粉体学历史及意义
- 格式:pdf
- 大小:1.91 MB
- 文档页数:25
第四章-粉体流变学
粉体流变学研究的是粉体在外加应力下的变形和流动行为。
粉体是指细小颗粒的固体物质,如粉末、颗粒、颗粒团等。
粉体流变学的研究对于很多工业过程和产品设计都非常重要,特别是涉及到粉末冶金、陶瓷制备、药物制剂、食品加工等领域。
粉体流变学主要研究粉体在外加应力作用下的变形和流动行为。
其流变性质可以通过测量粉体的应力-应变关系来描述。
粉体的流变行为受到多种因素的影响,包括粉体的颗粒形状、颗粒尺寸分布、颗粒间的相互作用力等。
常见的粉体流变行为包括流动、变形和黏弹性行为。
在粉体流变学研究中,常用的实验方法包括剪切流变实验、振动流变实验和压缩流变实验等。
剪切流变实验是通过施加剪切应力来研究粉体的流动行为;振动流变实验是通过施加振动应力来研究粉体
1
的流动特性;压缩流变实验则是通过施加压缩应力来研究粉体的变
形行为。
粉体流变学的研究有助于了解粉体的流动性能和变形特性,为工程
应用提供理论基础和实验依据。
同时,粉体流变学的研究结果也对
设备设计和工艺控制具有指导意义,能够提高工艺效率和产品质量。
2。
粉体学在生活中的应用粉体学是研究粉体的物理特性、流动性以及加工技术的学科。
虽然粉体学在日常生活中并不为大众所熟知,但它却广泛应用于我们的生活和工作中。
本文将从食品、医药、化妆品和建筑等方面介绍粉体学的应用。
粉体学在食品工业中发挥着重要的作用。
例如,面粉、糖粉、可可粉等食品原料都是粉体。
通过研究粉体的流动性、堆积密度等特性,可以优化食品的加工工艺,提高生产效率。
此外,粉体学还可以用于调控食品的质地和口感,使得食品更加细腻、口感更好。
粉体学在医药领域也有广泛的应用。
药物制剂中常常使用粉体作为载体,通过粉体的特殊性质,可以实现药物的缓释、控释等功能。
此外,粉体学还可以用于制备医用敷料、口服药物等。
研究粉体的物理特性,可以帮助药物制剂的设计与改进,提高药物的疗效和稳定性。
粉体学在化妆品工业中也有重要的应用。
粉体被广泛应用于各类化妆品中,如粉底、蜜粉、眼影等。
通过粉体的选择和处理,可以调整化妆品的质地和妆效,提高化妆品的舒适度和持久度。
粉体学的研究可以帮助化妆品企业开发出更符合消费者需求的产品,提升市场竞争力。
粉体学在建筑领域也有重要的应用。
例如,在混凝土和水泥制造过程中,粉体被广泛使用。
通过研究粉体的颗粒大小、表面性质等特性,可以调整混凝土和水泥的性能,提高建筑材料的质量和耐久性。
此外,粉体学还可以应用于建筑涂料、陶瓷材料等领域,提升产品的性能和美观度。
粉体学在生活中的应用非常广泛。
不仅在食品、医药、化妆品和建筑等行业中发挥着重要作用,还可以通过研究和应用粉体学的原理,提高产品的质量和性能,满足人们对于食品口感、药物疗效、化妆品舒适度和建筑材料耐久性的需求。
因此,粉体学的研究和应用对于推动社会进步和提升人们生活质量具有重要意义。
2023年粉体材料科学与工程专业介绍粉体材料科学与工程专业(Powder Materials Science and Engineering)是一门涉及材料科学和工程技术的交叉学科,主要研究粉体的制备、表征和应用。
该专业旨在培养掌握粉体制备、粉体物理化学性质、微观结构及应用研究等方面知识与技能的高端人才,具备深入研究或开发航空、航天、汽车、能源、电子、医疗、化工等行业应用材料及其生产工艺的能力。
以下是粉体材料科学与工程专业的详细介绍:1. 专业概述粉体材料科学与工程专业是一门非常前沿的交叉学科,涉及了材料科学、物理、化学、机械工程等多个学科领域。
在半导体电子、新材料、能源、生物医学、人工晶体、化学工程等领域有着广泛的应用。
2. 主要学科领域粉体材料科学与工程主要学科领域包括:材料科学、化学、物理学、机械工程等。
