山东省各市2015届高三数学第一次模拟 试题分类汇编 函数 理
- 格式:doc
- 大小:239.50 KB
- 文档页数:3
【山东一模理数】山东省各地市2015届高三3月一模数学(理)试题及答案汇编(共9份)【潍坊一模_理数】山东省潍坊市2015届高三3月一模数学(理)试题及答案(Word版) (2)[青岛一模数学]2015届山东省青岛市高三统一质量检测数学试题(理)试题及答案(word版) (11)[烟台一模理数]山东省烟台市2015年高考诊断性测试理科数学试题及答案(Word版) (21)【济南一模理数】2015年3月济南市高三模拟考试数学试题(理)及答案 (30)[淄博一模理数]山东省淄博市2014-2015学年度高三模拟考试数学试题(理)及答案(Word版) (40)[日照一模_理数]日照市2015届高三第一次模拟考试数学试题(理)及答案 (53)[济宁一模理数]山东省济宁市2015届高三第一次模拟考数学试题(理)及答案(word版本) (63)[泰安一模理数]泰安市2015届高三第一次模拟考数学试题(理)及答案(word版) (74)[枣庄一模理数]山东省枣庄市2015届第二次调研考试数学(理)试题及答案(高清扫描版) (86)试卷类型:A【潍坊一模_理数】山东省潍坊市2015届高三3月一模数学(理)试题及答案(Word 版)高三数学(理工农医类)本试卷共5页,分第I 卷(选择题)和第II 卷(非选择题)两部分.共150分.考试时间120分钟.第I 卷(选择题 共50分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每题选出答案后,用2B 铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再改涂其它答案标号.一、选择题:本大题共10小题,每小题5分,共50分.在每小给出的四个选项中,只有一项是符合题目要求的.1.集合(){}11,122x M x N x y g x ⎧⎫⎪⎪⎛⎫=≥==+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则M N ⋂等于A. [)0,+∞B. (]2,0-C. ()2,-+∞D. ()[),20,-∞-⋃+∞2.设复数12,z z 在复平面内的对应点关于虚轴对称,若112z i =-,则21z z 的虚部为 A. 35 B. 35- C. 45 D. 45- 3.如果双曲线()222210,0x y a b a b-=>>0y -=平行,则双曲线的离心率为A.B. C.2 D.34.已知函数()y f x =的定义域为{}0x x R x ∈≠且,且满足()()0,0f x f x x +-=>当时,()ln 1f x x x =-+,则函数()y f x =的大致图象为5.某同学寒假期间对其30位亲属的饮食习惯进行了一次调查,列出了如下22⨯列联表:则可以说其亲属的饮食习惯与年龄有关的把握为A.90%B.95%C.99%D.99.9%附:参考公式和临界值表6.下列结论中正确的是①命题:()30,2,3x x x ∀∈>的否定是()30,2,3x x x ∃∈≤; ②若直线l 上有无数个点不在平面α内,则//l α;③若随机变量ξ服从正态分布()21,N δ,且()20.8P ξ<=,则()010.2P ξ<<=; ④等差数列{}n a 的前n 项和为473=21.n S a S =,若,则A.①②B.②③C.③④D.①④7.如图,在ABC ∆中,点D 在AC上,,5,sin AB BD BC BD ABC ⊥==∠=CD 的长为A.B.4C.D.5 8.某几何体的三视图如图所示,其中左视图为半圆,则该几何体的体积是A. 3B. 2πC. 3D. π9.已知抛物线方程为28y x =,直线l 的方程为20x y -+=,在抛物线上有一动点P 到y 轴距离为1,d P l 到的距离为212d d d +,则的最小值为A. 2B.C. 2D. 210.对于实数,m n 定义运算“⊕”: ()()2221,21m mn m n m n f x x n mnm n ⎧-+-≤⎪⊕==-⊕⎨->⎪⎩设 ()1x -,且关于x 的方程()f x a =恰有三个互不相等的实数根123,,,x x x 则123,,x x x 的取值范围是A. 1,032⎛⎫- ⎪⎝⎭B. 1,016⎛⎫- ⎪⎝⎭C. 10,32⎛⎫ ⎪⎝⎭ D. 10,16⎛⎫ ⎪⎝⎭第II 卷(非选择题 共100分)注意事项:1.将第II 卷答案用0.5mm 的黑色签字笔答在答题纸的相应位置上.2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共5小题,每小题5分,共25分. 11. 316x x ++-≥的解集是_________.12.运行右面的程序框图,如果输入的x 的值在区间[]2,3-内,那么输出的()f x 的取值范围是_________.13.若变量,x y 满足约束条件20,3260,3x y x y z x y y k +-≥⎧⎪--≤=+⎨⎪≥⎩且的最小值为4,则k=_________.14.对于实数[],x x 表示不超过x 的最大整数,观察下列等式:按照此规律第n 个等式的等号右边的结果为______________________.15.如图,正方形ABCD 中,E 为AB 上一点,P 为以点A 为圆心、以AB 为半径的圆弧上一点.若()0AC xDE yAP xy =+≠,则以下说法正确的是:_________.(请将所有正确命题的序号填上)①若点E 和A 重合,点P 和B 重合,则1,1x y =-=;②若点E 是线段AB 的中点,则点P 是圆弧DB 的中点 ;③若点E 和B 重合,且点P 为靠近D 点的圆弧的三等分点,则3x y +=;④若点E 与B 重合,点P 为DB 上任一点,则动点(),x y 的轨迹为双曲线的一部分.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16. (本小题满分12分)已知函数()()2sin 24sin 206f x x x πωωω⎛⎫=--+> ⎪⎝⎭,其图象与x 轴相邻两个交点的距离为2π. (I )求函数()f x 的解析式;(II )若将()f x 的图象向左平移()0m m >个长度单位得到函数()g x 的图象恰好经过点,03π⎛⎫- ⎪⎝⎭,求当m 取得最小值时,()7612g x ππ⎡⎤-⎢⎥⎣⎦在,上的单调递增区间. 17. (本小题满分12分)如图,已知平行四边形ABCD 与直角梯形ABEF 所在的平面互相垂直,其中//,BE AF ,1,,2AB AF AB BE AF ⊥==BC =4CBA π∠=,P 为DF 的中点. (I )求证:PE//平面ABCD ;(II )求平面DEF 与平面ABCD 所成角(锐角)的余弦值..18. (本小题满分12分)某校从参加某次数学能力测试同学中抽出36名学生,并统计了他们的数学成绩(成绩均为整数且满分为120分),成绩的频率分布直方图如图所示,其中成绩分组区间是:[)[)[)[]809090.100100110110120,,,,,,. (I )在这36名学生中随机抽取3名学生,求同时满足下列两个条件的事件的概率;①有且仅有1名学生成绩不低于110分;②成绩在[)90,100内至多1名学生;(II )在成绩是[)80,100内的学生中随机选取3名学生进行诊断问卷,设成绩在[)90,100内的人数为随机变量X ,求X 的分布列及数学期望EX..19. (本小题满分12分)已知各项都为正数的等比数列{}n a 的前n 项和为n S ,数列{}n b 的通项公式{}n b 的通项公式().1n n n b n N n n *⎧=∈⎨+⎩为偶数为奇数若351,S b =+.424b a a 是与的等比中项. (I )求数列{}n a 的通项公式;(II )求数列{}n n a b ⋅的前n 项和n T .20. (本小题满分13分)已知点M 是圆心为1C 的圆()2218x y ++=上的动点,点()21,0C ,若线段2MC 的中垂线交1MC 于点N.(I )求动点N 的轨迹方程;(II )若直线:l y kx t =+是圆221x y +=的切线且l 与N 点轨迹交于不同的两点P 、Q ,O 为坐标原点,若2435OP OQ OPQ μμ⋅=≤≤∆,且,求面积的取值范围. 21. (本小题满分14分)已知函数()1ln f x x a x x=--. (I )若()f x 无极值点,求a 的取值范围; (II )设()()1ln ,a g x x x a x =+-当取(I )中的最大值时,求()g x 的最小值; (III )证明不等式:()1*12ln 21n n n i n N +=>∈+.[青岛一模 数学]2015届山东省青岛市高三统一质量检测数学试题(理)试题及答案(word 版)青岛市高三统一质量检测数学(理科)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟. 注意事项:1.答卷前,考生务必用2B 铅笔和0.5毫米黑色签字笔(中性笔)将姓名、准考证号、考试科目、试卷类型填涂在答题卡规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔(中性笔)作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 为虚数单位,复数21i i +等于 A .i +-1 B .i --1C .i -1D .i +1 2.设全集R I =,集合2{|log ,2},{|A y y x x B x y ==>==,则A .AB ⊆ B .A B A =C .A B ⋂=∅D . ()I A B ⋂≠∅ð3.在“魅力青岛中学生歌手大赛”比赛现场上七位评委为某选手打 出的分数的茎叶统计图如图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为A .5和1.6B .85和1.6C .85和0.4D .5和4.“*12N ,2n n n n a a a ++∀∈=+”是“数列{}n a 为等差数列”的 A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.某几何体的三视图如图所示,且该几何体的体积是3,则第5题图正视图 侧视图x正视图中的x 的值是A .2B .92 C .32D .3 6.已知双曲线22221(0,0)x y a b a b -=>>的一条渐近线平行于直线:250l x y ++=,双曲线的一个焦点在直线l 上,则双曲线的方程为A .221205x y -=B .221520x y -=C .2233125100x y -=D .2233110025x y -= 7.设,m n 是不同的直线,,αβ是不同的平面,下列命题中正确的是A .若//,,m n m n αβ⊥⊥,则αβ⊥B .若//,,m n m n αβ⊥⊥,则//αβC .若//,,//m n m n αβ⊥,则αβ⊥D .若//,,//m n m n αβ⊥,则//αβ8.函数4cos xy x e =-(e 为自然对数的底数)的图象可能是9.对于函数sin 26y x π⎛⎫=- ⎪⎝⎭,下列说法正确的是 A.函数图象关于点,03π⎛⎫ ⎪⎝⎭对称 B.函数图象关于直线56x π=对称 C.将它的图象向左平移6π个单位,得到sin 2y x =的图象 D.将它的图象上各点的横坐标缩小为原来的12倍,得到sin 6y x π⎛⎫=- ⎪⎝⎭ 10.已知点G 是ABC ∆的外心,,,GA GB GC u u r u u u r u u u r 是三个单位向量,且20GA AB AC ++=u u r u u u r u u u r r ,如图所示,非负半轴ABC ∆的顶点,B C 分别在x 轴的非负半轴和y 轴的上移动,O 是坐标原点,则OA uu r 的最大值为AC .2D .3第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.已知函数()tan sin 2015f x x x =++,若()2f m =,则()f m -= ;12.执行如图所示的程序框图,则输出的结果是 ;13.设()22132a x x dx =-⎰,则二项式621ax x ⎛⎫- ⎪⎝⎭展开式中的第6项的系数为 ;14. 若目标函数2z kx y =+在约束条件2122x y x y y x -≤⎧⎪+≥⎨⎪-≤⎩下当且仅当在点(1,1)处取得最小值,则实数k 的取值范围是 ;15. 若X 是一个集合, τ是一个以X 的某些子集为元素的集合,且满足:①X 属于τ,空集∅属于τ;②τ中任意多个元素的并集属于τ;③τ中任意多个元素的交集属于τ.则称τ是集合X 上的一个拓扑.已知集合{,,}X a b c =,对于下面给出的四个集合τ:①{,{},{},{,,}}a c a b c τ=∅; ②{,{},{},{,},{,,}}b c b c a b c τ=∅;③{,{},{,},{,}}a a b a c τ=∅; ④{,{,},{,},{},{,,}}a c b c c a b c τ=∅.其中是集合X 上的一个拓扑的集合τ的所有序号是 .三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16. (本小题满分12分)设ABC ∆的内角A,B,C 所对的边分别为,,,a b c 已知(),sin sin sin a b a c A B A B+-=+- 3b =.(I )求角B ;(II)若sin 3A =,求ABC ∆的面积.17.(本小题满分12分)某大学准备在开学时举行一次大学一年级学生座谈会,拟邀请20名来自校机械工程学院、海洋(I )从这20名学生中随机选出3名学生发言,求这3名学生中任意两个均不属于同一学院的概率; (II )从这20名学生中随机选出3名学生发言,设来自医学院的学生数为ξ,求随机变量ξ的概率分布列和数学期望.18.(本小题满分12分)如图,在四棱柱1111ABCD A B C D -中,侧棱1AA ⊥底面ABCD ,底面ABCD 是直角梯形,//AD BC ,90BAD ∠=︒,13AD AA ==, 1BC =,1E 为11A B 中点. (Ⅰ)证明:1//B D 平面11AD E ;(Ⅱ)若AC BD ⊥,求平面1ACD 和平面11CDDC 所成角(锐角)的余弦值.19.(本小题满分12分)已知数列{}n a 是等差数列,n S 为{}n a 的前n 项和,且1019a =,10100S =;数列{}n b 对任意N n *∈,总有12312n n n b b b b b a -⋅⋅⋅⋅⋅⋅=+成立. (Ⅰ)求数列{}n a 和{}n b 的通项公式;(Ⅱ)记()()24121n nn n b c n ⋅=-+,求数列{}n c 的前n 项和n T .20.(本小题满分13分)已知椭圆22:12x C y +=与直线:l y kx m =+相交于E 、F 两不同点,且直线l 与圆222:3O x y +=相切于点W (O 为坐标原点).(Ⅰ)证明:OE OF ⊥; (Ⅱ)设EWFW λ=,求实数λ的取值范围.21.(本小题满分14分) 已知函数()()()()()()21()1,1ln 1,2f x x kx g x x x h x f x g x '=++=++=+. (Ⅰ)若函数()g x 的图象在原点处的切线l 与函数()f x 的图象相切,求实数k 的值; (Ⅱ)若()h x 在[0,2]上为单调递减,求实数k 的取值范围.(III )若对于1t ⎡⎤∀∈⎣⎦,总存在()()()1212,1,4,i x x x x f x g t ∈-≠=且满 ()1,2i =,其中e 为自然对数的底数,求实数k 的取值范围.[烟台一模理数]山东省烟台市2015年高考诊断性测试理科数学试题及答案(Word版)山东烟台2015高考诊断性测试数学理一. 选择题(本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. )1. 若集合11,0,,12⎧⎫A=-⎨⎬⎩⎭,集合{}2,xy y xB==∈A,则集合A B =()A.11,0,,12⎧⎫-⎨⎬⎩⎭ B.10,,12⎧⎫⎨⎬⎩⎭ C.1,12⎧⎫⎨⎬⎩⎭ D.{}0,12. 