二次函数代几综合(一)
- 格式:doc
- 大小:178.50 KB
- 文档页数:1
2024中考二次函数代几综合题变式训练大全一、概述在中学数学教学中,二次函数是一个重要的数学知识点。
在中考中,二次函数常常作为考查的重点内容。
而对于学生来说,掌握二次函数的各种变式训练是非常重要的。
本文就收集整理了2024中考二次函数代几综合题变式训练大全,希望能够帮助学生更好地备战中考。
二、二次函数基础知识复习我们先来复习一下二次函数的基础知识。
二次函数一般的标准形式为:f(x)=ax^2+bx+c,其中a、b、c为常数且a≠0。
这是一个抛物线的标准方程,其中a决定了抛物线的开口方向,b决定了抛物线在x轴上的位置,c决定了抛物线在y轴上的位置。
除了标准形式以外,二次函数还有其他几种重要的变式形式,比如顶点形式、交点形式等。
在解题时,需要根据具体的题目情况选择合适的形式进行运算。
三、二次函数代几综合题变式训练接下来,我们将列举一些2024中考二次函数代几综合题的变式训练。
这些题目包括了二次函数的各种形式,涵盖了中考可能会考查的各种情况。
希望同学们可以认真对待这些训练题,加强对二次函数知识的理解和应用。
1.简单题目已知二次函数f(x)=2x^2+3x-5,求f(1)的值。
2.顶点形式已知二次函数f(x)=a(x-h)^2+k的顶点为V(2,3),且经过点P(1,4),求a的值。
3.交点形式已知二次函数f(x)=ax^2+bx的图象与x轴交于A(-2,0)、B(3,0),且经过点P(1,6),求a、b的值。
4.与直线交点已知二次函数f(x)=x^2-3x+2与直线y=2x-5有交点C,求C的坐标。
5.二次函数图象已知二次函数f(x)=ax^2+bx+c的图象过点A(1,4)、B(2,3)、C(3,0),求a、b、c的值。
6.利用二次函数解实际问题某商品售价为x元,销量为f(x)=200-2x,求最高售价及对应的销量,求销售收入的最大值。
以上就是一些简单的二次函数综合题的变式训练,希望同学们通过这些题目的练习,能够更熟练地掌握二次函数的相关知识。
二次函数与几何综合(讲义)➢ 课前预习1. 如图,直线112y x =+经过点A (1,m ),B (4,n ),点C 的坐标为(2,5),则△ABC 的面积为__________.提示:利用点坐标求面积,需要将点坐标转化为横平竖直的线段长,常考虑作横平竖直的线来对图形进行割补. 具体操作:①过点C 作CD ∥y 轴,交AB 于点D ; ②借助C ,D 坐标求解CD 长;③以CD 为底,则A ,B 两点间的水平距离为高,即1()2ABC ADC DBC B A S S S CD x x =+=⋅⋅-△△△2. 如图,在平面直角坐标系xOy 中,直线334y x =-+与x 轴,y 轴分别交于点A ,B ,点C 的坐标为(0,-2).若点D 在直线AB 上运动,点E 在直线AC 上运动,当以O ,A ,D ,E 为顶点的四边形是平行四边形时,点D 的坐标为__________.y xCB AO提示:(1)分析定点(A ,O ),动点(D ,E ),属于两定两动的平行四边形存在性问题.(2)连接两定点得定线段,考虑:①若定线段作为平行四边形的边,则通过平移确定点的坐标;②若定线段作为平行四边形的对角线,则绕定线段中点旋转,利用中点坐标公式确定点的坐标. (3)利用函数特征和几何特征求解后,结合图形进行验证.➢ 知识点睛1. “函数与几何综合”问题的处理原则:_________________,_____________________. 2. 研究背景图形:①研究函数表达式.二次函数关注____________,一次函数关注__________.②___________________________.找特殊图形、特殊位置关系,寻求边长和角度信息. 3. 二次函数之面积问题的常见模型①割补法——铅垂法求面积:1()2APB B A S PM x x =⋅⋅-△ 1()2APB B A S PM x x =⋅⋅-△②转化法——借助平行线转化:若S △ABP =S △ABQ ,若S △ABP =S △ABQ , 当P ,Q 在AB 同侧时, 当P ,Q 在AB 异侧时, PQ ∥AB .AB 平分PQ .➢ 精讲精练1. 如图,抛物线y =-x 2+2x +3经过A ,B ,C 三点.点M 是直线BC 上方抛物线上的点(不与B ,C 重合),过点M 作MN ∥y 轴交线段BC 于点N ,连接MB ,MC .(1)若设点M 的横坐标为m ,四边形OBMC 的面积为S ,则S 与m 的函数关系式为________________.(2)四边形OBMC 的最大面积为________,此时点M 的坐标为____________.2.如图,在平面直角坐标系中,抛物线y=-x2+2x+3经过A,B,C三点,点D的坐标为(0,1),直线AD与抛物线交于另一点E.(1)若M是直线AD上方抛物线上的一个动点,则△AME面积的最大值为__________.=6时,点G的坐标为_______________.(2)在直线AD下方的抛物线上有一动点G,当S△AEG3.如图,已知抛物线y=ax2-2ax-b(a>0)与x轴交于A,B两点,点A在点B的右侧,且点B的坐标为(-1,0),与y轴的负半轴交于点C,顶点为D.