动势消耗掉而保护线圈。 MIC电路 MICBIASP和MICBIASN为MIC电路的正负两路偏置电压,一般为2.4V-2.7V左右的电压。C204,C205主要为滤除射 频信号的干扰。如果有GSM900MHZ的干扰则使用33PF的 电容,如果有DCS1800MHZ的干扰可以使用12PF的电容,如果有WIFI 2.4GHZ的干扰则使用8.2PF的电容。C206主 要是抑制共模信号。C201,C202为100NF电容,主要作用 为隔直通交,防止直流电使PA饱和,产生信号偏移,主要 滤除100HZ一下的电流。B201,B202为磁珠,主要滤除 高频部分的干扰。MIC偏置电流流向为从MICBIASP----

EMI滤波器电路原理及设计

EMI滤波器电路原理及设计 引言 开关电源以其体积小、重量轻、效率高等优点被广泛应用于电力电子设备系统中,但是开关电源易受到电磁干扰,产生误动作,且本身的高频信号也会引起大量的噪声,会污染电网环境,干扰同一电网其他电子设备的正常工作。这样就对EMC提出了更高的要求指标。 分类: 开关电源中的电磁干扰(EMI)主要有传导干扰和辐射干扰。通过正确的屏蔽和接地系统设计可以得到有效的控制,对于传导干扰来说,加装EMI滤波器,是一种比较经济有效的措施,辐射干扰的抑制可以通过加装变压器屏蔽铜片。 EMI滤波器介绍 开关电源与交流电网相连,尽管开关电源是一个单端口网络,但具有相线(L),零线(N),地线(E)的开关电源实际上形成了两个AC端口,所以噪声源在实际分析中可以将其分解为共模和差模噪声源。火线(L)与零线(N)之间的干扰叫做差模干扰(属于对称性干扰),火线(L)与地线(E)之间的干扰叫做共模干扰(非对称性干扰)。在一般情况下,差模干扰幅度小、频率低、所造成的干扰较小;共模干扰幅度大、频率高,还可以通过导线产生辐射,所造成的干扰较大。 开关电源的EMI干扰源集中体现在功率开关管、整流二极管、高频变压器等,外部环境对开关电源的干扰主要来自电网的抖动、雷击、外界辐射等。 1.开关电源的EMI干扰源 开关电源的EMI干扰源集中体现在功率开关管、整流二极管、高频变压器等,外部环境对开关电源的干扰主要来自电网的抖动、雷击、外界辐射等。 (1)功率开关管 功率开关管工作在On-O ff快速循环转换的状态,dv/dt和di/dt都在急剧变换,因此,功率开关管既是电场耦合的主要干扰源,也是磁场耦合的主要干扰源。 (2)高频变压器 高频变压器的EMI来源集中体现在漏感对应的di/dt快速循环变换,因此高频变压器是磁场耦合的重要干扰源。 (3)整流二极管 整流二极管的EMI来源集中体现在反向恢复特性上,反向恢复电流的断续点会在电感(引线电感、杂散电感等)产生高 dv/dt,从而导致强电磁干扰。 (4)PCB 准确的说,PCB是上述干扰源的耦合通道,PCB的优劣,直接对应着对上述EMI源抑制的好坏。

滤波电路中电感的作用(图文版)

滤波电路中电感的作用 一.电感的作用 基本作用:滤波、振荡、延迟、陷波等 形象说法:“通直流,阻交流” 细化解说:在电子线路中,电感线圈对交流有限流作用,它与电阻器或电容器能组成高通或低通滤波器、移相电路及谐振电路等;变压器可以进行交流耦合、变压、变流和阻抗变换等。 由感抗XL=2πfL 知,电感L越大,频率f越高,感抗就越大。该电感器两端电压的大小与电感L成正比,还与电流变化速度△i/△t 成正比,这关系也可用下式表示: 电感线圈也是一个储能元件,它以磁的形式储存电能,储存的电能大小可用下式表示:WL=1/2 Li2 。 可见,线圈电感量越大,流过越大,储存的电能也就越多。 电感在电路最常见的作用就是与电容一起,组成LC滤波电路。我们已经知道,电容具有“阻直流,通交流”的本领,而电感则有“通直流,阻交流”的功能。如果把伴有许多干扰信号的直流电通过LC滤波电路(如图),那么,交流干扰信号将被电容变成热能消耗掉;变得比较纯净的直流电流通过电感时,其中的交流干扰信号也被变成磁感和热能,频率较高的最容易被电感阻抗,这就可以抑制较高频率的干扰信号。 变成磁感和热能,频率较高的最容易被电感阻抗,这就可以抑制较高频率的干扰信号。 LC滤波电路