复数321izi-=-的共轭复数z=()A. 5122i+B.5122i-C.1522i+D.1522i-3. “22kπϕπ=+,k∈Z”是“函数()()cos2f x xϕ=+的图象过原点”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件4. 甲乙两名同学参加某项技能比赛,7名裁判给两人打出的分数如下茎叶图所示,依此判断()A. 甲成绩稳定且平均成绩较高B. 乙成绩稳定且平均成绩较高C. 甲成绩稳定,乙平均成绩较高D. 乙成绩稳定,甲平均成绩较高5. 某程序的框图如右图所示,执行该程序,则输出的结果为()A. 12B. 13C. 14D. 156. 已知α,()0,βπ∈,且()1tan2αβ-=,1tan7β=-,则2αβ-的值是()A.4π-B. 4πC. 34π-D. 34π7. 设点(),a b 是区域4000x y x y +-≤⎧⎪>⎨⎪>⎩内的随机点,函数241y ax bx =-+在区间[)1,+∞上是增函数的概率为( )A. 13 B. 23 C. 14D. 128. 若双曲线22221x y a b -=(0a >,0b >)的左. 右焦点分别为1F . 2F ,线段12FF 被抛物线22y bx=的焦点分成5:3两段,则此双曲线的离心率为( )A.B.C. 4D.9. 已知M 是C ∆AB 内一点,且C 23AB⋅A =C 30∠BA =,若C ∆MB . ∆MAB . C ∆MA 的面积分别为12. x . y ,则14x y +的最小值是( ) A. 9B. 16C. 18D. 2010. 已知函数()2log 1f x a x =+(0a ≠),定义函数()()(),0F ,0f x x x f x x >⎧⎪=⎨-<⎪⎩,给出下列命题:①()()F x f x =;②函数()F x 是偶函数;③当0a <时,若01m n <<<,则有()()F F 0m n -<成立;④当0a >时,函数()F 2y x =-有4个零点. 其中正确命题的个数为( )A. 0B. 1 C . 2D. 3二. 填空题(本大题共5小题,每小题5分,共25分. ) 11. 若不等式()2log 122x x m ++--≥恒成立,则实数m 的取值范围是 .12. 现有4枚完全相同的硬币,每个硬币都分正反两面,把4枚硬币摆成一摞,满足相邻两枚硬币的正面与正面不相对,不同的摆法有 种(用数字作答). 13. 若某四面体的三视图如右图所示,则这个四面体四个面的面积中最大值的是 .14. 已知()x xf x e =,()()1f xf x '=,()()21f x f x '=⎡⎤⎣⎦,⋅⋅⋅,()()1n n f x f x +'=⎡⎤⎣⎦,n *∈N ,经计算:()11x x f x e -=,()22x x f x e -=,()33x xf x e -=,⋅⋅⋅,照此规律则()n f x = .15. 已知圆C :()()22431x y -+-=和两点(),0m A -,(),0m B (0m >),若圆C 上至少存在一点P ,使得90∠APB =,则m 的取值范围是 .三. 解答题(本大题共6小题,共75分. 解答应写出文字说明. 证明过程或演算步骤. ) 16. (本小题满分12分)在C ∆AB 中,角A . B . C 所对的边分别为a .b .c ,已知222si n si n C si n si nsi n CB +=A +B . ()1求角A 的大小; ()2若1cos 3B =,3a =,求c 值.17. (本小题满分12分)为了进一步激发同学们的学习热情,某班级建立了理科. 文科两个学习兴趣小组,两组的人数如下表所示. 现采用分层抽样的方法(层内采用简单随机抽样)从两组中共抽取3名同学进行测试.()1求从理科组抽取的同学中至少有1名女同学的概率;()2记ξ为抽取的3名同学中男同学的人数,求随机变量ξ的分布列和数学期望.18. (本小题满分12分)已知等差数列{}n a 中,11a =,前n 项和为n S 且满足条件:2421n nS n S n +=+(n *∈N ).()1求数列{}n a 的通项公式;()2若数列{}n b 的前n 项和为n T ,且有111n n n n b b +T -+=T +(n *∈N ),13b =,证明:数列{}1n b -是等比数列;又211n n n a c b +=-,求数列{}n c 的前n 项和W n.19. (本小题满分12分)如图,在四棱锥CD P -AB 中,D//C A B ,D AB ⊥A ,AB ⊥PA ,C 22D 4B =AB =A =BE ,平面PAB ⊥平面CD AB .()1求证:平面D PE ⊥平面C PA ;()2若直线PE 与平面C PA所成的角的正弦值为5,求二面角C D A -P -的余弦值.20. (本小题满分13分)已知椭圆C :22221x y a b +=(0a b >>)的右焦点()F 1,0,过点F 且与坐标轴不垂直的直线与椭圆交于P ,Q 两点,当直线Q P 经过椭圆的一个顶点时其倾斜角恰好为60.()1求椭圆C 的方程;()2设O 为坐标原点,线段F O 上是否存在点(),0t T ,使得Q Q Q P⋅TP =P ⋅T ?若存在,求出实数t的取值范围;若不存在,说明理由.21. (本小题满分14分)已知函数()211axf x x =++(0a ≠).()1当1a =时,求函数()f x 图象在点()0,1处的切线方程; ()2求函数()f x 的单调区间;()3若0a >,()2mx g x x e =,且对任意的1x ,[]20,2x ∈,()()12f x g x ≥恒成立,求实数m 的取值范围.参考答案 一. 选择题1. C2. B3. A4. D5. C6. C7. A8. D9. C 10. D 二. 填空题11. (,1]-∞- 12. 5 13. 10 14. (1)()e n x x n -- 15. 46m ≤≤三. 解答题16. 解:(1)由正弦定理可得222b c a bc +=+,由余弦定理:2221cos 22b c a A bc +-==,…………………2分 因为(0,)A π∈,所以3A π=.(2)由(1)可知,sin A =,…………………4分因为1cos 3B =,B为三角形的内角,所以sin B =,…………………6分 故sin sin()sin cos cos sin C A B A B A B =+=+1132=+=…………………9分由正弦定理sin sin a cA C =,得sin 1sin a c C A ===+. …………………12分17. 解:(1)两小组的总人数之比为8:4=2:1,共抽取3人,所以理科组抽取2人,文科组抽取1人,…………………2分从理科组抽取的同学中至少有1名女同学的情况有:一男一女、两女,所以所求的概率为:11235328914C C C P C +==. …………………4分 (2)由题意可知ξ的所有可能取值为0,1,2,3,…………………5分 相应的概率分别是021********(0)112C C C P C C ξ===,1112353321218484148(1)112C C C C P C C C C ξ==+=,1121355321218484145(2)112C C C C P C C C C ξ==+=,252184110(3)112C P C C ξ===,………………9分所以ξ的分布列为:48451031231121121122E ξ=⨯+⨯+⨯=.18. 解:2133,1)(124)1(21112122===+==∴∈++=*a a a a a S S n N n n n S S n n 得结合,则当………………2分 ∴n d n a a a a d n =-+==-=)1(1112所以)(*∈=N n n a n………………4分(2)由nn n n nn n n b T b T b T b T +=+-=++-++11111可得所以121-=-+n n n b T T ,121-=+n n b b ,)1(211-=-+n n b b ………………4分所以}1{-n b 是等比数列且112b -=,2=q 公比………………6分∴n n n n q b b 222)1(1111=⨯=-=---∴12+=n n b ………………8分∴nnn n n n n b a c )21()12(212112⋅+=+=-+=………………9分∴nn n n c c c c W )21()12()21(7)21(5)21(332321⨯+++⨯+⨯+⨯=++++= 利用错位相减法,可以求得2552n n n W +=-. ………………12分19. 解:(1)∵平面PAB ⊥平面ABCD ,平面PAB 平面ABCD AB =,AB PA ⊥,∴PA ⊥平面ABCD ,………………2分又∵AB AD ⊥,故可建立空间直角坐标系o xyz -如图所示, 不妨设4,BC AP λ==(0)λ>,则有(0,2,0),(2,1,0),(2,4,0),(0,0,)D E C P λ, ∴(2,4,0),(0,0,),(2,1,0)AC AP DE λ===-,∴4400,0DE AC DE AP =-+==,………………4分 ∴,DE AC DE AP ⊥⊥, ∴DE ⊥平面PAC . 又DE ⊂平面PED∴平面PED ⊥平面PAC ………………6分(2)由(1),平面PAC 的一个法向量是(2,1,0)DE =-,(2,1,)PE λ=-, 设直线PE 与平面PAC 所成的角为θ,sin |cos ,||PE DE θ∴=<>==2λ=±,∵0λ>∴2λ=,即(0,0,2)P ………………8分设平面PCD 的一个法向量为(,,)x y z =n ,(2,2,0),(0,2,2)DC DP ==-, 由,DC DP ⊥⊥n n ,∴220220x y y z +=⎧⎨-+=⎩,不妨令1x =,则(1,1,1)=--n ………………10分∴cos ,n DE <>==, 显然二面角A PC D --的平面角是锐角,∴二面角A PC D --……………12分20. 解:(1)由题意知1c =,又tan 603bc ==,所以23b =,……………2分2224a b c =+=,所以椭圆的方程为:22143x y +=;……………4分 (2)设直线PQ 的方程为:(1),(0)y k x k =-≠,代入22143x y +=,得:2222(34)84120k x k x k +-+-=设1122(,),(,)P x y Q x y ,线段PQ 的中点为00(,)R x y ,则2120002243,(1)23434x x k kx y k x k k +===-=-++,……………7分 由QP TP PQ TQ ⋅=⋅得:()(2)0PQ TQ TP PQ TR ⋅+=⋅=, 所以直线TR 为直线PQ 的垂直平分线,直线TR 的方程为:222314()3434k k y x k k k +=--++,……………9分 令0y =得:T 点的横坐标22213344k t k k ==++,……………10分因为2(0,)k ∈+∞,所以234(4,)k +∈+∞,所以1(0,)4t ∈. ……………12分 所以线段OF 上存在点(,0)T t使得QP TP PQ TQ ⋅=⋅,其中1(0,)4t ∈. ……………13分 21. 解(1)当1a =时,2()11xf x x =++,(0)1f =,222222(1)21()(1)(1)x x x x f x x x +-⋅-'==++,……………2分所以(0)1f '=,切线方程为11(0)y x -=⋅-,即10x y -+=……………4分(2)由题意可知,函数()f x 的定义域为R ,22222222(1)2(1)(1)(1)()(1)(1)(1)a x ax x a x a x x f x x x x +-⋅--+'===+++,……………6分当0a >时,(1,1)x ∈-,()0f x '>,()f x 为增函数,(,1),(1,)x ∈-∞-+∞,()0f x '<,()f x 为减函数;当0a <时,(1,1)x ∈-,()0f x '<,()f x 为减函数,(,1),(1,)x ∈-∞-+∞,()0f x '>,()f x 为增函数. ……………8分 (3)“对任意的1212,[0,2],()()x x f x g x ∈≥恒成立”等价于“当0a >时,对任意的12min max ,[0,2],()()x x f x g x ∈≥成立”,当0a >时,由(2)可知,函数()f x 在[0,1]上单调递增,在[1,2]上单调递减,而2(0)1,(2)115af f ==+>,所以()f x 的最小值为(0)1f =,22()2e e (2)e mx mx mx g x x x m mx x '=+⋅=+,当0m =时,2()g x x =,[0,2]x ∈时,max ()(2)4g x g ==,显然不满足max ()1g x ≤,……………10分 当0m ≠时,令()0g x '=得,1220,x x m ==-,(1)当22m -≥,即10m -≤≤时,在[0,2]上()0g x '≥,所以()g x 在[0,2]单调递增,所以2max ()(2)4e m g x g ==,只需24e 1m ≤,得ln 2m ≤-,所以1ln 2m -≤≤-(2)当202m <-<,即1m <-时,在2[0,],()0g x m '-≥,()g x 单调递增,在2[,2],()0g x m '-<,()g x 单调递减,所以max 2224()()e g x g m m =-=,只需2241e m ≤,得2e m ≤-,所以1m <- (3)当20m -<,即0m >时,显然在[0,2]上()0g x '≥,()g x 单调递增,2max ()(2)4e mg x g ==,24e 1m ≤不成立,……………13分综上所述,m 的取值范围是(,ln 2]-∞-……………14分【济南一模 理数】2015年3月济南市高三模拟考试数学试题(理)及答案2015年高考模拟考试(山东卷)数学(理科)本试卷分第I 卷和第Ⅱ卷两部分,共5页.满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类写在答题卡和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案写在试卷上无效.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件A,B 互斥,那么()()()P A B P A P B +=+;如果事件A ,B 独立,那么()()()P AB P A P B =⋅.第I 卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}2230,,M x x x N x x a M N =--<=>⊆若,则实数a 的取值范围是A.(],1-∞-B.(),1-∞-C.[)3,+∞D.()3,+∞2.若12iz i-=(i 为虚数单位),则z 的共轭复数是 A.2i -- B.2i - C.2i +D.2i -+3.类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可得出空间内的下列结论: ①垂直于同一个平面的两条直线互相平行; ②垂直于同一条直线的两条直线互相平行;③垂直于同一个平面的两个平面互相平行; ④垂直于同一条直线的两个平面互相平行;A.①②B.②③C.③④D.①④ 4.“1cos 2α=”是“3πα=”的 A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.执行如图所示的程序框图,输出的k 值为 A.7 B.9 C.11 D.136.某餐厅的原料费支出x 与销售额y (单位:万元)之间有如下数据,根据表中提供的全部数据,用最小二乘法得出y 与x 的线性回归方程为8.57.5y x =+$,则表中的m 的值为A.50B.55C.60D.657.已知12,F F 是双曲线()222210,0x y a b a b-=>>的两个焦点,以12F F 为直径的圆与双曲线一个交点是P ,且12F PF ∆的三条边长成等差数列,则此双曲线的离心率是C.2D.58.在椭圆221169x y +=内,通过点()1,1M 且被这点平分的弦所在的直线方程为 A.91670x y -+=B.169250x y +-=C.916250x y +-=D.16970x y --=9.