其中,材料制备、材料表征、材料应用研究等是重点领域。
材料制备方面,主要研究化学制备法、物理制备法、机械制备法、化学气相沉积法等各种制粉、成型、烧结工艺。
在此领域学生需掌握各种材料制备方法,了解不同属性材料在制备过程中的特性。
材料表征方面,主要研究材料的物理、化学性质,包括结构、晶体形貌、结晶性质、纯度和微观形态、表面性质等。
学生需要了解材料各种表征手段的基本原理和方法,以及各种分析仪器的使用方法。
材料应用研究方面,主要研究多种材料的应用及应用新技术,如铝热反应合成电动机用超轻氧化铝陶瓷粉、纳米制备技术等。
在此领域学生需要具备分析解决技术问题的能力,针对材料在使用过程中所存在的问题,研究新技术来解决此类问题。
3. 专业课程设置粉体材料科学与工程专业的课程设置比较多样化,其中包括:(1)材料工程基础课程,包括材料科学与工程、固体力学、热力学和统计力学、材料表征和测试、材料加工和成形、材料应用等。
(2)粉体科学与工程基础课程,包括粉体制备、粉体物理学、粉体表征、粉体应用等。
(3)专业方向课程,包括功能材料制备与应用、无机非金属材料合成与应用、高分子材料合成制备、软物质科学与技术等。
粉体材料科学与工程专业基础设置一、专业简介粉体材料科学与工程是一门研究粉体材料的性质、制备、加工及应用的学科。
粉体材料是指颗粒尺寸在1微米到1毫米之间的物质。
作为一种新兴材料,粉体材料在能源、环境、电子、化工、冶金等领域具有广泛的应用前景。
粉体材料科学与工程专业的基础设置旨在培养学生掌握粉体材料的基本原理和工程技术,为学生今后的学习和研究打下坚实基础。
二、专业课程设置1.材料科学基础:介绍材料科学的基本概念、材料的结构与性能、晶体学原理等。
2.粉体物理学:讲授粉体物理学的基本原理,包括颗粒的力学性质、表面现象、流变学、分散性等。
3.粉体化学:介绍粉体与化学反应的基本原理,包括反应动力学、反应机理、粉体表面化学等。
4.粉体工程原理:讲解粉体工程的基本原理和工艺,包括制备方法、成型技术、表征方法等。
5.粉体材料性能测试:介绍粉体材料性能测试的原理和方法,包括粒度分析、物理性能测试、化学性能测试等。
6.粉体材料应用与开发:讲授粉体材料在各个领域的应用和开发技术,包括能源储存材料、催化剂、涂料、金属粉末等。
三、实践教学环节1.实验课程:安排粉体材料相关的实验课程,让学生亲自操作并实践学到的知识。
2.实习实训:组织学生参加粉体材料相关的实习和实训,培养学生应用知识解决实际问题的能力。
3.毕业设计:要求学生在粉体材料领域选择一个具体问题进行研究,并撰写毕业设计论文。
四、专业发展前景粉体材料科学与工程作为一门交叉学科,有着广阔的发展前景。
随着科学技术的发展和产业结构的调整,粉体材料的需求量不断增加。
粉体材料广泛应用于能源、环境、电子、化工、冶金等领域,对于提高产品性能和降低能源消耗具有重要作用。
因此,粉体材料科学与工程专业的毕业生具有良好的就业前景,能够在材料研发、制造、工艺优化等领域找到广泛的就业机会。
以上为粉体材料科学与工程专业基础设置的1200字文档,介绍了该专业的简介、课程设置、实践教学环节以及专业发展前景。
粉体学粉体学是研究固体粒子集合体(称为粉体)的表面性质、力学性质、电学性质等内容的应用科学。
micromeritics粉体是无数个固体粒子集合体的总称。
粉体学(micromeritics)是研究粉体的基本性质及其应用的科学。
粒子是指粉体中不能再分离的运动单位。
但习惯上,将≤100μm的粒子叫“粉”,>100μm的粒子叫“粒”。
通常说的“粉末”、“粉粒”或“粒子”都属于粉体学的研究范畴。
将单一结晶粒子称为一级粒子(primary particle),将一级粒子的聚结体称为二级粒子(second particle)。