在线路板电源部分的电感一般是由线径非常粗的漆包线环绕在涂有各种颜色的圆形磁芯上。而且附近一般有几个高大的滤波铝电解电容,这二者组成的就是上述的LC滤波电路。另外,线路板还大量采用“蛇行线+贴片钽电容”来组成LC电路,因为蛇行线在电路板上来回折行,也可以看作一个小电感。 二、电感的主要特性参数 2.1 电感量L 电感量L表示线圈本身固有特性,与电流大小无关。除专门的电感线圈(色码电感)外,电感量一般不专门标注在线圈上,而以特定的名称标注。 2.2 感抗XL 电感线圈对交流电流阻碍作用的大小称感抗XL,单位是欧姆。它与电感量L和交流电频率f的关系为XL=2πfL 2.3 品质因素Q 品质因素Q是表示线圈质量的一个物理量,Q为感抗XL与其等效的电阻的比值,即:Q=XL/R。线圈的Q值愈高,回路的损耗愈小。线圈的Q值与导线的直流电阻,骨架的介质损耗,屏蔽罩或铁芯引起的损耗,高频趋肤效应的影响等因素有关。线圈的Q值通常为几十到几百。采用磁芯线圈,多股粗线圈均可提高线圈的Q值。 2.4 分布电容 线圈的匝与匝间、线圈与屏蔽罩间、线圈与底版间存在的电容被称为分布电容。分布电容的存在使线圈的Q值减小,稳定性变差,因而线圈的分布电容越小越好。采用分段绕法可减少分布电容。 2.5 允许误差:电感量实际值与标称之差除以标称值所得的百分数。 2.6 标称电流:指线圈允许通过的电流大小,通常用字母A、B、C、D、E分别表示,标称电流值为50mA 、150mA 、300mA 、700mA 、1600mA 。 三、常用电感线圈 3.1 单层线圈 单层线圈是用绝缘导线一圈挨一圈地绕在纸筒或胶木骨架上。如晶体管收音机中波天线线圈。 3.2 蜂房式线圈 如果所绕制的线圈,其平面不与旋转面平行,而是相交成一定的角度,这种线圈称为蜂房式线圈。而其旋转一周,导线来回弯折的次数,常称为折点数。蜂房式绕法的优点是体积小,分布电容小,而且电感量大。蜂房式线圈都是利用蜂房绕线机来绕制,折点越多,分布电容越小 3.3 铁氧体磁芯和铁粉芯线圈 线圈的电感量大小与有无磁芯有关。在空芯线圈中插入铁氧体磁芯,可增加电感量和提高线圈的品质因素。 3.4 铜芯线圈

手机基本电路工作原理

第一章 第一节T18机型逻辑电路原理 T18是一款支持双卡单待,实现G网双号转换待机,可以自由选用号码拨打电话,电路采用MTK 6226方案平台。(图1) (图1) 由于T18是采用MTK方案,在电路上原理有很多是与前期MTK电路相似,在这里不再一一讲解,具体介绍一下双卡待机电路的原理。 1、双卡电路工作原理电路 T18的双卡待机是指由用户选择性进行手动进行切换两张不同的SIM卡,其与前期A280双卡双待不同的,T18只有一个射频一个基带电路,其双卡转换主要是由软件和SIM转换控制器来完成,具体电路见图2