将一个四棱锥的每个顶点染上一种颜色,并使同一条棱上的两个端点异色,若只有4种颜色可供使用,则不同的染色方法总数有 A.48种 B.72种 C.96种 D.108种 10.若至少存在一个()0x x ≥,使得关于x 的不等式242x x m ≤--成立,则实数m 的取值范围为A.[]4,5-B.[]5,5-C.[]4,5D.[]5,4-第II 卷(共100分)二、填空题:本大题共5个小题,每小题5分,共25分.11.100名学生某次数学测试成绩(单位:分)的频率分布直方图如图所示,则测试成绩落在[)60,80中的学生人数是_________. 12.函数()2f x =的定义域是_________.13.某圆柱切割获得的几何体的三视图如图所示,其中俯视图是中心角为3π的扇形,则该几何体的体积为__________. 14.设,,a b c r r r是单位向量,且()()0a b a c b c⋅=+⋅+r r r r r r ,则的最大值为________.15.设函数()f x 的定义域为R ,若存在常数()f x 为“条()0f x x ωω>≤,使对一切实数x 均成立,则称件约束函数”.现给出下列函数:①()4f x x =;②()22f x x =+;③()2225xf x x x =-+;④()f x 是定义在实数集R 上的奇函数,且对一切12,x x 均有()()12124f x f x x x -≤-.其中是“条件约束函数”的序号是________(写出符合条件的全部序号).三、解答题:本大题共6小题,共75分. 16.(本小题满分12分)在ABC ∆中,边a,b,c 的对角分别为A,B,C ;且4,3b A π==,面积S =(I )求a 的值;(II )设()()2cos sin cos cos f x C x A x =-,将()f x 图象上所有点的横坐标变为原来的12(纵坐标不变)得到()g x 的图象,求()g x 的单调增区间.17. (本小题满分12分)某校为了普及环保知识,增强学生的环保意识,在全校组织了一次有关环保知识的竞赛.经过初赛、复赛,甲、乙两个代表队(每队3人)进入了决赛,规定每人回答一个问题,答对为本队赢得10分,答错得0分.假设甲队中每人答对的概率均为34,乙队中3人答对的概率分别为45,34,23,且各人回答正确与否相互之间没有影响,用ξ表示乙队的总得分. (I )求ξ的分布列和数学期望;(II )求甲、乙两队总得分之和等于30分且甲队获胜的概率.18. (本小题满分12分) 直三棱柱111A B C A B C-中,10,8,6A B A C B C ===,18AA =,点D 在线段AB 上.(I )若1//AC 平面1B CD ,确定D 点的位置并证明; (II )当13BD AB =时,求二面角1B CD B --的余弦值.19. (本小题满分12分)已知数列{}n a 满足()12111,3,32,2n n n a a a a a n N n *+-===-∈≥,(I )证明:数列{}1n n a a +-是等比数列,并求出{}n a 的通项公式; (II )设数列{}n b 满足()242l o g 1n n b a =+,证明:对一切正整数222121111,1112n n b b b ++⋅⋅⋅+<---有.20. (本小题满分13分)已知抛物C 的标准方程为()220y px p =>,M 为抛物线C 上一动点,()(),00A a a ≠为其对称轴上一点,直线MA 与抛物线C 的另一个交点为N.当A 为抛物线C 的焦点且直线MA 与其对称轴垂直时,MON ∆的面积为92. (I )求抛物线C 的标准方程; (II )记11t AM AN=+,若t 值与M 点位置无关,则称此时的点A 为“稳定点”,试求出所有“稳定点”,若没有,请说明理由.21. (本小题满分14分) 已知关于x 函数()()()()22ln ,g x a x a R f x x g x x=-∈=+, (I )试求函数()g x 的单调区间;(II )若()f x 在区间()0,1内有极值,试求a 的取值范围; (III )0a >时,若()f x 有唯一的零点0x ,试求[]0x .(注:[]x 为取整函数,表示不超过x 的最大整数,如[][][]0.30,2.62, 1.42==-=-;以下数据供参考:ln 20.6931,ln3 1.099,ln5 1.609,ln 7 1.946====)2015届高三教学质量调研考试理科数学参考答案一、选择题ADDBC CDCBA 二、填空题(11)50 (12){}10010|<<x x (13)π2 (14)1(15)①③④三、解答题(16)解:(Ⅰ)在ABC ∆中A bc S sin 21=2342132⨯⨯⨯=∴c 2=∴c …………2分∴a === …………4分(Ⅱ)∵4,sin 1,sin sin sin a b B A B B==∴= 又∵0B π<<∴2B π=6C π=……6分∴(()2cos sin cos cos )2sin()6f x C x A x x π=-=-,………… 8分将()f x 图象上所有点的横坐标变为原来的12,得到()2sin(2)6g x x π=-,…………9分 所以()g x 的单调增区间为222,262k x k πππππ-≤-≤+…………10分即,()63k x k k Z ππππ-≤≤+∈…………11分()g x 的单调区间为,,()63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦…………12分(17)解:(Ⅰ)由题意知,ξ的所有可能取值为0,10,20,30.…………1分1111(=0)5436041113111293(=10)=54354354360204314121322613(=20)=5435435436030432242(=30)==.5543605P P P P ξξξξ=⨯⨯==⨯⨯+⨯⨯+⨯⨯==⨯⨯+⨯⨯+⨯⨯==⨯⨯⋯⋯⋯⋯,,,分ξ的分布列为:…………6分1313213301020+30.60203056E ξ∴=⨯+⨯+⨯⨯=()…………7分 ()()()()()3223.319==9460128031381=C =1144201280909+=+==.121280128P P P P P ⎛⎫⨯⋯⋯⋯⋯ ⎪⎝⎭⎛⎫⨯⨯⋯⋯⋯⋯ ⎪⎝⎭⋯⋯⋯⋯(Ⅱ)用A 表示“甲得30分乙得0分”,用B 表示“甲得20分乙得10分”,且A,B 互斥又A , 分B 分甲、乙两人得分总和为30分且甲获胜的概率为A B A B 分(18)(Ⅰ)证明:当D 是AB 中点时,1AC ∥平面1B CD . 连接BC 1,交B 1C 于E ,连接DE . 因为三棱柱ABC -A 1B 1C 1是直三棱柱,所以侧面BB 1C 1C 为矩形,DE 为△ABC 1的中位线,所以 DE // AC 1. …………………………………2分 因为 DE ⊂平面B 1CD , AC 1⊄平面B 1C D , 所以 AC 1∥平面B 1CD . ………………………………………4分 (Ⅱ) 由6,8,10===BC AC AB ,得AC ⊥BC ,以C 为原点建立如图所示的空间直角坐标系C -xyz . 则B (6, 0, 0),A (0, 8, 0),A 1(0, 8,8),B 1(6, 0, 8).设D (a , b , 0)(0a >,0b >),…………………5分 因为 点D 在线段AB 上,且13BD AB =, 即13BD BA =. 所以84,3a b ==.…………………7分所以1(6,0,8)BC =--,8(4,,0)3CD =. 平面BCD 的法向量为1(0,0,1)n =. 设平面B 1CD 的法向量为2(,,1)n x y =,由 120BC n ⋅=,20CD n ⋅=, 得 6808403x x y --=⎧⎪⎨+=⎪⎩, 所以4,23x y =-=,24(,2,1)3n =-. …………………10分 设二面角1B CD B --的大小为θ, 361cos a b a bθ⋅==所以二面角1B CD B --的余弦值为61.……………………………12分 (19)解:()Ⅰ由1132n n n a a a +-=- ,可得112(),n n n n a a a a +--=-…………2分212,a a -={}1n n a a +∴- 是首项为2,公比为2的等比数列,即1=2.n n n a a +- …………3分()()()-1-1-221112=-+-+-12=22211221,6n n n n n nn n n a a a a a a a a --∴+-++++=-=-⋯⋯⋯⋯+分()()()24222221222122log (2)2.7111111=.9141212122121111111111+=1111233521211111.2212111,+11n n n n b n b n n n n n b b b n n n n b b ==⋯⋯⋯⋯⎛⎫==-⋯⋯⋯⋯ ⎪---+-+⎝⎭⎡⎤⎛⎫⎛⎫⎛⎫∴++-+-++- ⎪ ⎪ ⎪⎢⎥----+⎝⎭⎝⎭⎝⎭⎣⎦⎛⎫=-< ⎪+⎝⎭∴++--Ⅱ由题意得分分对一切正整数有21.1212n b <⋯⋯⋯⋯-分(20)(I)由题意,2922221||||212==⋅⋅=⋅⋅=∆p p p MN OA S MON3=∴p抛物线C 的方程为x y 62=---------------------------------------------------------------------3分 (II) 设),(),(2211y x N y x M ,,直线MN 的方程为a my x += 联立⎩⎨⎧=+=x y a my x 62得0662=--a my y024362>+=∆a mm y y 621=+,a y y 621-=,-----------------------------------------------------------------6分 由对称性,不妨设0>m ,(i )0<a 时,0621>-=a y y , 21y y ,∴同号,又||11||11||1||12212y m y m AN AM t +++=+=)111(1363611)()(112222222122122m a a m m y y y y m t +-=+=++=∴不论a 取何值,t 均与m 有关,即0<a 时A 不是“稳定点”; -------------------------9分 (ii ) 0>a 时, 0621<-=a y y , 21y y ,∴异号,又||11||11||1||12212y m y m AN AM t +++=+= 22121221222122122)(4)(11)()-(11y y y y y y m y y y y m t -+⋅+=⋅+=∴ )11321(13624361122222m a a a a m m +-+=+⋅+= 所以,仅当0132=-a ,即23=a 时,t 与m 无关,此时A 即抛物线C 的焦点,即抛物线C 对称轴上仅有焦点这一个“稳定点”. ------------------------------------------------------------13分(21)解:(I )由题意)(x g 的定义域为),0(+∞2222-)(x ax x a x x g +-=-=' (i )若0≥a ,则0)('<x g 在),0(+∞上恒成立,),0(+∞为其单调递减区间; (ii )若0<a ,则由0)('=x g 得ax 2-=, )2,0(a x -∈时,0)('<x g ,),2(+∞-∈ax 时,0)('>x g ,所以)2,0(a -为其单调递减区间;),2(+∞-a为其单调递增区间;-----------------------4分(II ))()(2x g x x f +=所以)(x f 的定义域也为),0(+∞,且232''2'2222)()()(x ax x x ax x x g x x f --=+-=+=令),0[,22)(3+∞∈--=x ax x x h (*)则a x x h -6)(2'= (**)----------------------------------------------------------------------------6分0<a 时, 0)('≥x h 恒成立,所以)(x h 为),0[+∞上的单调递增函数,又0-)1(,02)0(>=<-=a h h ,所以在区间)1,0(内)(x h 至少存在一个变号零点0x ,且0x 也是)('x f 的变号零点,此时)(x f 在区间)1,0(内有极值. ----------------------------------------8分0≥a 时)1,0(,0)1(2)(3∈<--=x ax x x h ,即在区间(0,1)上0)('<x f 恒成立,此时, )(x f 无极值.综上所述,若)(x f 在区间)1,0(内有极值,则a 的取值范围为)0,(-∞. --------------9分(III) 0>a ,由(II )且3)1(=f 知]1,0(∈x 时0)(>x f ,10>∴x .又由(*)及(**)式知)(x f '在区间),1(+∞上只有一个极小值点,记为1x , 且),1(1x x ∈时)(x f 单调递减,),(1+∞∈x x 时)(x f 单调递增,由题意1x 即为0x ,⎩⎨⎧='=∴0)(0)(00x f x f -----------------------------------------------------------------------11分 ⎪⎩⎪⎨⎧=--=-+∴0220ln 20200020ax x x a x x消去a ,得131ln 2300-+=x x ----------------------------------------------------12分 0>a 时令)0(131)(),1(ln 2)(321>-+=>=x x x t x x x t , 则在区间),1(+∞上为)(1x t 单调递增函数, )(2x t 为单调递减函数, 且)2(710577.022ln 2)2(21t t =<=⨯<= )3(263123ln 2)3(21t t =+>>= 320<<∴x2][0=∴x ----------------------------------------------------------------------------14分[淄博一模 理数]山东省淄博市2014-2015学年度高三模拟考试数学试题(理)及答案(Word 版)淄博市2014—2015学年度高三模拟考试试题理 科 数 学本试卷分第I 卷和第Ⅱ卷两部分,共6页.满分150分,考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件A ,B 互斥,那么P(A+B)=P(A)+P(B);如果事件A ,B 独立,那么()()()P AB P A P B =⋅第I 卷(共50分)一、选择题:本大题共10小题。