连接AC,CD,∠ACD=90°.(1)直接写出抛物线的解析式;(2)若点M在抛物线上,且以点M,A,C以及另一点N为顶点的平行四边形ACNM的面积为12,设M的横坐标为m,求m的值.4.如图,已知二次函数y=x2-3x-4的图象与x轴交于点A,B,且经过点C(2,-6),连接AC,二次函数图象的对称轴记为l.(1)点D(m,n)(-1<m<2)是二次函数图象上一动点,当△ACD关于l的对称点为E,求点E的坐标.(2)在(1)的条件下,能否在二次函数图象和直线l上分别找到点P,Q,使得以点D,E,P,Q为顶点的四边形为平行四边形.若能,求出点P的坐标;若不能,请说明理由.5. 如图,抛物线y =ax 2-5ax+4(a <0)经过△ABC 的三个顶点,已知BC ∥x 轴,点A 在x 轴上,点C 在y 轴上,且AC =BC . (1)求抛物线的解析式;(2)已知点D 在抛物线对称轴上,点E 在抛物线上,且以A ,B ,D ,E 为顶点的四边形是平行四边形,求点E 的坐标;(3)已知点F 是抛物线上的动点,点G 是直线y =-x 上的动点,且以O ,C ,F ,G 为顶点的四边形是平行四边形,求点G 的横坐标.【参考答案】➢课前预习1.9 22.1126 () 55D,,2286 () 55D,➢知识点睛1.利用横平竖直的线段长,函数特征与几何特征互转2.①四点一线;k,b②坐标转线段长➢精讲精练(2)(3,0)或(-2,-5)3.(1)y=x2-2x-3;(2)m=4或m=-1.二次函数与几何综合(习题)➢例题示范例1:如图,抛物线y=ax2+2ax-3a与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,且OA=OC,连接AC.(1)求抛物线的解析式.(2)若点P是直线AC下方抛物线上一动点,求△ACP面积的最大值.(3)若点E在抛物线的对称轴上,抛物线上是否存在点F,使以A,B,E,F为顶点的四边形是平行四边形?若存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.第一问:研究背景图形【思路分析】读题标注,注意到题中给出的表达式中各项系数都只含有字母a,0),对称轴为直线x=-1;结合题中给出的OA=OC,可得C(0,-3)析式.再结合所求线段长来观察几何图形,发现△AOC 【过程示范】解:(1)由y=ax2+2ax-3a=a(x+3)(x-1)可知A(-3,0),B(1,0),∵OA=OC,∴C(0,-3),将C(0,-3)代入y=ax2+2ax-3a,解得,a=1,∴y=x2+2x-3.(2+2x-3第二问:铅垂法求面积 【思路分析】(1)整合信息,分析特征:由所求的目标入手分析,目标为S △ACP 的最大值,分析A ,C 为定点,P 为动点且P 在直线AC 下方的抛物线上运动,即 -3<x P <0; (2)设计方案:注意到三条线段都是斜放置的线段,需要借助横平竖直的线段来表达,所以考虑利用铅垂法来表达S △ACP . 【过程示范】如图,过点P 作PQ ∥y 轴,交AC 于点Q , 易得l AC :y =-x -3设点P 的横坐标为t ,则P (t ,t 2+2t -3), ∵PQ ∥y 轴, ∴Q (t ,-t -3),∴PQ =y Q -y P =-t -3-(t 2+2t -3)=-t 2-3t (-3<t <0), ∴2139()222ACP C A S PQ x x t t =⋅-=--△(-3<t <0) ∵302-<, ∴抛物线开口向下,且对称轴为直线32t =-,∴当32t =-时,S △ACP 最大,为278.第三问:平行四边形的存在性 【思路分析】 分析不变特征:以A ,B ,E ,F 为顶点的四边形中,A ,B 为定点,E ,F 为动点,定点A ,B 连接成为定线段AB .分析形成因素:要使这个四边形为平行四边形.首先考虑AB在平行四边形中的作用,四个顶点用逗号隔开,位置不确定,则AB既可以作边,也可以作对角线.画图求解:先根据平行四边形的判定来确定EF和AB之间应满足的条件,再通过平移和旋转来尝试画图,确定图形后设计方案求解.①AB作为边时,依据平行四边形的判定,需满足EF∥AB且EF=AB,要找EF,可借助平移.点E在对称轴上,沿直线容易平移,故将线段AB拿出来沿对称轴上下方向平移,确保点E在对称轴上,来找抛物线上的点F.注意:在对称轴的左、右两侧分别平移.找出点之后,设出对称轴上E点坐标,利用平行且相等表达抛物线上F点坐标,代入抛物线解析式求解.②AB作为对角线时,依据平行四边形的判定,需满足AB,EF互相平分,先找到定线段AB的中点,在旋转过程中找到EF恰好被AB中点平分的位置,因为E和AB中点都在抛物线对称轴上,说明EF所在直线即为抛物线对称轴,则与抛物线的交点(抛物线顶点)即为F点坐标.结果验证:画图或推理,根据运动范围考虑是否找全各种情形.【过程示范】(3)①当AB为边时,AB∥EF且AB=EF,如图所示,设E点坐标为(-1,m),当四边形是□ABFE时,由A(-3,0),B(1,0)可知,F1(3,m),代入抛物线解析式,可得,m=12,∴F1(3,12);当四边形是□ABEF时,由A(-3,0),B(1,0)可知,F2(-5,m),代入抛物线解析式,可得,m=12,∴F2(-5,12).