(图2) 其工作原理: 当手动切换时,控制中心会发出一个SIM-SWITCH的转换开关指令给到U505转换芯片,经内部的电子开关把VSIM与VSIM1、VSIM2,IO-SIM与SIMDA1、SIMDA2,CLK-SIM与SIMCLK1、SIMCLK2,RST-SIM与SIMRST1、SIMRST2进行转换连接,实现控制SIM卡的数据总线来控制SIM卡的正常工作。 2、充电电路 当外部充电器接到DC 插孔时,CHANGE电源分三路提供,第一路经R12、R14分压取得ADC3-VCH充电检测信号,第二路提供给U400的第1脚,第三路提供给U401经R413到电池正极。 其工作原理:当CPU检测到连接充电模式时候,CPU会输送CHG-CNTL控制信号给电源管理模块U400,电源管理模块从2# GATEDRV输出控制信号,控制充电控制管的导通,充电电压将通过R413限流给电池正极充电,同时CPU通过提供的ADC0-、ADC1+电量反馈信号,经电源管理模块U400(4#)ISENSE检测实现对充电过程进行监控,经U400(6#)CHRDET送到CPU,当检测充电完成后,CPU 将撤销U400(5#)CHG-CNT的控制信号,从而导致充电管U401截止,停止充电。关机充电和开机充电原理相同,只是在关机状态下,CPU未执行其它程序,使手 机仍处于关机状态。如图3

各种电源滤波电路图及工作原理

各种电源滤波电路图及工作原理 在滤波电路中,主要使用对交流电有特殊阻抗特性的器件,如:电容器、电感器。本文将对各种形式的滤波电路进行分析。 一、滤波电路种类 滤波电路主要有下列几种:电容滤波电路,这是最基本的滤波电路;π型RC滤波电路;π型LC滤波电路;电子滤波器电路。 二、滤波原理 1.单向脉动性直流电压的特点图1(a)所示是单向脉动性直流电压波形,从图中可以看出,电压的方向性无论在何时都是一致的,但在电压幅度上是波动的,就是在时间轴上,电压呈现出周期性的变化,所以是脉动性的。 但根据波形分解原理可知,这一电压可以分解成一个直流电压和一组频率不同的交流电压,如图1(b)所示。在图1(b)中,虚线部分是单向脉动性直流电压U o中的直流成分,实线部分是U o中的交流成分。 图1:单向脉动性电压的分解

2.电容滤波原理根据以上的分析,由于单向脉动性直流电压可分解成交流和直流两部分。在电源电路的滤波电路中,利用电容器的“隔直通交”的特性和储能特性,或者利用电感“隔交通直”的特性可以滤除电压中的交流成分。图2所示是电容滤波原理图。 图2(a)为整流电路的输出电路。交流电压经整流电路之后输出的是单向脉动性直流电,即电路中的Uo 图2(b)为电容滤波电路。由于电容C1对直流电相当于开路,这样整流电路输出的直流电压不能通过C1到地,只有加到负载R L上。对于整流电路输出的交流成分,因C1容量较大,容抗较小,交流成分通过C1流到地端,而不能加到负载R L。这样,通过电容C1的滤波,从单向脉动性直流电中取出了所需要的直流电压+U。滤波电容C1的容量越大,对交流成分的容抗越小,使残留在负载R L上的交流成分越小,滤波效果就越好。 图2:电容滤波原理图

电感滤波电路图

电感滤波电路图 发布: 2011-5-30 | 作者: —— | 来源: 华强电子网用户| 查看: 336次 电容滤波电路的输出内阻较大,当RL变化时,端电压也随之变化;另外,流二极管导电时冲击电流较大,对其寿命有影响。电阻很小,而对交流的阻抗很大的特点实现滤波,种电感滤波电路。 为此,可利用电感线圈对直流的即电感滤波。图示出了几种电感滤波电路。 图电感滤波电路 图(a)所示为单个电感滤波电路,其缺点是:通常滤波系数(滤波系数为滤波电路输入端和滤波电路输出端第佬次谐波电压幅值之比)只做到几十以下,要继续增大滤波系数会使电感的体积、重量过大,价格过高而不经济,同时,使直流电阻、压降及损耗增大,效率降低;当负载电阻RL变化时,滤波系数也随之改变;RL较大时,滤波能力降低,输出阻抗很大;当负载电流中有交流成分时,在电感两端产生交流压降,它是一种干扰电压,使噪声电压增大,电源的动态特性变坏;当负载电阻突然变小时,电感电动势限制了电流上升率,并使输出电压降低,电压恢复正常值的速度慢,恢复时间长。 图(b)所示为LC滤波电路,它由电感及电容组成,电感L的作用是限制交流电流成分,电容C的容量很大,容抗比负载电阻小得多,形成一个并联的低阻抗,使大部分交流电流成分流过C,而C两端的交流压降很小。另外,在电流变化较大的情况下,电感滤波电路的滤波效果较好,因而在大功率的电子设备中多采用这种滤波电路。当输出电流给定时,为保证电感滤波电路有较好的滤波特性,所选用的电感E应大于RL/3ω。