(1)由范德华力、静电力等弱结合力的作用而发生的不规则絮凝物(random floc)和(2)由粘合剂的强结合力的作用聚集在一起的聚结物(agglomerate)属于二级粒子。
在固体剂型的制备过程中(如散剂、颗粒剂、胶囊剂、片剂、粉针、混悬剂等,他们在医药产品中约占70%-80%),必将涉及到固体药物的粉碎、分级、混合、制粒、干燥、压片、包装、输送、贮存等。
•粉体技术在固体制剂的处方设计、生产工艺和质量控制等方面具有重要的理论意义和实际应用价值。
2)粒度分布通过粒度分布可了解粒子的均匀性。
粉体的密度定义的区别①真密度是粉体质量除以不包颗粒内外空隙的体积(真体积Vt)求得的密度,即pt=W/Vt。
②颗粒密度是粉体质量除以包括封闭细孔在内的颗粒体积Vg所求得密度,也叫表观颗粒密度,可用公式表示为pg=W/Vg③松密度是粉体质量除以该粉体所占容器的体积V求得的密度,亦称堆密度,即pb=W/v,填充粉体时,经一定规律振动或轻敲后测得的堆密度称振实密度Pbt。
若颗粒致密、无细孔和空洞,则Pt=pg;一般情况下pt≥pg>Pbt≥Pb粉体的流动性1)休止角:评价粉体流动性的指标。
休止角(θ)小,流动性好。
休止角≤400时,可以满足生产流动性的需要。
2)影响流动性的因素:粒子大小、粒度分布、粒子形状、粒子间的粘着力、摩擦力、范的华力、静电力等。
粉体材料科学与工程专业学什么引言粉体材料科学与工程是一门研究粉末颗粒的性质、制备、加工及应用的学科。
粉末材料具有细小颗粒和较大比表面积的特点,因此在许多领域中具有重要的应用价值。
本文将介绍粉体材料科学与工程专业所涉及的主要学习内容。
学习内容1.粉末制备与表征粉末制备是粉体材料科学与工程的核心内容之一。
学生将学习各种粉末制备方法,如机械合成、化学合成、物理法制备等。
此外,还将学习粉末表征技术,如粒度分析、比表面积测定、形貌表征等,以评估粉末的质量和性能。
2.粉末工艺学粉末工艺学是粉体材料加工的关键课程。
学生将学习粉末成型方法,如压制成型、注模成型和挤出成型等。
他们将了解不同成型方法的原理、优缺点以及适用范围。
此外,学生还将学习粉末烧结技术,包括烧结机理、烧结动力学以及烧结参数的优化。
3.粉末冶金学粉末冶金学是粉末材料加工的重要分支。
学生将学习粉末冶金的基本原理和技术,包括粉末混合、压制、烧结和后处理等过程。
他们将了解粉末冶金技术在汽车、航空航天等领域的应用,并了解粉末冶金材料的性能和特点。
4.粉末涂层技术粉末涂层技术是粉体材料应用的重要领域之一。
学生将学习粉末涂层的原理、工艺和应用。
他们将了解不同类型的粉末涂层材料、涂层厚度控制、涂层性能测试等方面的知识。
此外,学生还将学习粉末涂层在汽车、建筑、电子等领域中的应用情况。
5.粉末材料应用粉末材料具有广泛的应用前景。
学生将学习粉末材料的应用领域和市场发展趋势。
他们将了解粉末材料在催化剂、电子器件、复合材料等领域中的应用情况,并能够分析和评估不同应用场景下的粉末材料选择和性能要求。
结论粉体材料科学与工程专业涵盖了粉末制备与表征、粉末工艺学、粉末冶金学、粉末涂层技术和粉末材料应用等方面的知识。
学生通过学习这些内容,将能够掌握粉末材料的制备、加工和应用技术,为粉体材料相关行业的发展做出贡献。
粉体材料工艺学全文共四篇示例,供读者参考第一篇示例:粉体材料工艺学是研究粉末冶金、陶瓷、涂料等领域中粉末加工的工艺过程和技术的学科。
粉末材料广泛应用于各种工业和科学领域,具有许多优点,如高表面积、较高的强度、耐腐蚀性和耐磨损性等。
粉体材料工艺学在现代工业中具有重要的地位。
一、粉末冶金粉末冶金是利用金属、合金或其他材料的微细粉末作为原料,通过成形、烧结和热处理等工艺形成制品的一种制造方法。