山东省青岛市2015届高三下学期一模考试数学(理)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟. 注意事项:1.答卷前,考生务必用2B 铅笔和0.5毫米黑色签字笔(中性笔)将姓名、准考证号、考试科目、试卷类型填涂在答题卡规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔(中性笔)作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设i 为虚数单位,复数21ii+等于 A .i +-1B .i --1C .i -1D .i +12.设全集R I=,集合2{|log ,2},{|A y y x x B x y ==>==,则 A .A B ⊆ B .A B A = C .A B =∅ D . ()I A B ≠∅ ð 3.在“魅力青岛中学生歌手大赛”比赛现场上七位评委为某选手打 出的分数的茎叶统计图如图,去掉一个最高分和一个最低分后,所 剩数据的平均数和方差分别为A .5和1.6B .85和1.6C .85和0.4D .5和0.4 4.“*12N ,2n n n n a a a ++∀∈=+”是“数列{}n a 为等差数列”的 A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.某几何体的三视图如图所示,且该几何体的体积是3,则 正视图中的x 的值是 A .2 B .92 C .32D .3 第5题图正视图 侧视图x6.已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线平行于直线:250l x y ++=,双曲线的一个焦点在直线l 上,则双曲线方程为A .221205x y -= B .221520x y -= C .2233125100x y -= D .2233110025x y -= 7.设,m n 是不同的直线,,αβ是不同的平面,下列命题中正确的是A .若//,,m n m n αβ⊥⊥,则αβ⊥B .若//,,m n m n αβ⊥⊥,则//αβC .若//,,//m n m n αβ⊥,则αβ⊥D .若//,,//m n m n αβ⊥,则//αβ 8.函数4cos xy x e =-(e 为自然对数的底数)的图象可能是A B C D 9.对于函数sin(2)6y x π=-,下列说法正确的是A .函数图象关于点(,0)3π对称B .函数图象关于直线56x π=对称 C .将它的图象向左平移6π个单位,得到sin 2y x =的图象D .将它的图象上各点的横坐标缩小为原来的12倍,得到sin()6y x π=-的图象10.已知点G 是ABC ∆的外心,,,GA GB GC是三个单位向量,且20GA AB AC ++= ,如图所示,ABC ∆的顶点,B C 分别在x 轴的非负半轴和y则OA的最大值为 A BC .2D .3第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.已知函数()tan sin 2015f x x x =++,若()2f m =, 则()f m -= ;12.执行如图所示的程序框图,则输出的结果是 ;13.设221(32)a x x dx =⎰-,则二项式261()ax x-展开式中的第6项的系数为 ;14.若目标函数2z kx y =+在约束条件2122x y x y y x -≤⎧⎪+≥⎨⎪-≤⎩下当且仅当在点(1,1)处取得最小值,则实数k 的取值范围是 ;15.若X 是一个集合,τ是一个以X 的某些子集为元素的集合,且满足:①X 属于τ,空集∅属于τ;②τ中任意多个元素的并集属于τ;③τ中任意多个元素的交集属于τ. 则称τ是集合X 上的一个拓扑.已知集合{,,}X a b c =,对于下面给出的四个集合τ: ① {,{},{},{,,}}a c a b c τ=∅; ② {,{},{},{,},{,,}}b c b c a b c τ=∅; ③ {,{},{,},{,}}a a b a c τ=∅; ④ {,{,},{,},{},{,,}}a c b c c a b c τ=∅.其中是集合X 上的一个拓扑的集合τ的所有序号是 .三、解答题:本大题共6小题,共75分.请写出必要的文字说明、证明过程或演算步骤. 16. (本小题满分12分)设ABC ∆的内角A B C ,,所对的边分别为a b c ,,,已知sin()sin sin a b a cA B A B+-=+-,3b =.(Ⅰ)求角 B ; (Ⅱ)若sin A =ABC ∆的面积.17.(本小题满分12分) 某大学准备在开学时举行一次大学一年级学生座谈会,拟邀请20名来自本校机械工程学院、海洋学院、医学院、经济学院的学生参加,各学院邀请的学生数如下表所示:院的概率;(Ⅱ)从这20名学生中随机选出3名学生发言,设来自医学院的学生数为ξ,求随机变量ξ的概率分布列和数学期望.18.(本小题满分12分)如图,在四棱柱1111ABCD A B C D -中,侧棱1AA ⊥底面 ABCD ,底面ABCD 是直角梯形,//AD BC ,90BAD ∠=︒, 13AD AA ==, 1BC =,1E 为11 A B 中点.(Ⅰ)证明:1//B D 平面11AD E ;(Ⅱ)若AC BD ⊥,求平面1ACD 和平面11CDD C 所成角(锐角)的余弦值.19.(本小题满分12分)已知数列{}n a 是等差数列,n S 为{}n a 的前n 项和,且1019a =,10100S =;数列{}n b 对任意N n *∈,总有12312n n n b b b b b a -⋅⋅⋅=+ 成立. (Ⅰ)求数列{}n a 和{}n b 的通项公式; (Ⅱ)记24(1)(21)n nn n b c n ⋅=-+,求数列{}n c 的前n 项和n T .20.(本小题满分13分)A 1A B1B1CD1D1E已知椭圆22:12x C y +=与直线:l y kx m =+相交于E 、F 两不同点,且直线l 与圆222:3O x y +=相切于点W (O 为坐标原点).(Ⅰ)证明:OE OF ⊥;(Ⅱ)设EW FWλ=,求实数λ的取值范围.21.(本小题满分14分)已知函数21()12f x x kx =++,()(1)ln(1)g x x x =++,()()()h x f x g x '=+. (Ⅰ)若函数()g x 的图象在原点处的切线l 与函数()f x 的图象相切,求实数k 的值; (Ⅱ)若()h x 在[0,2]上单调递减,求实数k 的取值范围;(Ⅲ)若对于1]t ∀∈,总存在12,(1,4)x x ∈-,且12x x ≠满()()i f x g t =(1,2)i =,其中e 为自然对数的底数,求实数k 的取值范围.青岛市高三统一质量检测数学(理科)参考答案及评分标准一、选择题:本大题共10小题.每小题5分,共50分. D A B C D A C A B C二、填空题:本大题共5小题,每小题5分,共25分.11. 4028 12. 132 13.24- 14.(4,2)- 15.②④三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16. (本小题满分12分)解:(Ⅰ) sin()sin sin a b a c A B A B +-=+- ∴a b a cc a b+-=- …………………………2分 222a b ac c ∴-=-2221cos 222a c b ac B ac ac +-∴=== ………………………………5分 (0,)B π∈ ,3B π∴= ………………………………………………………6分(Ⅱ)由3b =,sin A =,sin sin a b A B =,得2a = ……………………………7分由a b <得A B <,从而cos A = …………………………………………9分故sin sin()sin cos cos sin C A B A B A B =+=+= …………………10分所以ABC ∆的面积为1sin 2S ab C ==. ……………………………12分17.(本小题满分12分)解:(Ⅰ)从20名学生随机选出3名的方法数为320C ,选出3人中任意两个均不属于同一学院的方法数为111111111111464466446646C C C C C C C C C C C C ⋅⋅+⋅⋅+⋅⋅+⋅⋅ ……………………4分 所以111111111111464466446646320819C C C C C C C C C C C C P C ⋅⋅+⋅⋅+⋅⋅+⋅⋅== …………………6分 (Ⅱ)ξ可能的取值为0,1,2,33211616433202057162881548(0),(1),32019573201919C C C P P C C ξξ⨯⨯⨯⨯========⨯⨯⨯⨯1231644332020166841(2),(3)320199532019285C C C P P C C ξξ⨯========⨯⨯⨯⨯…………10分 所以ξ的分布列为所以2888157()012357199528595E ξ=⨯+⨯+⨯+⨯=……………………………………12分 18.(本小题满分12分)证明:(Ⅰ)连结1A D 交1AD 于G , 因为1111ABCD A B C D -为四棱柱, 所以四边形11ADD A 为平行四边形, 所以G 为1A D 的中点,又1E 为11 A B 中点,所以1E G 为11A B D ∆的中位线, 从而11//B D E G ……………………………………4分又因为1B D ⊄平面11AD E ,1E G ⊂平面11AD E ,所以1//B D 平面11AD E . …………………………5分(Ⅱ)因为1AA ⊥底面ABCD ,AB ⊂面ABCD ,AD ⊂面ABCD ,所以11,,AA A B A A AD ⊥⊥又090BAD ∠=,所以1,,AB AD AA 两两垂直. ……………6分如图,以A 为坐标原点,1,,AB AD AA 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系. 设AB t =,则()0,0,0A ,(),0,0B t ,(),1,0C t ,()0,3,0D ,()1,1,3C t ,()10,3,3D .从而(,1,0)AC t = ,(,)3,0BD t -=.因为AC BD ⊥,所以2300AC BD t ⋅=-+=+,解得t = ……………………8分所以1(0,3,3)AD =,,0)AC =.设1111,,()n x y z = 是平面1ACD 的一个法向量,则1110,0.AC n AD n ⎧⋅=⎪⎨⋅=⎪⎩即11110330y y z +=+=⎪⎩ 令11x =,则1(1,n =. …………………………………………………………9分 又1(0,0,3)CC =,(CD =.设2222,,()n x y z = 是平面11CDD C 的一个法向量,则1220, n CD n ⎧⋅=⎪⎨⋅=⎪⎩即222020z y =⎧⎪⎨+=⎪⎩ 令21x =,则2(1)n = . ………………………………………………………10分∴121212|11(0|1cos ,7n n n n n n ⨯+⋅<>===⋅∴平面1ACD 和平面11CDD C 所成角(锐角)的余弦值17. ……………………………12分19.(本小题满分12分) 解:(Ⅰ)设{}n a 的公差为d ,则101919,a a d =+=101109101002S a d ⨯=+⨯= 解得11,2a d ==,所以21n a n =- ………………………………………………………3分所以123121n n b b b b b n -⋅⋅⋅=+ …… ① 当11,3n b ==时2,n ≥当时123121n b b b b n -⋅⋅=- ……②①②两式相除得21(2)21n n b n n +=≥- 因为当11,3n b ==时适合上式,所以21(N )21n n b n n *+=∈-………………………………6分 (Ⅱ)由已知24(1)(21)nnn n b c n ⋅=-+,得411(1)(1)()(21)(21)2121nn n n c n n n n =-=-+-+-+则123n n T c c c c =++++1111111(1)()()(1)()335572121n n n =-+++-+++-+-+ ………………………7分当n 为偶数时,1111111(1)()()(1)()335572121n n T n n =-+++-+++-+-+1111111(1)()()()335572121n n =--+++--+++-+1212121nn n =-+=-++ ………………………………………………………………9分当n 为奇数时,1111111(1)()()(1)()335572121n n T n n =-+++-+++-+-+1111111(1)()()()335572121n n =--+++--++---+12212121n n n +=--=-++ ……………………………………………………………11分综上:2,2122,21n n n n T n n n ⎧-⎪⎪+=⎨+⎪-⎪+⎩为偶数为奇数… ………………………………………………………12分20.(本小题满分13分)解:(Ⅰ)因为直线l 与圆O 相切 所以圆2223x y +=的圆心到直线l的距离d ==,从而222(1)3m k =+…2分 由2212x y y kx m ⎧+=⎪⎨⎪=+⎩可得:222(12)4220k x kmx m +++-= 设11(,)E x y ,22(,)F x y则122412km x x k +=-+,21222212m x x k-=+ …………………………………………………4分 所以12121212()()OE OF x x y y x x kx m kx m ⋅=+=+++2222222121222222222224(1)()(1)12123222(1)2201212m k m k x x km x x m k m k km k k k k k--=++++=+++++--+--===++所以OE OF ⊥ ………………………………………………………………………………6分(Ⅱ) 直线l 与圆O 相切于W ,222212121,1,22x x y y +=+=∴EWFWλ====………………………………8分由(Ⅰ)知1212x x y y+=,∴1212x x y y=-,即22221212x x y y=从而22221212(1)(1)22x xx x=--,即2212214223xxx-=+∴21234xλ+==……………………………………………………………12分因为1x1[,2]2λ∈………………………………………………13分21.(本小题满分14分)解:(Ⅰ) 原函数定义域为(1,)-+∞,()ln(1)1g x x'=++,则(0)0g=,(0)1g'=,:l y x∴=………………………………………………………2分由22112(1)202y x kxx k xy x⎧=++⎪⇒+-+=⎨⎪=⎩l与函数()f x的图象相切,24(1)801k k∴∆=--=⇒=4分(Ⅱ)由题21()1ln(1)12h x x kx x=+++++,1()1h x x kx'=+++令1()1x x kxϕ=+++,因为221(2)()10(1)(1)x xxx xϕ+'=-=>++对[0,2]x∈恒成立,所以1()1x x kxϕ=+++,即()h x'在[0,2]上为增函数………………………………6分max7()(2)3h x h k''∴==+()h x在[0,2]上单调递减()0h x'∴≤对[0,2]x∈恒成立,即max7()03h x k'=+≤73k∴≤-…………………………………………………………………………………8分(Ⅲ)当1]x∈时,()ln(1)10g x x'=++>()(1)ln(1)g x x x∴=++在区间1]上为增函数,∴1]x∈时,0()g x ≤≤…………………………………………………………………………10分 21()12f x x kx =++的对称轴为:x k =-,∴为满足题意,必须14k -<-<……11分此时2min 1()()12f x f k k =-=-,()f x 的值恒小于(1)f -和(4)f 中最大的一个对于1]t ∀∈,总存在12,(1,4)x x ∈-,且12x x ≠满足()()i f x g t =(1,2)i =,min ((),min{(1),(4)})f x f f ∴⊆-2min 41141()0102(4)493(1)2k k f x k f k f k -<<⎧-<-<⎧⎪⎪⎪<-<⎪⎪⎪∴⇒⎨<+⎪⎪-⎪-⎪⎩ …………………………………………………13分94k <<……………………………………………………………………14分。