图(c)所示为电感L与电池E组成的滤波电路,如充电器就是这种滤波电路。电池的电动势E 可认为不随谐波电流而改变,电池的内阻Rr很小,交流电流在此电阻上的压降也很小,可起到较好的滤波效果。为了充分发挥电池的滤波作用,应尽量减小电池支路的附加电阻。应该注意的是,当谐波的频率较高时,电池和导线的等效电感也是不可忽略的。 图(d)所示为两节L形滤波电路,这种滤波电路能获得较大的滤波系数、较好的经济性和较高的效率。对于采用负反馈的稳压系统来说,滤波电路的节数越多,滤波电路所造成的相移对系统稳定性越不利,故一般不超过两节。

电子计步器的设计

信息工程学院 传感器与测控技术实训报告 设计课题:电子计步器的设计 专业班级: 学生姓名: 学生学号: 指导教师:

1.设计任务描述 1.1设计题目:电子计步器 (1)系统需求 (2)项目说明 (3)项目综述 1.2前期准备 (1)知识储备 (2)软件使用 (3)关键元件的展示 (4)原件清单 1.2.1设计目的 (1)掌握电子计步器的构成、原理与设计方法; (2)设计思路 1.2.2基本要求,任务实施 (1)实现计步功能 (2) 计时功能 (3) 暂停显示时间 (4) 重置功能 1.2.3发挥部分 (1)定时功能,定时5秒后闪烁。 (2)二极管原来灯是灭的,5秒后就灭了。 1.2.4 总结

(1)系统需求 计步器是一种颇受欢迎的日常锻炼进度的监控器,可以激励人们挑战自己,增加体质,帮助瘦身。在电子记步器项目学习中,电子计步器随身携带,当人们行走是,利用震动传感器讲姓周的信号转换成开关量信号传送给单片,单片机累积后显示在数码管上。为了携带方便,因此读者课考虑选择3.3V供电的低功耗单片机STC12L5A60S2,其内部资源及使用方法和STC12L5A60S2一样的,只是工作电压不一样。本项目主要介绍了数码管的显示设计、振动传感器及C51指针的内容。 (2)项目说明 根据以上需求,电子计步器系统功能被划分为以下模块,如图2.1所示: (3)项目综述 1.2前期准备 (1)常用的元件封装:(参考protel学习\protel元件封装)

(2)软件使用 2、原理图库 在原理图的绘制中,要加入一下5个库文件:Miscellaneous Devices.ddb Protel DOS Schematic Libraries.ddb Sim.ddb Intel Databooks.ddb TI Databooks.ddb