在粉末冶金中,粉末颗粒的尺寸通常控制在几微米至几十微米之间,同时也可以通过合金化、添加增强相等手段改善产品的性能。
粉末冶金具有原料利用率高、能耗低、成形精确等优点,被广泛应用于汽车、航空航天、电子等领域。
1.1 粉末制备粉末制备是粉末冶金的第一步,其质量直接影响到后续工艺的成品质量。
粉末制备方法主要有机械研磨、化学法和高能球磨等。
高能球磨是一种通过金属球和容器之间的摩擦来实现粉末制备的方法,能够获得粒径更小、形貌更均匀的粉末。
1.2 成形和烧结在粉末冶金中,成形和烧结是关键的工艺步骤。
成形可以通过压制、注射成形等方式实现,烧结是将密实和连续的粉末颗粒通过加热使之结合成坚硬的形体。
烧结是粉末冶金中最重要的工艺步骤之一,影响着成品的密度、力学性能等。
1.3 热处理热处理是粉末冶金中的最后一步工艺,通过控制加热和冷却过程,调整制品的组织结构和性能。
常见的热处理工艺包括固溶处理、淬火和回火等。
热处理可以提高制品的硬度、强度和韧性,使其具有更好的性能。
二、陶瓷陶瓷是一种非金属材料,具有耐高温、耐腐蚀、绝缘等特性,在电子、航空航天、建筑等领域有广泛应用。
陶瓷材料制品的主要成形方法包括挤压、成型和注射成型等。
瓷粉是陶瓷制品的主要原料,其质量和成形性能对产品的质量起着关键作用。
瓷粉的制备方式有干法和湿法两种,其中湿法制备是通过将原料与溶剂混合成浆料,再经过干燥形成瓷粉。
陶瓷的成形和烧结工艺相对于金属材料更为复杂,因为陶瓷材料具有较高的烧结温度和较大的收缩率。
粉体材料科学与工程专业就业前景简介粉体材料科学与工程专业是一门研究粉末材料的制备、表征和应用的学科,涉及到材料学、化学、物理等多个领域。
随着科技的发展和工业的进步,粉体材料在各个行业中得到广泛应用,因此粉体材料科学与工程专业的就业前景也相对较好。
就业方向粉体材料科学与工程专业的毕业生可以选择从事以下方向的工作:1.粉末材料的制备与研发:毕业生可以在科研院所、大型企业或工程技术研发中心从事粉末材料的制备与研发工作,探索新的材料制备方法、改进现有材料性能等。
2.材料工程师:毕业生可以在各类制造企业、工程项目中从事材料的选择、设计和工艺优化等工作,为企业提供材料相关的技术支持。
3.质量控制与检测:毕业生可以在制造企业或研究机构中从事粉末材料的质量控制、检测与分析工作,确保产品的质量和性能符合标准要求。
4.销售与技术支持:毕业生可以在粉末材料相关的企业中从事产品销售和技术支持工作,为客户提供产品介绍、解答技术问题等服务。
就业前景随着工业发展的需求增加,粉体材料科学与工程专业的就业前景越来越广阔。
以下是粉体材料科学与工程专业的就业前景的几个方面:1. 产业发展需求粉末材料被广泛应用于诸如汽车、航空航天、电子、新能源等行业,这些行业的快速发展带来了对新材料的需求。
粉体材料科学与工程专业毕业生在这些行业中有较大的就业机会。
2. 新材料研发随着科技的不断进步,对新材料的研发需求也越来越迫切。
粉体材料科学与工程专业毕业生在新材料的研发领域有较好的就业前景,可以参与各类研发项目,开展新的材料制备和性能研究。
3. 提升产品质量与性能制造业对产品质量和性能的要求越来越高,粉体材料科学与工程专业毕业生可以从事质量控制与检测相关的工作,通过优化材料工艺和改进制造过程,提升产品的质量和性能。
4. 智能制造和工业4.0智能制造和工业4.0的发展要求制造业向高效、智能化方向发展,而粉末材料是实现这一目标的重要基础。
粉体材料科学与工程专业毕业生在智能制造和工业4.0相关的企业和项目中有良好的就业机会。
粉体学在药剂学中的应用粉体学在药剂学中的应用1. 引言粉体学是一门研究粉体物料的性质、行为和应用的科学。
在药剂学中,粉体学广泛应用于药物的制剂和药物交付系统的设计和优化。