临沂一中2012级高三上学期第二次阶段性检测题理科数学第Ⅰ卷(共50分)一、选择题(本大题共10个小题,每小题5分,共50分)1、设全集为R ,函数()f x =的定义域为M ,则R C M =( )A .[]1,1-B .()1,1-C .(][),11,-∞-+∞D .()(),11,-∞-+∞2、下列说法错误的是( )A .命题“若2430x x -+=,则3x =”的逆否命题是“若3x ≠,则2430x x -+≠” B .“1x >”是“0x >”的充分不必要条件 C .若p q ∧为假命题,则,p q 均为假命题D .命题:p x R ∃∈,使得210x x ++<,则:p x R ⌝∀∈,使得210x x ++≥3、若函数()22(1)3f x ax a x a =+--为偶函数,其定义域242,1a a ⎡⎤++⎣⎦,则()f x 的最小是为( )A .3B .0C .2D .1- 4、设1111232,,a x dx b x dx c x dx ===⎰⎰⎰,则,,a b c 的大小关系是( )A .c a b >>B .a b c >>C .a b c =>D .a c b >>5、已知函数()f x 对定义域R 内的任意x 都有()(4)f x f x =-,且当2x ≠是其导数()f x '满足()()2xf x f x ''>,若24a <<,则( )A .()()223(log )f a f f a <<B .()()23(log )2f f a f a <<C .()()2(log )32f a f f a <<D .()()2(log )23f a f a f << 6、把函数sin()(0,)y wx w ϕϕπ=+><的图象向右平移6π个单位,再将图象上所有的点的横坐标伸长到原来的2倍(纵坐标不变),所得的图象解析式为sin y x =,则( ) A .2,6w πϕ==B .2,3w πϕ==C .1,26w πϕ== D .1,212w πϕ== 7、下图,有一个是函数()3221(1)1(,0)3f x x ax a x a R a =++-+∈≠的导函数()f x '的图象,则()1f -等于( )A .13 B .13- C .73 D .13-或538、若sin ,cos θθ是方程2420x mx m ++=的两根,则m 的值为( )A .1.1 C .1.1-9、已知集合(){(,)|}M x y y f x ==,若对于任意11(,)x y M ∈,存在11(,)x y M ∈, 使得12120x x y y +=成立,则称集合M 是“垂直对点集”,给出下列四个结合: ①1{(,)|}M x y y x== ②{(,)|sin 1}M x y y x ==+ ③2{(,)|log }M x y y x == ④{(,)|2}xM x y y e ==- A .①② B .②③ C .①④ D .②④10、已知偶数()f x 以4为周期,且当[]2,0x ∈-时,()1()12xf x =-,若在区间[]6,6-内关于x的方程()2log (2)0(1)f x x a ⋅+=>恰有4个不同的实数根,则a 的取值范围是( )A .()1,2B .()2,+∞C .(D .)2二、(本大题共5小题,每小题5分,共25分)11、若两个非零向量,a b 满足2a b a b a +=-=,则向量a b +与a b -的夹角是 12、函数()ln xf x x=的单调递增区间是 13、()sin()cos()4(,,,f x a x a b x a b ππβαβ=++++均为非零实数),若()20146f =, 则()2015f =14、设区间1()n y x n N +*=∈,在点()1,1处的切线与x 轴的交点的横坐标为n x ,令lg n n a x =,则 则1299a a a +++的值为15、给出下列四个命题:①命题“x R ∀∈,都有2314x x -+≥”的否定是“x R ∃∈,都有2314x x -+<” ②一个扇形的弧长与面积的数值都是5,则这个扇形中心角的弧度数是5;③将函数cos 2y x =图象向右平移4π个单位,得到cos(2)4y x π=-的图象;④命题“设向量(4sin ,3),(2,3cos )a b αα==,若//a b ,则4πα=”的逆命题、否命题、逆否命题中真命题的个数为2.其中正确命题的序号为三、解答题(本大题共6小题,共75分,解答应写出文字说、证明过程或演算步骤)16、已知命题:p 方程2220x ax a +-=在[]1,1-上有解;命题:q 只有一个实数0x 满足不等式20220x ax a ++≤,若命题“p q ∨”是假命题,求a 的取值范围。
2015年高考模拟考试(山东卷)数学(文科)本试卷分第I 卷和第Ⅱ卷两部分,共5页.满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类写在答题卡和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案写在试卷上无效.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:柱体的体积公式:V Sh =,其中S 是柱体的底面积,h 是柱体的高.第I 卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}2230,1,1,3,M x x x N M N =+-==-⋃=则A.{}1,3-B.{}1,1,3-C.{}1,1,3,3--D.{}1,1,3--2.已知复数z 满足()1i z i -=(i 是虚数单位),则z 在复平面内对应的点所在象限为 A.第一象限B.第二象限C.第三象限D.第四象限3.函数y = A.[)1,+∞B.()1,+∞C.1,2⎛⎫+∞⎪⎝⎭D.1,12⎛⎫⎪⎝⎭4.“1cos 2α=”是“3πα=”的 A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.已知,,a b c R ∈,那么下列命题中正确的是A.若a b <,则22ac bc < B.若0,0a b c >><,则c c a b< C.若a b >,则()()22a cbc +>+ D.若0ab >,则2a bb a+≥ 6.执行如图所示的程序框图,输出的S 值为 A.9 B.16 C.25 D.367.已知,x y 满足约束条件13223x x y z x y x y ≥⎧⎪+≤=+⎨⎪-≤⎩,若的最大值和最小值分别为,a b ,则a b +=A.7B.6C.5D.48.已知函数()y f x =是R上的偶函数,当()12,0,x x ∈+∞时,都有()()()12120x x f x f x -⋅-<⎡⎤⎣⎦.设()21ln ,ln ,a b c ππ===A.()()()f a f b f c >>B. ()()()f b f a f c >>C. ()()()f c f a f b >>D. ()()()f c f b f a >>9. 已知12,F F 是双曲线()222210,0x y a b a b-=>>的两个焦点,以12F F 为直径的圆与双曲线一个交点是P ,且12F PF ∆的三条边长成等差数列,则此双曲线的离心率是C.2D.510.设函数()f x 的定义域为R ,若存在常数()0f x x ωω>≤,使对一切实数x 均成立,则称()f x 为“条件约束函数”.现给出下列函数:①()4f x x =;②()22f x x =+;③()2225xf x x x =-+;④()f x 是定义在实数集R 上的奇函数,且对一切12,x x 均有()()12124f x f x x x -≤-.其中是“条件约束函数”的有A.1个B.2个C.3个D.4个第II 卷(共100分)二、填空题:本大题共5个小题,每小题5分,共25分. 11.100名学生某次数学测试成绩(单位:分)的频率分布直方图如图所示,则模块测试成绩落在[)50,70中的学生人数是_________.12.已知ABC ∆中,角A,B,C 所对的边分别为,,a b c ,若sin :sin :sin 1:A B C =C=__________.13.某圆柱切割获得的几何体的三视图如图所示,其中俯视图是中心角为3π的扇形,则该几何体的体积为__________. 14.设,,a b c r r r是单位向量,且()()0a b a c b c ⋅=-⋅-r r r r r r ,则的最大值为________.15.已知P 是直线34100x y +-=上的动点,PA ,PB 是圆222440x y x y +-++=的两条切线,A,B 是切点,C 是圆心,那么四边形PACB 面积的最小值为________.三、解答题:本大题共6小题,共75分. 16.(本小题满分12分)设函数()22sin f x x x ωω=+(其中0ω>),且()f x 的最小正周期为2π. (I )求ω的值;(II )将函数()y f x =图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()y g x =的图象,求函数()g x 的单调增区间.17. (本小题满分12分)某在元宵节活动上,组织了“摸灯笼猜灯谜”的趣味游戏.已知在一个不透明的箱子内放有大小和形状相同的标号分别为1,2,3的小灯笼若干个,每个灯笼上都有一个谜语,其中标号为1的小灯笼1个,标号为2的小灯笼2个,标号为3的小灯笼n 个.若参赛者从箱子中随机摸取1个小灯笼进行谜语破解,取到标号为3的小灯笼的概率为14. (I )求n 的值;(II )从箱子中不放回地摸取2个小灯笼,记第一次摸取的小灯笼的标号为a ,第二次摸取的小灯笼的标号为b.记“4a b +≥”为事件A ,求事件A 的概率.18. (本小题满分12分)如图,平面PBA ⊥平面ABCD ,90,,DAB PB AB BF PA ∠==⊥o ,点E 在线段AD 上移动. (I )当点E 为AD 的中点时,求证:EF//平面PBD ;(II )求证:无论点E 在线段AD 的何处,总有PE BF ⊥.19. (本小题满分12分)数列{}n a 满足()111,2n n a a a n N *+==∈,n S 为其前n 项和.数列{}n b 为等差数列,且满足1143,b a b S ==.(I )求数列{}{},n n a b 的通项公式; (II )设2221log n n n c b a +=⋅,数列{}n c 的前n 项和为n T ,证明:1132n T ≤<.20. (本小题满分13分)已知函数()()0xf x e ax a a R a =+-∈≠且.(I )若函数()0f x x =在处取得极值,求实数a 的值;并求此时()[]21f x -在,上的最大值; (II )若函数()f x 不存在零点,求实数a 的取值范围.21. (本小题满分14分)在平面直角坐标系xoy 中,椭圆()2222:10x y C a b a b+=>>的焦距为2,一个顶点与两个焦点组成一个等边三角形.(I )求椭圆C 的标准方程;(II )椭圆C 的右焦点为F ,过F 点的两条互相垂直的直线12,l l ,直线1l 与椭圆C 交于P ,Q 两点,直线2l 与直线4x =交于T 点. (i )求证:线段PQ 的中点在直线OT 上; (ii )求TFPQ的取值范围.2015年3月济南市高三模拟考试文科数学参考答案一、选择题CBABD BACDC二、填空题11.25 12.3π13. 2π 14. 1 三、解答题16. 解:(Ⅰ)()sin 2f x x x ωω+=2sin(2)3x πω+……………………4分∴2=22ππω,即12ω= ……………………………………6分 (Ⅱ)由(Ⅰ)知()f x =2sin()3x π+,将函数)(x f y =的图象各点的横坐标缩短为原来的12,纵坐标不变,得到函数)(x g y =的图象,即()g x =2sin(2)3x π+ ……………………8分 由22+2232k x k πππππ-≤+≤,k Z ∈得:51212k x k ππππ-+≤≤+,k Z ∈,……………………10分 ∴()g x 的单调递增区间是:5[,]1212k k ππππ-++,k Z ∈ …………12分17. 解:(Ⅰ)由题意,1124n n =++,1n ∴=……………………4分(2)记标号为2的小灯笼为1a ,2a ;连续..摸取2个小灯笼的所有基本事件为:(1, 1a ),(1, 2a ),(1,3),(1a ,1),(2a ,1),(3,1),(1a ,2a ), (1a ,3),(2a ,1a ), (3, 1a ),(2a ,3),(3, 2a )共12个基本事件. ……………………8分A 包含的基本事件为: (1,3), (3,1),(1a ,2a ),(2a ,1a ),(1a ,3),(3, 1a ), (2a ,3),(3, 2a )……………………10分8()12P A ∴=23= ……………………12分 18. (Ⅰ)证明: 在三角形PBA 中,,PB AB BF PA =⊥, 所以F 是PA 的中点,连接EF , ………………………………2分 在PDA ∆中,点,E F 分别是边,AD PA 的中点, 所以//EF PD …………………………………4分又EF PBD ⊄平面,PD PBD ⊂平面所以EF //平面PBD .……………………………6分 (Ⅱ)因为平面PBA ⊥平面ABCD ,平面PBA平面ABCD AB =, 90DAB ∠=,DA AB ⊥ ,DA ABCD ⊂平面所以DA ⊥平面PBA …………………… 8分 又BF PBA ⊂平面 ,所以DA BF ⊥,又BF PA ⊥,PADA A =,,PA DA PDA ⊂平面,所以BF PDA ⊥面 ……………………………………10分 又PE PDA ⊂平面 所以BF PE ⊥所以无论点E 在线段AD 的何处,总有PE ⊥BF . …………………………12分19. 解:(Ⅰ)由题意,{}n a 是首项为1,公比为2的等比数列,11121--⋅=⋅=∴n n n q a a . ∴12n n a -=,21n n S =-, …………………3分设等差数列{}n b 的公差为d ,111b a ==,4137b d =+=,∴2d = ∴1(1)221n b n n =+-⨯=-. …………………6分 (II )∵212222log =log 221n n a n ++=+, ∴22211111()log (21)(21)22121n n n c b a n n n n +===-⋅-+-+,…………………7分∴11111111(1...)(1)2335212122121n n T n n n n =-+-++-=-=-+++ . …………………9分∵*N n ∈,∴11112212n T n ⎛⎫=-< ⎪+⎝⎭ …………………10分 当2n ≥时,()()111021212121n n n n T T n n n n ---=-=>+-+- ∴数列{}n T 是一个递增数列, ∴113n T T ≥=. 综上所述,1132n T ≤<. …………………12分20. 解:(Ⅰ)函数)(x f 的定义域为R ,a e x f x +=)(',…………………1分0)0(0'=+=a e f ,1-=∴a .…………………2分∴'()1x f x e =-∵在)0,(-∞上)(,0)('x f x f <单调递减,在),0(+∞上)(,0)('x f x f >单调递增, ∴0=x 时)(x f 取极小值.1-=∴a . …………………3分易知)(x f 在)0,2[-上单调递减,在]1,0(上)(x f 单调递增;且;31)2(2+=-e f ;)1(e f =)1()2(f f >-.…………………4分 当2-=x 时,)(x f 在]1,2[-的最大值为.312+e…………………5分(Ⅱ)a e x f x +=)(',由于0>xe .①当0>a 时,)(,0)('x f x f >是增函数,…………………7分 且当1>x 时,0)1()(>-+=x a e x f x .…………………8分 当0<x 时,取a x 1-=,则0)11(1)1(<-=--+<-a aa a f , 所以函数)(x f 存在零点,不满足题意.…………9分②当0<a 时,)ln(,0)('a x a e x f x-==+=.在))ln(,(a --∞上)(,0)('x f x f <单调递减,在)),(ln(+∞-a 上)(,0)('x f x f >单调递增, 所以)ln(a x -=时)(x f 取最小值.………………11分 函数)(x f 不存在零点,等价于0)ln(2)ln())(ln()ln(>-+-=--+=--a a a a a a e a f a ,解得02<<-a e .综上所述:所求的实数a 的取值范围是02<<-a e .………………13分21. 解:(Ⅰ)由题意1222c a c ⎧=⎪⎨⎪=⎩,………………1分解得3,1,2===b c a ,………………3分所求椭圆C 的标准方程为13422=+y x ;………………4分 (Ⅱ)解法一:(i )设:1PQ l x my =+,221431x y x my ⎧+=⎪⎨⎪=+⎩,消去x ,化简得096)43(22=-++my y m . 