电容、电阻、电感作用及滤波电路的简单分析

(一)电容: 1.一般是过滤作用,比如比如电解电容可以过滤低频,陶瓷电容可过滤高频。,原理就是电容的通交隔直特性,电容对交流信号通路,信号频率越高,阻抗越小,电容容量越大,阻抗越小,而对直流信号断路。比如直流电源正负极接一个电容,对交流信号来说相当于短路,于是波动信号就会通过这个电容而消耗掉,于是电压就更稳定,同理,如果在数字地接一电容,那么波动信号就会通过它与地短接,流入地端,而不流入下一级电路。 2.由于正常情况下,并联补偿电容是带电的,并用来补偿线路中的无功功率,提高功率因数,减少电的浪费。当设备或者线路需要维修时,虽然电线或者设备已经断电了,但是这时候的补偿电容由于是两端还有一定的电压,如果这时候人一旦碰到电容或者和电容相连的线路时,人就会有触电危险。但是如果我们在断电后,利用接地线把存储在补偿电容两端的电经过地线直接引入大地,这样使得电容不带电,从而保证维修人员的安全。 3.电容会充电放电的,接地也可以是放电过程,使电容器保持在一端了零电位。从而使电容容量达到最优。 4.耦合电容,又称电场耦合或静电耦合。耦合电容器是使得强电和弱电两个系统通过电容器耦合并隔离,提供高频信号通路,阻止工频电流进入弱电系统,保证人身安全。 电容耦合的作用是将交流信号从前一级传到下一级。耦合的方法还有直接耦合和变压器耦合的方法。直接耦合效率最高,信号又不失真,但是,前后两级工作点的调整比较复杂,相互牵连。为了使后一级的工作点不受前一级的影响,就需要在直流方面把前一级和后一级分开,同时,又能使交流信号从前一级顺利的传递到后一级,同时能完成这一任务的方法就是采用电容传输或者变压器传输来实现。他们都能传递交流信号和隔断直流,使前后级的工作点互不牵连。但不同的是,用电容传输时,信号的相位要延迟一些,用变压器传输时,信号的高频成分要损失一些。一般情况下,小信号传输时,常用电容作为耦合元件,大信号或者强信号传输时,常用变压器作为耦合元件。 5.电容能抑制器件两端电压变化率,起缓冲作用。同理电感抑制器件两端电流变化率,如整流电路中电感使导通角增大,续流二极管使输出电压平均值增大。 (二)电阻: 上拉电阻、下拉电阻的作用 所谓上,就是指高电平;所谓下,是指低电平。上拉,就是通过一个电阻将信号接电源,一般用于时钟信号数据信号等。下拉,就是通过一个电阻将信号接地,一般用于保护信号。这是根据电路需要设计的,主要目的是为了防止干扰,增加电路的稳定性。一般就是刚上电的时候,端口电压不稳定,为了让他稳定为高或低,就会用到上拉或下拉电阻。有些芯片内部集成了上拉电阻,所以外部就不用上拉电阻了。但是有一些开漏的,外部必须加上拉电阻。假如没有上拉,时钟和数据信号容易出错,毕竟,CPU的功率有限,带很多BUS线的时候,提供高电平信号有些吃力。而一旦这些信号被负载或者干扰拉下到某个电压下,CPU无法正确地接收信息和发出指令,只能不断地复位重启。 假如没有下拉,保护电路极易受到外界干扰,使CPU误以为被保护对象出问题而采取保护动作,导致误保护。 驱动CMOS时,如果TTL输出最低高电平低于CMOS最低高电平时,提高输出高电平 2 .OC门必须加上拉,提高电平值

智能手机基带处理器电路原理

智能手机基带处理器电路原理 在普通手机中,通常将MCU(Micro Control Unit,微控制电路)、DSP( (Digital Signal Processing,数字信号处理)、ASIC(Application Specific Integrated Circuit,专用集成电路)电路集成在一起,得到数字基带信号处理器;将射频接口电路、音频编译码电路及一些ADC(模拟至数字转换器)、DAC(数字至模拟转换器)电路集成在一起,得到模拟基带信号处理器。 在智能手机中,一般是将数字基带信号处理器和模拟基带信号处理器集成在一起,称为基带处理器。不论移动电话的基带电路如何变化,它都包MCU 电路(也称CPU 电路)、DSP电路、ASIC 电路、音频编译码电路、射频逻辑接口电路等最基本的电路。 我们可以这样理解智能手机的无线部分,我们将智能手机无线部分电路再分为两部分,一部分是射频电路,完成了信号从天线到基带信号的接收和发射处理;一部分是基带电路,完成了信号从基带信号到音频终端(听筒或送话器)的处理。这样看来,基带处理器的主要工作内容和认为就比较容易理解了。 以基带处理器电路PMB8875 为例,框图如图1所示。 图1 基带处理器电路PMB8875 框图 1、模拟基带电路

模拟基带信号处理器(ABB)又被称为话音基带信号转换器,包含手机中所有的ADC与DAC 变换器电路。 模拟基带信号处理器包含基带信号处理电路、话音基带信号处理电路(也称音频处理电路)、辅助变换器单元(也被称为辅助控制电路)。 (1)基带信号处理电路 基带信号处理电路将接收射频电路输出的接收机基带信号RXIQ 转换成数字接收基带信号,送到数字基带信号处理器DBB。 在发射方面,该电路将DBB 电路输出的数字发射基带信号转换成模拟的发射基带信号TXIQ,送到发射射频部分的IQ 调制器电路。 基带信号处理电路是用来处理接收、发射基带信号的,连接数字基带与射频电路——射频逻辑接口电路,在基带方面,通过基带串行接口连接到数字基带信号处理器;在射频方面,它通过分离或复合的IQ 信号接口连接到接收I/Q 解调与发射I/Q 调制电路。 接收基带信号处理框图如图2所示。 图2接收基带信号处理框图 发射基带信号处理框图如图3所示。 图3发射基带信号处理框图

相关主题
文本预览
相关文档 最新文档