本文将介绍粉体学在药剂学中的应用,并讨论其对药物性能和疗效的影响。
2. 粉体的特性及测量方法粉体是由固体颗粒组成的,具有一定的粒径、形状和表面特性。
测量粉体物料的颗粒大小和分布通常使用激光粒度仪或显微镜等技术。
粉体的流动性、孔隙度和比表面积等属性也是粉体学研究的重要内容。
3. 药物的粉末制剂药物的粉末制剂是一种常见的药物交付形式。
在药剂学中,粉末制剂可以是口服剂、呼吸道剂、外用剂等。
药物的颗粒大小、分布和形状对于粉末制剂的性能和稳定性至关重要。
粉体学的研究可以帮助药剂师优化药物的粉末制剂,使其具有更好的流动性、溶解性和均匀性。
4. 药物交付系统除了粉末制剂外,粉体学在药剂学中还广泛应用于药物交付系统的设计和开发。
药物交付系统是为了更好地控制药物的释放速率和提高药物的生物利用度而设计的。
常见的药物交付系统包括微粒、纳米粒和胶体输送体等。
粉体学的研究可以帮助优化药物交付系统的粒径、形状和表面特性,以提高药物的治疗效果。
5. 主题文字:固体分散体固体分散体是由颗粒和悬浮液组成的体系,具有均匀的颗粒分布。
在药剂学中,固体分散体被广泛应用于制备颗粒状药物,以提高药物的溶解性和生物利用度。
通过粉体学的研究,可以优化固体分散体的制备方法,控制颗粒的大小和分布,从而改善药物的治疗效果。
6. 粉末流动性的研究粉末的流动性对于药物制剂和药物交付系统的制备和操作至关重要。
流动性差的粉末可能导致剂型制备困难,影响药物吸收和释放。
通过研究粉体学,可以了解粉末的流动性特征,并设计合适的工艺和设备来改善粉末的流动性。
7. 结论粉体学在药剂学中扮演着重要的角色。
通过研究粉体学,可以深入了解药物的粉末制剂和药物交付系统,并优化其性能和稳定性。
粉体学的应用将有助于提高药物的治疗效果,为新药的开发和制备提供有力支持。
执业药师药剂学高频考点:粉体学简介(一)粉体学的概念?粉体学是研究固体粒子集合体(称为粉体)的表面性质、力学性质、电学性质等内容的应用科学。
(二)粉体的性质1.粉体的粒子大小与粒度分布及其测定方法(1)粉体的粒子大小与粒度分布粉体的粒子大小是粉体的基本性质,它对粉体的溶解性、可压性、密度、流动性等均有显著影响,从而影响药物的溶出与吸收等。
粒径的几种表示方法:定方向径(显微镜测定)、等价径、体积等价径(库尔特计数法测定)、有效径(称Stocks径)、筛分径(筛分法测得)。
粒度分布:一定量的粉体,不同粒径的粒子所占比例。
了解粒度分布的意义,在于了解粒子大小的均匀性,而均匀性对药物制剂研究很重要。
粒度分布,常用频率分布来表示,即各个平均粒径相对应的粒子占全体粒子群中的百分比。
(2)粒径测定方法1)光学显微镜法:测定粒径范围0.5~100μm,一般需测定200~500个粒子,才具有统计意义。
2)库尔特计数法:将粒子群混悬于电解质溶液中。
本方法可用于混悬剂、乳剂、脂质体、粉末药物等粒径的测定。
3)沉降法:是根据Stocks方程求出的粒子的粒径,适用于100μm以下的粒径的测定。
4)筛分法:使用最早、应用最广泛的'粒径测定方法,常测定45μm以上的粒子。
粒径测定注意的有关事项:粒径分析前对样品应进行合理的选择与处理;取样应采用一定的方法保证粒子的均匀性,流动样品可采取不同时间取样,静止样品可采取不同部位置取样,然后混合测定;为使取样具有代表性,应适当数量的取样量,大量样品取样量应在100g~1kg;库尔特计数法与沉降法测定是在液体中进行的,为保证粒子的均匀性,可加入适当量的表面活性剂。
2.粉体的比表面积粉体的比表面积是表征粉体中粒子粗细及固体吸附能力的一种量度。
粒子的表面积不仅包括粒子的外表面积,还包括由裂缝和空隙形成的内部表面积。
直接测定粉体的比表面积的常用方法有气体吸附法、还有气体透过法(测外表面积)。