09)43(43622>⋅++=∆m m设),,(),,(2211y x Q y x P PQ 的中点00(,)G x y ,则436221+-=+m m y y ,439221+-=m y y ,……………6分 43322210+-=+=m m y y y ,4341200+=+=m my x , 即2243(,)3434mG m m -++,……………7分 4344343322m m m m k OG-=+⋅+-=,设)1(:--=x m y l FT ,得T 点坐标(m 3,4-),43mk OT -=,所以OT OG k k =,线段PQ 的中点在直线OT 上.……………9分 (ii) 当0=m 时,PQ 的中点为F ,)0,4(T .1||||,32||,3||2====PQ TF a b PQ TF .……………10分当0m ≠时,13)3()14(||222+=-+-=m m TF ,||11||122y y k PQ PQ-+==-+⋅+=2122124)(1y y y y m 4394)436(12222+-⋅-+-⋅+m m m m 4311222++⋅=m m .……………11分)1113(411243113||||22222+++⋅=+⋅++=m m m m m PQ TF令12+=m t .则)1)(13(41||||>+⋅=t tt PQ TF .令)1)(13(41)(>+⋅=t t t t g则函数()g t 在()1,+∞上为增函数,……………13分 所以1)1()(=>g t g .所以||||PQ TF 的取值范围是[1,)+∞.……………14分 解法二:(i )设T 点的坐标为),4(m ,当0=m 时,PQ 的中点为F ,符合题意. ……………5分 当0m ≠时,m k m k PQ FT 3,3-==. 3:(1)PQ l y x m -=-⎪⎪⎩⎪⎪⎨⎧--==+)1(313422x m y y x ,消去x 化简得22(12)6270m y my +--=. 027)12(43622>⋅++=∆m m设),,(),,(2211y x Q y x P PQ 的中点00(,)G x y ,则126221+=+m m y y .1227221+-=m y y ,……………6分 12322210+=+=m m y y y ,121231200+=-=m my x , 即)123,1212(22++m mm G ,……………7分 4121212322mm m m k OG=+⋅+=,又4m k OT = .所以OT OG k k =,线段PQ 的中点在直线OT 上.……………9分(ii) 当0m = 时,632PQ == , 413TF =-=,1TF PQ= ……………10分 当0m ≠时,9)14(||222+=+-=m m TF ,||11||12y y k PQ PQ-+=.=-+⋅+=2122124)(91y y y y m 12274)126(912222+-⋅-+⋅+m m m m 129422++⋅=m m .……………11分)939(4141299||||22222+++⋅=+⋅++=m m m m m PQ TF令92+=m t .则)3)(3(41||||>+⋅=t tt PQ TF .令)3)(3(41)(>+⋅=t t t t g则函数()g t 在()3,+∞上为增函数,……………13分 所以1)3()(=>g t g .所以当||||PQ TF 的取值范围是[1,)+∞.……………14分 解法三:(i )当直线PQ l 斜率不存在时,PQ 的中点为F ,)0,4(T ,符合题意. ……………5分 当直线PQ l 斜率存在时,若斜率为0,则2l 垂直于 x 轴,与 x=4不能相交,故斜率不为0 设)1(:-=x k y l PQ ,(0k ≠)⎪⎩⎪⎨⎧-==+)1(13422x k y y x ,消去y ,化简得. 2222(34)84120k x k x k +-+-= 4222644(34)(412)144(1)0k k k k ∆=-+-=+>设),,(),,(2211y x Q y x P PQ 的中点00(,)G x y ,则2221438k k x x +=+,222143124k k x x +-=,……………6分222104342k k x x x +=+=,200433)1(k k x k y +-=-=, 即)433,434(222kk k k G +-+,……………7分 kk k k k k OG 43443433222-=+⋅+-=, 设)1(1:--=x k y l FT ,得T 点坐标(k 3,4-),k k OT 43-=,所以OT OG k k =, 线段PQ 的中点在直线OT 上.……………9分 (ii) 当直线PQ l 斜率不存在时,PQ 的中点为F ,)0,4(T .1||||,32||,3||2====PQ TF a b PQ TF .……………10分 当直线PQ l 斜率存在时,222213)3()14(||k k k TF +=-+-=,||1||122x x k PQ -+=. =-+⋅+=2122124)(1x x x x k 222222431244)438(1k k k k k +-⋅-+⋅+ 2243112k k ++⋅=.……………11分2222||34)||12(1)114TF k k PQ k k +==+++=⋅ 令211kt +=.则)1)(13(41||||>+⋅=t t t PQ TF .令)1)(13(41)(>+⋅=t t t t g 则函数()g t 在()1,+∞上为增函数,……………13分 所以1)1()(=>g t g . 所以||||PQ TF 的取值范围是),1[+∞.……………14分。
2015年临沂一模高三模拟考试数学(理科)2015.2一、选择题: 1.设i 是虚数单位,复数7412ii +=+ A. 32i +B. 32i -C. 23i +D. 23i -2.集合{}{}20,2A x x a B x x =-≥=<,若R C A B ⊆,则a 的取值范围是A. (],4-∞B. []0,4C. (),4-∞D. ()0,43.若随机变量()()~1,4,00.1X N P x ≤=,则()02P x <<= A.0.4 B.0.45C.0.8D.0.94.下列四个结论:①若0x >,则sin x x >恒成立;②命题“若sin 0,0x x x -==则”的逆命题为“若0sin 0x x x ≠-≠,则”;③“命题p q ∨为真”是“命题p q ∧为真”的充分不必要条件;④命题“,ln 0x R x x ∀∈->”的否定是“000,ln 0x R x x ∃∈-≤”.其中正确结论的个数是 A.1个B.2个C.3个D.4个5.设01a <<,则函数11x y a =-的图象大致为6.已知某几何体的三视图,则该几何体的体积是 A.12 B.24 C.36 D.487.直线10x my ++=与不等式组302020x y x y x +-≥⎧⎪-≥⎨⎪-≤⎩表示的平面区域有公共点,则m 的取值范围是A. 14[,]33B. 41[,]33--C. 3[,3]4D. 3[3,]4--8.已知向量()0,sin a x =,()1,2cos b x =,()32f x a b =⋅,()2272g x a b =+-,则()f x 的图象可由()g x 的图象经过怎样的变换得到 A.向左平移4π个单位 B.向右平移4π个单位C. 向左平移2π个单位D. 向右平移2π个单位 9.已知抛物线28y x =的准线与双曲线()222210,0x y a b a b-=>>相交于A 、B 两点,双曲线的一条渐近线方程是y x =,点F 是抛物线的焦点,且△FAB 是等边三角形,则该双曲线的标准方程是 A.221366x y -= B.221163x y -= C.221632x y -= D.221316x y -= 10.对于()xf x ae x =-,若存在实数,m n ,使得()0f x ≤的解集为[](),m n m n <,则a 的取值范围是A. 1(,0)(0,)e-∞ B. 1(,0)(0,]e -∞ C. 1(0,)eD. 1(0,]e二、填空题:11.为了解某校教师使用多媒体辅助教学的情况,采用简单随机抽样的方法,从该校200名授课教师中抽取20名教师,调查了解他们上学期使用多媒体辅助教学的次数,结果用茎叶图表示(如图),据此可估计该校上学期200名教师中,使用多媒体辅助教学不少于30次的教师人数为_________. 12.执行如图所示的程序,则输出的结果为________.13.若()()2221f x x x a g x x x a =++=-++与有相同的最小值,则()1af x dx =⎰_________.14.已知,a b 为正实数,直线0x y a ++=与圆()()2212x b y -+-=相切,则21a b +的取值范围是___________.15.对于函数()1xf x x=+,给出下列结论:①等式()()0f x f x x R -+=∈在时恒成立;②函数()f x 的值域为()1,1-;③函数()()g x f x x =-在R 上有三个零点;④若()()1212120f x f x x x x x -≠>-,则;⑤若()()12121222f x f x x x x x f ++⎛⎫<< ⎪⎝⎭,则.其中所有正确结论的序号为_________.三、解答题: 16.在△ABC 中, ()()()2sin cos sin f x x A x B C =-++,()f x 的图象关于点(,0)6π对称.(I )当(0,)2x π∈时,求()f x 的值域;(II )若7a =且sin sin B C +=ABC 的面积.17.已知数列{}{}n n a b 和满足122n b nn a a a -⋅⋅⋅=,若{}n a 为等比数列,且1211,2a b b ==+.(I )求n n a b 与;(II )设()11n n nc n N a b *=-∈,求数列{}n c 的前n 项和n S .19.如图,在多面体111ABC A B C -中,四边形11ABB A 是正方形,1ACB∆是等边三角形,11111,//,2AC AB B C BC BC B C ===.(I )求证:111//AB AC C 平面;(II )若点M 是边AB 上的一个动点(包括A,B 两端点),试确定点M 的位置,使得平面11CAC 和平面11MAC18. 在“出彩中国人”的一期比赛中,有6位歌手(1~6)登台演出,由现场的百家大众媒体投票选出最受欢迎的出彩之星,各家媒体独立地在投票器上选出3位出彩候选人,其中媒体甲是1号歌手的歌迷,他必选1号,另在2号至6号中随机的选2名;媒体乙不欣赏2号歌手,他必不选2号;媒体丙对6位歌手的演唱没有偏爱,因此在1至6号歌手中随机的选出3名.(I )求媒体甲选中3号且媒体乙未选中3号歌手的概率;(II )X 表示3号歌手得到媒体甲、乙、丙的票数之和,求X 的分布列及数学期望.20. 已知()22,0ln ,0x x a x f x xx ⎧++<⎪=⎨>⎪⎩,其中a 是实数,设11(,())A x f x ,22(,())B x f x 为该函数图象上的两点,且12x x <.(I )当0x <时,讨论()()()xg x f x f e =⋅的单调性;(II )若()f x 的图象在点A,B 处的切线重合,求a 的取值范围.21. 已知圆22:0C x y x y +--=经过椭圆()2222:10x y E a b a b+=>>的右焦点F 和上顶点D.(I )求椭圆E 的方程;(II )过点()2,0P -作斜率不为零的直线l 与椭圆E 交于不同的两点A,B ,直线AF,BF 分别交椭圆E 于点G,H ,设()1212AF FG BF FH.R λλλλ==∈,,(i )求12λλ+的取值范围;(ii )是否存在直线l ,使得AF GF BF HF ⋅=⋅成立?若存在,求l 的方程;若不存在,请说明理由.章丘一中王希刚- 11 -。
青岛市高三统一质量检测数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共 150 分 .考试时间 120 分钟.注意事项:1.答卷前,考生务必用 2B 铅笔和 0.5 毫米黑色签字笔(中性笔)将姓名、准考证号、考试科目、试卷类型填涂在答题卡规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.3.第Ⅱ卷必须用0.5 毫米黑色签字笔(中性笔)作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共 50 分)一、选择题:本大题共10 小题.每小题 5 分,共50 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i为虚数单位,复数2i等于1 iA . 1 iB . 1 i C.1i D .1i2R ,集合 A { y | y log 2 x,x 2}, B{ x | y x 1} ,则.设全集 IA . AB B.A B A C.A B D.A (e I B)3.在“魅力青岛中学生歌手大赛”比赛现场上七位评委为某选手打出的分数的茎叶统计图如图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为7 98 44 46 7 9 3第3 题图A . 5 和 1.6B. 85 和 1.6C. 85 和 0.4D. 5 和 0.44.“n N*,2 a n 1a n a n 2”是“数列 { a n } 为等差数列”的A .充分不必要条件B .必要不充分条件x C.充要条件 D .既不充分也不必要条件5.某几何体的三视图如图所示,且该几何体的体积是 3 ,则211正视图侧视图正视图中的 x 的值是A . 2B .9C .3D . 322x2y20, b0) 的一条渐近线平行于直线 l : x 2 y 5 0 ,双曲线的一个焦点6.已知双曲线2b 2 1(aa在直线 l 上,则双曲线方程为A. x 2y 21B. x 2 y 2 1C. 3x 23 y 2 1D. 3x 23y 2 1 2055 2025 100100257.设 m,n 是不同的直线,, 是不同的平面,下列命题中正确的是A .若 m / / ,n , m n ,则B .若 m / / ,n , m n ,则 / /C .若 m / / ,n ,m / / n ,则D .若 m / / ,n,m / / n ,则 / /8.函数 y 4cos xe x ( e 为自然对数的底数 )的图象可能是yyyyOOx O xxO xAB C D9.对于函数 y sin(2 x) ,下列说法正确的是6A .函数图象关于点 ( ,0) 对称3B .函数图象关于直线 x5对称6C .将它的图象向左平移个单位,得到 y sin 2x 的图象6D .将它的图象上各点的横坐标缩小为原来的1倍,得到y sin( x) 的图象2610.已知点 G 是 ABC 的外心, GA,GB,GC 是三个单位向量, 且 2GA AB AC 0 ,如图所示, ABC的顶点 B, C 分别在 x 轴的非负半轴和y 轴的非负半轴上移动,O 是坐标原点,则OA 的最大值为y CO B xA .2B.3C.2D. 3第Ⅱ卷(非选择题共 100 分)二、填空题:本大题共 5 小题,每小题 5 分,共 25分.开始11.已知函数f ( x)tan x sin x2015 ,若 f (m) 2 ,i12, s1则 f (m);i11?否12.执行如图所示的程序框图,则输出的结果是;是s s s i输出i i1结束13.设a12 (3x22x) dx ,则二项式 ( ax21) 6展开第 12 题图x式中的第 6 项的系数为;2x y 114.若目标函数 z kx 2 y 在约束条件x y 2 下当且仅当在点(1,1) 处取得最小值,则实数k的取y x2值范围是;15.若X是一个集合,是一个以 X 的某些子集为元素的集合,且满足:①X 属于,空集属于;②中任意多个元素的并集属于;③中任意多个元素的交集属于.则称是集合 X 上的一个拓扑.已知集合X{ a,b,c} ,对于下面给出的四个集合:①{,{ a},{c},{ a, b, c}} ;②{,{ b},{ c},{ b, c},{ a,b,c}};③{,{ a},{a,b},{a,c}} ;④{,{ a,c},{ b,c},{ c},{ a,b, c}} .其中是集合 X 上的一个拓扑的集合的所有序号是.三、解答题:本大题共 6 小题,共 75 分.请写出必要的文字说明、证明过程或演算步骤.16. (本小题满分12 分)设 ABC 的内角 A, B, C 所对的边分别为a b a ca, b,c ,已知B)sin A, b 3 .sin( A sin B(Ⅰ)求角 B ;(Ⅱ)若 sin A3ABC 的面积.,求317.(本小题满分12 分)某大学准备在开学时举行一次大学一年级学生座谈会,拟邀请20 名来自本校机械工程学院、海洋学院、医学院、经济学院的学生参加,各学院邀请的学生数如下表所示:学院机械工程学院海洋学院医学院经济学院人数4646(Ⅰ)从这 20 名学生中随机选出 3 名学生发言,求这 3 名学生中任意两个均不属于同一学院的概率;(Ⅱ)从这20 名学生中随机选出 3 名学生发言,设来自医学院的学生数为,求随机变量的概率分布列和数学期望.18.(本小题满分 12 分)A1D1E1如图,在四棱柱 ABCD A1 B1 C1 D1中,侧棱AA1底面B1C1ABCD ,底面 ABCD 是直角梯形, AD / / BC ,BAD90 ,AD AA1 3 ,BC 1, E1为 A1 B1中点.(Ⅰ)证明:B1 D / / 平面 AD1 E1;A D (Ⅱ)若 AC BD ,求平面ACD1和平面CDD1C1所成角(锐角)B C的余弦值 .19.(本小题满分12 分)已知数列 { a n } 是等差数列,S n为 { a n } 的前n项和,且 a1019 , S10100 ;数列 { b n } 对任意n N ,总有 b1b2b3bn 1bn a n 2 成立.(Ⅰ)求数列{ a n } 和 { b n } 的通项公式;(Ⅱ)记 c n( 1)n 4nb n ,求数列 {c n } 的前 n 项和 T n .(2 n 1)220.(本小题满分 13 分)已知椭圆 C :x 2y 21 与直线 l : y kxm 相交于E 、 两不同点,且直线 l 与圆O : x 2y222F3相切于点 W ( O 为坐标原点 ).(Ⅰ)证明: OE OF ;EW的取值范围 .(Ⅱ)设,求实数FW21.(本小题满分 14 分)已知函数 f (x)1 x 2kx 1 ,g( x)( x 1)ln( x 1) , h( x) f ( x)g ( x) .2(Ⅰ)若函数 g( x) 的图象在原点处的切线 l 与函数 f ( x) 的图象相切,求实数 k 的值; (Ⅱ)若 h( x) 在 [0,2] 上单调递减,求实数k 的取值范围;(Ⅲ)若对于t [0,e 1] ,总存在 x 1 , x 2( 1,4) ,且 x 1 x 2 满 f ( x i ) g (t) (i 1,2) ,其中 e 为自然对数的底数,求实数 k 的取值范围 .青岛市高三统一质量检测数学(理科)参考答案及评分标准一、选择题:本大题共 10 小题.每小题 5 分,共 50 分.D A B C DA C AB C二、填空题:本大题共 5 小题,每小题 5 分,共 25 分.11. 402812. 132 13.24 14 . ( 4, 2)15 .②④三、解答题:本大题共 6 小题,共 75 分,解答时应写出必要的文字说明、证明过程或演算步骤.16. (本小题满分 12 分)解:(Ⅰ)a b a c a b a c⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2分sin( A B)sin A sin B c a ba2b2ac c2cos B a2c2b2ac1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分2ac2ac2B(0, ) ,B3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分(Ⅱ)由 b 3 ,sin A3,a b,得 a2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分3sin Bsin A由 a b 得 A B ,从而 cos A 6⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分,3故 sin C sin( A B)sin Acos B cos Asin B 332⋯⋯⋯⋯⋯⋯⋯ 10 分6所以ABC 的面 S 1ab sin C 3 32.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分2217 .(本小分12 分)解:(Ⅰ)从20 名学生随机出 3名的方法数 C203,出 3 人中任意两个均不属于同一学院的方法数 C41C61C41C41 C61 C61C41 C41 C61C61 C41 C61⋯⋯⋯⋯⋯⋯⋯⋯ 4 分所以 P C41C61C41C41 C61C61C41 C41C61C61 C41 C618⋯⋯⋯⋯⋯⋯⋯ 6 分C20319(Ⅱ)可能的取 0,1,2,3P(0)C163571628, P(1)C162C4181548 ,C2033201957C2033201919P(2)C161C421668, P(3)C4334191⋯⋯⋯⋯ 10 分C2033201995C20320285所以的分布列0123P28881 571995285所以 E()28081821357⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分5719952859518 .(本小分12 分)z明:(Ⅰ) A1 D 交 AD1于 G ,A1D1因 ABCDA 1B 1C 1D 1 四棱柱,所以四 形ADD 1 A 1 平行四 形,所以 GA 1 D 的中点,又 E 1 A 1B 1 中点,所以 E 1GA 1 B 1D 的中位 ,从而 B 1D / / E 1G⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分又因 B 1 D 平面 AD 1 E 1 , E 1G 平面 AD 1E 1 ,所以 B 1D / / 平面 AD 1 E 1 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分(Ⅱ)因 AA 1 底面 ABCD , AB面 ABCD , AD 面 ABCD ,所以AA 1AB, AA 1 AD, 又 BAD90AB, AD , AA 1.,所以 两两垂直⋯⋯⋯⋯⋯ 分6如 ,以 A 坐 原点, AB, AD, AA 1 所在直 分 x , y , z 建立空 直角坐 系.AB t , A 0,0,0, Bt ,0,0 , C t ,1,0 , D 0,3,0 , C 1 t ,1,3 , D 10,3,3 .从而 AC (t,1,0) , BD (t,3,0) .因 ACBD ,所以 ACBD t 2 30 ,解得 t 3 .⋯⋯⋯⋯⋯⋯⋯⋯ 8 分所以 AD 1 (0,3,3) , AC( 3,1,0) .n 1( x 1 , y 1, z 1 ) 是平面 ACD 1 的一个法向量, AC n 1 0,3x 1 y 1 0AD 1 n 10.即3z 13 y 1令 x 1 1, n 1 (1, 3, 3) .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分又 CC 1 (0,0,3) , CD (3,2,0) .n 2(x 2 , y 2 , z 2 ) 是平面 CDD 1C 1 的一个法向量,CC 1 n 2 0, z 2 0CD n 2即3x 2 2 y 2 00.令 x21 , n(1,3,0 ) .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分22n 1 n 2|1 1 3( 3)3 0 |1 cosn1, n 22n 1 n 2371 3 314平面 ACD 1 和平面 CDD 1C 1 所成角( 角)的余弦1分12 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯719 .(本小 分12 分)解:(Ⅰ) { a n }的公差 d ,a 10a 1 9d 19, S 1010 9 10a 1d 1002解得 a 1 1, d2 ,所以 a n 2n 1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分所以 b 1 b 2 b 3 b n 1 bn2n 1 ⋯⋯ ①当 n 1时 ,b 1 3当n 2时, b 1 b 2 b 3bn 12n 1 ⋯⋯②①②两式相除得 b n2n 1 2)2n ( n12n 1(n因 当 n1时,b 3 适合上式,所以 b nN ) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分12n 14n bn 2(Ⅱ)由已知 c n( 1)n,(2 n 1)得 c n( 1)n4n( 1)n (1 1 1 )(2n 1)(2 n 1)2n 2n 1T nc 1 c 2 c 3c n(1 1) ( 11) ( 11)( 1)n ( 1 1 ) ⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分3 3 5 5 72n 1 2n 1 当 n 偶数 ,T n(1 1) (1 1) ( 1 1)( 1)n ( 11 1 1 )3 3 5 572n 2n( 1 1) (1 1) (1 1) ( 1 11 )3 3 5572n 2n 1112n ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分2n 12n 1 当 n 奇数 ,T n(11) (1 1 ) ( 1 1) ( 1)n ( 11 1 1 )3 3 5 5 72n 2n( 1 1) ( 1 1) ( 1 1)(1 1 1 ) 3 3 5 5 72n 2n 11 2n 2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11 分112n 12n2n为偶数2n 1 , n上: T n⋯ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分2n 2为奇数2n 1 , n20 .(本小 分 13 分)解:(Ⅰ)因 直 l 与 O 相切所以 x 2y 22的 心到直 l 的距离 dm2,从而 m 22(1 k 2 ) ⋯ 2 分1k 2333。
参考答案一、选择题B D B A D B DCD D 二、填空题 11.12112. 2∶1 13. ①②③ 14. []4,3- 15. ①②③ 三、解答题:16. 解:(1)函数1)62sin(22sin 312cos )(+++=+++=a x a x x x f π,…2分70,,2,2666x x ππππ⎡⎤⎡⎤∈∴+∈⎢⎥⎢⎥⎣⎦⎣⎦,min()112f x a =-++=,得2a =;…4分 即()2sin(2)36f x x π=++,由题意得226222πππππ+≤+≤-k x k ,得,36k x k k Z ππππ-≤≤+∈,所以函数)(x f 的单调递增区间为()Z k k k ∈⎥⎦⎤⎢⎣⎡+-6,3ππππ.…6分 (2)由题意得()2sin(2)36f x x π=++,又由()4g x =得21)64sin(=-πx ,…9分解得6526264πππππ++=-k k x 或 , 即 ()Z k k k x ∈++=42122ππππ或, 412,2,0πππ或=∴⎥⎦⎤⎢⎣⎡∈x x ,故所有根之和为3412πππ=+.……12分17.(1)证明:正六边形ABCDEF 中,连接AC 、BE ,交点为G ,易知AC BE ⊥,且AG CG ==在多面体中,由AC 222AG CG AC +=, 故,AG GC ⊥…………………………………………2分又,GC BE G = ,GC BE ⊂平面BCD E ,故AG ⊥平面BCD E ,………………..5分 又AG ⊂平面ABEF ,所以平面ABEF ⊥平面BCDE .…………6分 (2)以G 为坐标原点,分别以GC ,GE ,GA 所在的直线为x 轴,y 轴,z 轴建立如图所示的坐标系. 由AG CG ==BG 1=,3GE =,,则(())A ,0,1,0,,B C-)()(2,0,0,3,0,F0,D E.(0,1,AB=-,AC=,(0,FE=-,FD AC==...8分设平面ABC的法向量为()1=,,n x y z,则11n ABn AC⎧∙=⎪⎨∙=⎪⎩,即0y⎧--⎪⎨⎪⎩,令1z=,得()1=1,n,同理,可得平面DEF的一个法向量为()2n=,………………….10分所以1212121cos,5n nn nn n∙==-,所以平面ABC与平面DEF所成二面角(锐角)的余弦值为15.……….12分18. 解:(1)记事件iA表示“第i次取到白球”(*i N∈),事件B表示“连续取球四次,至少取得两次白球”,则:12341234123412341234=++++B A A A A A A A A A A A A A A A A A A A A. ……2分()()()()()() 12341234123412341234 P B P A A A A P A A A A P A A A A P A A A A P A A A A =++++4342416466627⎛⎫⎛⎫=+⨯⨯=⎪ ⎪⎝⎭⎝⎭,……………………………………4分()()11127P B P B∴=-=,……………………………………………………5分另解:记随机变量ξ表示连续取球四次,取得白球的次数. 易知1~4,3Bξ⎛⎫⎪⎝⎭……2分则()()()04130144121211 21011333327P P P C Cξξξ⎛⎫⎛⎫⎛⎫⎛⎫≥=-=-==--=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,..5分(2)易知:随机变量X的取值分别为2,3,4,5 ……6分()22261215CP XC∴===,11242612(3) ,415C CP XC==⨯=()12243611435C CP XC==⨯=,()121351151555P X==---=,……10分∴随机变量X的分布列为:……………………………………………………11分 ∴随机变量X 的期望为:12131323451515553EX =⨯+⨯+⨯+⨯=. …………12分19. 解:(1)当n =1时,a 1=S 1=2,当n≥2时,a n =S n -S n -1=n(n +1)-(n -1)n =2n ,a 1=2满足该式,∴数列{a n }的通项公式为a n =2n…………3分 (2)()1221313131n n nb b b a n =+++≥+++ ,① 11212131313131n nn n n b b b ba +++=++++++++ ②②-①得,111231n n n n b a a +++=-=+,得b n +1=2(3n +1+1), 又当n =1时,b 1=8,所以b n =2(3n +1)(n ∈N *).…………………………7分(3)4n n n a b c ==n(3n +1)=n·3n +n ,…………………8分∴T n =c 1+c 2+c 3+…+c n =(1×3+2×32+3×33+…+n×3n )+(1+2+…+n),令H n =1×3+2×32+3×33+…+n×3n ,① 则3H n =1×32+2×33+3×34+…+n×3n +1②,① -②得,-2H n =3+32+33+…+3n -n×3n +1=3(31)31n ---n×3n +1 ∴1(21)334n n n H +-⨯+=, ……………………………………….10分∴数列{c n }的前n 项和.1(21)3(1)3424n n n n n H +-⨯+=++. ……12分20. 解:(1分所以曲线y=()f x 在点(1,(1)f )y=()f x 切线方程为 即13y x e e=-+.…………………………………………………………4分(2)由'()0f x =得1ln ()x xF x x-=, 01x <≤ ,∴21()0x F x x +'=-<,所以()F x 在(0,1]上单调递减,又当x 趋向于0时,()F x 趋向于正无穷大,故()1F x ≥即1k ≥;……………………7分(3)由'(1)0f =,得1k =, …………………..8分因此,由()1ln h x x x x =--,(0,)x ∈+∞.得'()ln 2,h x x =--(0,)x ∈+∞,因此,当2(0,)x e -∈时,'()0h x >,()h x 单调递增;2(,)x e -∈+∞时,'()0h x <,()h x 单调递减 所以()h x 的最大值为22()1h e e --=+,故21ln 1x x x e ---≤+,…………10分 设()(1)x x e x ϕ=-+,'()1x x e ϕ=-,所以(0,)x ∈+∞时'()0x ϕ>,()x ϕ单调递增,()(0)0x ϕϕ>=,故(0,)x ∈+∞时,()(1)0xx e x ϕ=-+>,……………………12分………………………13分21. 解.(1) 椭圆D ;221,3x y m+==, 解之得m =2,…………………………………………………………2分所以椭圆的方程为;22132x y +=; ………………………………………………….3分(2)设1122(,),(,)A x y B x y ,则A, B 的坐标满足方程组221......(1)32(3)......(2)x y y k x ⎧+=⎪⎨⎪=-⎩, 把(2)式代入(1)式化简得;2222(23)182760k x k x k +-+-=,……….5分 所以2212122218276,2323k k x x x x k k -+==++, 又因为12//F A F B , 所以2112PF PB PA PF == , 2PA PB = ,所以1122(3,)2(3,)x y x y -=-,即1223x x -=-,……………7分解 212212182323k x x k x x ⎧+=⎪+⎨⎪-=-⎩, 得21222292239223k x k k x k ⎧-=⎪⎪+⎨+⎪=⎪+⎩,…………….(3) 把(3)式代入212227623k x x k -=+,解之得22,9k k ==即所以直线P A的方程为3)y x =-;………………….9分 (3)由(2)知01=x,即A(或(0,A ), 因A 与C关于原点对称,所以(0,C(或C ),设过1,,A F C 三点的圆为220x y Dx Ey F ++++=,则20,20,10,F F D F ++=++=⎨⎪-++=⎪⎩解之得021E F D =⎧⎪=-⎨⎪=-⎩,所以圆的方程为2220x y x +--=,………………….10分 设过F 2的直线EF 为;1x ny =+,则EF ==原点O 到直线EF的距离为d =所以12OEFSd EF ∆=,………………………12分令21n t += ,则1t ≥,所以101t<≤,所以12OEFSd EF ∆==所以0OEF S ∆<≤.……………………………14分。
山东省菏泽市2015届高三第一次模拟考试数学试题(理)第Ⅰ卷一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、已知复数121,1z i z i =-=+,则12z z i等于( ) A .2i B .2i - C .2i + D .2i -+2、设集合{0,1},{|M N x Z y ==∈=,则( )A .M N φ=B .{}0M N =C .{}1M N =D .M N M = 3、给定函数①12y x = ②12log (1)y x =+ ③1y x =- ④12x y +=,其中在区间()0,1上单调递减的函数序号是( )A .①②B .②③C .③④D .①④4、在ABC ∆中,若sin sin cos cos sin A A C A C -=,则ABC ∆的形状是( ) A .等腰三角形 B .正三角形 C .直角三角形 D .等腰直角三角形5、为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(10分制)的频率分布直方图如图所示,假设得分值的中位数为e m ,众数0m ,平均数为x ,则( ) A .0e m m x == B .0e m m x =< C .0e m m x << D .0e m m x <<6、某电视台的一个综艺栏目对六个不同的节目排演出顺序,最前只能排甲或乙,最后不能排甲,则不同的排法共有( )A .192种B .216种C .240种D .288种 7、若函数()2(2)m xf x x m-=+的图象如图所示,则m 的范围为( )A .(),1-∞-B .()1,2-C .()0,2D .()1,28、设双曲线221x y m n+=的离心率为2,且一个焦点与抛物线28x y =的交点相同,则此双曲线的方程为( )A .2213x y -=B .221412x y -=C .2213x y -= D .221124x y -= 9、已知函数()0()210x e a x f x a R x x ⎧+≤=∈⎨->⎩,若函数()f x 在R 上有两个零点,则a 的取值范围是( )A .(),1-∞-B .(),0-∞C .()1,0-D .[)1,0- 10、若函数()sin x f x x =,并且233a b ππ<<<,则下列各结论正确的是( ) A .()()2a b f a f f +<< B.()()2a bf f f b +<< C.()()2a b f f f a +<< D .()()2a bf b f f +<<第Ⅱ卷二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上。
山东省各地2015高三上学期期末考试数学理试题分类汇编解析几何一、选择题1、(德州市2015届高三)已知中心在原点的椭圆与双曲线有公共焦点,左右焦点分别为 1,F F ,且两条曲线在第一象限的交点为P ,12PF F ∆是以1PF 为底边的等腰三角形,若 110PF =,椭圆与双曲线的离心率分别为12,e e ,则 21e e -的取值范围是A . 2(,)3+∞ B . 4(,)3+∞C . 2(0,)3D . 24(,)332、(莱州市2015届高三)已知双曲线22221x y a b-=的焦点到其渐近线的距离等于2,抛物线22y px =的焦点为双曲线的右焦点,双曲线截抛物线的准线所得的线段长为4,则抛物线方程为A. 24y x =B. 2y =C. 2y =D. 28y x =3、(临沂市2015届高三)已知抛物线28y x =的准线与双曲线()222210,0x y a b a b-=>>相交于A 、B 两点,双曲线的一条渐近线方程是y x =,点F 是抛物线的焦点,且△FAB 是等边三角形,则该双曲线的标准方程是 A.221366x y -= B.221163x y -= C.221632x y -= D.221316x y -= 4、(青岛市2015届高三)圆()2211x y -+=和圆222440x y x y +++-=的位置关系为A.相交B.相切C.相离D.以上都有可能5、(潍坊市2015届高三)若过点()2P --的直线与圆224x y +=有公共点,则该直线的倾斜角的取值范围是 A. 0,6π⎛⎫⎪⎝⎭B. 0,3π⎡⎤⎢⎥⎣⎦ C. 0,6π⎡⎤⎢⎥⎣⎦ D. 0,3π⎛⎤⎥⎝⎦6、(淄博市六中2015届高三)已知双曲线渐近线方程:x y 2±=,焦点是)10,0(±F ,则双曲线标准方程是( )A 、12822=-x y B 、12822=-y x C 、18222=-x y D 、18222=-y x7、(桓台第二中学2015届高三)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左顶点与抛物线y 2=2px (p >0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为 (-2,-1),则双曲线的焦距为( ).A .2 3B .2 5C .4 3D .4 5二、填空题1、(济宁市2015届高三)已知双曲线22221(0,0)x y a b a b-=>>恒谦网的两条渐近线与抛物线22(0)y px p =>的准线分别交于A ,B 两点,O 为坐标原点,若双曲线的离心率为2,△AOB 程是____2、(青岛市2015届高三)已知双曲线的方程为()222210,0x y a b a b-=>>,双曲线的一个焦点到一条渐近线的距离为3(c 为双曲线的半焦距长),则双曲线的离心率e 为__________3、(泰安市201520y -+=100y --=截圆C 所得的弦长均为8,则圆C 的面积是 ▲ .4、(潍坊市2015届高三)已知12,F F 分别为双曲线()222210,0x y a b a b-=>>的左,右焦点,P 为双曲线右支上的一点,且122PF PF =.若12PFF ∆为等腰三角形,则该双曲线的离心率为_______ 5、(滕州市第二中学2015届高三)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=43,则C 的实轴长为6、(滕州市第三中学2015届高三)已知双曲线2222:1x y C a b -=与椭圆22194x y +=有相同的焦点,且双曲线C 的渐近线方程为2y x =±,则双曲线C 的方程为三、解答题1、(德州市2015届高三)如图已知抛物线 2:2(0)C y px p =>的准线为 l ,焦点为F ,圆 M 的圆心在x 轴的正半轴上,且与y 轴相切,过原点作倾斜角为3π的直线t ,交 l 于点A ,交圆M 于点B ,且 AO OB ==2. (I)求圆M 和抛物线C 的方程;(Ⅱ)已知点N(4,0),设G ,H 是抛物线上异于原点O 的两个 不同点,且N ,G ,H 三点共线,证明: OG OH ⊥并求△GOH 面 积的最小值.2、(济宁市2015届高三)已知椭圆22221(0)x y a b a b+=>>经过点(0,离心率为12,左、右焦点分别为1(,0)F c -与2(,0)F c 。
山东省各地2015高三上学期期末考试数学理试题分类汇编导数及其应用一、选择题1、(青岛市2015届高三)已知函数()32123f x x ax bx c =+++有两个极值点1212,112x x x x -<<<<,且,则直线()130bx a y --+=的斜率的取值范围是 A. 22,53⎛⎫-⎪⎝⎭ B. 23,52⎛⎫-⎪⎝⎭ C. 21,52⎛⎫-⎪⎝⎭ D. 22,,53⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭2、(泰安市2015届高三)定义在R 上的函数()f x 满足:()()()()()1,00,f x f x f f x f x ''>-=是的导函数,则不等式()1xxe f x e >-(其中e 为自然对数的底数)的解集为A. ()(),10,-∞-⋃+∞B. ()0,+∞C. ()(),01,-∞⋃+∞D. ()1,-+∞3、(桓台第二中学2015届高三)设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n (x )=f n -1′(x ),n ∈N ,则f 2 013(x )=( )A .sin xB .-sin xC .cos xD .-cos x 二、解答题1、(德州市2015届高三)已知函数 ()x f x e ax =+,其中e 为自然对数的底数,a 为常数. (I)若函数f(x)存在极小值,且极小值为0,求a 的值; (Ⅱ)若对任意 0,2x π⎡⎤∈⎢⎥⎣⎦,不等式 ()2(1sin )xf x ax e x -≥-恒成立,求a 的取值范围.2、(济宁市2015届高三)设a R ∈,函数2()(21)ln f x ax a x x =-++。
(I )当a =1时,求f (x )的极值;(II )设()1xg x e x =--,若对于任意 的12(0,),x x R ∈+∞∈,不等式12()()f x g x ≤恒成立,求实数a 的取值范围。
山东省各市2015届高三第一次模拟数学理试题分类汇编
函数
一、选择题
1、(德州市2015届高三)若函数24
(),()log ||(0,1)x a f x a g x x a a -==>≠且,且f (2)
·g
(2)<0,则函数f (x ),g (x )在同一坐标系中的大致图象是
2、(菏泽市2015届高三)给定函数①1
2
y x = ②12
log (1)
y x =+ ③
1
y x =- ④1
2x y +=,
其中在区间
()0,1上单调递减的函数序号是( )
A .①②
B .②③
C .③④
D .①④
3、(菏泽市2015届高三)已知函数()0
()
210x e a x f x a R x x ⎧+≤=∈⎨->⎩,若函数()f x 在R 上有
两个零点,则a 的取值范围是( )
A .
(),1-∞- B .(),0-∞ C .()1,0- D .[)1,0-
4、(济宁市2015届高三)函数
()[]()
cos 2,x f x x ππ=∈-的图象大致为
5、(济宁市2015届高三)定义在R 上的奇函数
()
f x 满足:①对任意,x 都有
()()
3f x f x +=成立;②当30,2x ⎡⎤∈⎢⎥⎣⎦时,()33222f x x
=--,则方程()1f x x =在区间
[]4,4-上根的个数是
A.4
B.5
C.6
D.7
6、(临沂市2015届高三)设01a <<,则函数1
1x y a =
-的图象大致为
7、(青岛市2015届高三)函数4cos x
y x e =-(e 为自然对数的底数)的图象可能是
8、(日照市2015届高三)已知函数
()22,1,
22,1,x x f x x x -⎧≤-=⎨
+>-⎩则满足()2f a ≥的实数a 的取值范围是 A.
()(),20,-∞-⋃+∞
B.
()1,0-
C.
()2,0-
D.
(][),10,-∞-⋃+∞
9、(潍坊市2015届高三)已知函数)(x f y =的定义域为R x x ∈|{,且}0≠x ,且满足
0)()(=-+x f x f ,当0>x 时,1ln )(+-=x x x f ,则函数)(x f y =的大致图像为
10、(烟台市2015届高三)已知函数
()2log 1
f x a x =+(0a ≠),定义函数
()()(),0
F ,0f x x x f x x >⎧⎪=⎨
-<⎪⎩,给出下列命题:①()()F x f x =;②函数()F x 是偶函数;③当0
a <时,若01m n <<<,则有
()()F F 0
m n -<成立;④当0a >时,函数()F 2y x =-有4个
零点.其中正确命题的个数为( )
A .0
B .1
C .2
D .3
11、(淄博市2015届高三)函数
1
sin y x x =
-的图象大致是
二、填空题
1、(菏泽市2015届高三)定义在实数集R 上的函数()
f x 满足
()()20
f x f x ++=,
且
()()
4f x f x -=
现有以下三种叙述①8是函数()
f x 的一个周期;
②
()
f x 的图象关于直线2x =对称;③
()
f x 是偶函数。
其中正确的序号是
2、(淄博市
2015
届高三)对于函数
()
f x ,若存在区间
[](){},,A m n y y f x x A A
==∈=,使得,则称函数
()
f x 为“同域函数”,区间A 为函数
()
f x 的一个“同城区间”.给出下列四个函数:
①
()cos
2f x x
π
=;②
()21
f x x =-;③
()21
f x x =-;④
()f x =
log ()2
1x -.
存在“同域区间”的“同域函数”的序号是_______________(请写出所有正确的序号)
3、(枣庄市2015高三)已知偶函数f(x)满足f (x +2)=f (x ),且当 x ∈[0,1]时,f(x)=x ,若在区间[-1,3]内函数g(x)=f(x)-kx-k 有3个零点,则实数k 的取值范围是_____
参考答案 一、选择题
1、B
2、C
3、B
4、D
5、B
6、B
7、A
8、D
9、A 10、D 11、A
二、填空题
1、①②③
2、①②③
3、
1[0,]4。