②当AB为对角线时,AB与EF互相平分,AB的中点D(-1,0),设E(-1,m),则F(-1,-m),代入抛物线解析式,可得,m=4,∴F3(-1,-4).综上:F1(3,12),F2(-5,12),F3(-1,-4).➢巩固练习1.如图,直线12y x=-与抛物线2164y x=-+交于A,B两点,C是抛物线的顶点.(1)在直线AB上方的抛物线上有一动点P,当△ABP的面积最大时,点P的坐标为__________________.(2)若点M在抛物线上,且以点M,A,B以及另一点N为顶点的平行四边形ABNM的面积为240,则M,N两点的坐标为_______________.2.已知抛物线y=-mx2+4x+2m与x轴交于点A(α,0),B(β,0),且112αβ+=-.抛物线的对称轴为直线l,与y轴的交点为点C,顶点为点D,点C关于l的对称点为点E.(1)抛物线的解析式为_________.(2)连接CD,在直线CD下方的抛物线上有一动点G,当S△CDG=3,点G的坐标为______________.(3)若点P在抛物线上,点Q在x轴上,当以点D,E,P,Q为顶点的四边形是平行四边形时,点Q的坐标为_______.3.已知抛物线y=ax2-4ax+b的对称轴为直线x=2,顶点为P,与x轴交于A,B两点,与y轴交于点C,其中A(1,0),连接BC,PB,得到∠PBC=90°.(1)求抛物线的解析式.(2)抛物线上是否存在异于点P的一点Q,使△BCQ与△BCP的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.(3)若点E是抛物线上一动点,点F是x轴上一动点,是否存在以B,C,E,F为顶点的四边形是平行四边形?若存在,求出点F的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2).抛物线y=ax2-ax-b与y轴交于点D,且经过点C,连接AD,可得AB=AD.(1)求抛物线的解析式.(2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△ABC的面积分为相等的两部分?(3)点P是抛物线上一动点,点Q是抛物线对称轴l上一动点,是否存在点P,使以P,Q,A,B为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,说明理由.【参考答案】1.(1)23 (1)4,;(2)M1(-10,-19),N1(-20,-14);M2(12,-30),N2(2,-25) 2.(1)y=-x2+4x+2;(2)G1(-1,-3),G2(3,5);(3)1(40)Q,2(40)Q,3(0)Q,40)Q3.(1)y=-x2+4x-3;(2)存在,Q1(1,0),237 (22Q --,,337(22Q+-+,;(3)存在,F1(7,0),F2(-1,0).4. (1)211222y x x =--;(2)3x =(3)存在,1313()28P -,,2113()28P --,,3117()28P -,.。
二次函数与几何综合(讲义)一、知识点睛“二次函数与几何综合”思考流程:①研究函数表达式,二次函数关注四点一线,一次函数关注k、b;②关键点坐标转线段长,找特殊图形、特殊位置关系,寻求边和角度信息.二、精讲精练1. 如图,抛物线y=ax2-5ax+4(a<0)经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.(1)求抛物线的解析式.(2)在抛物线的对称轴上是否存在点M,使|MA-MB|最大?若存在,求出点M 的坐标;若不存在,请说明理由.2.如图,已知抛物线y=ax2-2ax-b(a>0)与x轴交于A、B两点,点A在点B的右侧,且点B的坐标为(-1,0),与y轴的负半轴交于点C,顶点为D.连接AC、CD,∠ACD=90°.(1)求抛物线的解析式;(2)点E在抛物线的对称轴上,点F在抛物线上,且以B、A、F、E四点为顶点的四边形为平行四边形,求点F的坐标.3.已知抛物线2y ax bx c =++的对称轴为直线2x =,且与x 轴交于A 、B 两点,与y 轴交于点C ,其中A (1,0),C (0,-3). (1)求抛物线的解析式;(2)若点P 在抛物线上运动(点P 异于点A ),①如图1,当△PBC 的面积与△ABC 的面积相等时,求点P 的坐标; ②如图2,当∠PCB =∠BCA 时,求直线CP 的解析式.4. 如图,在平面直角坐标系中,直线3342y x=-与抛物线214y x bx c=-++交于A、B两点,点A在x轴上,点B的横坐标为-8.(1)求该抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x 轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值.5.已知,抛物线212y ax ax b=-+经过A(-1,0),C(2,32)两点,与x轴交于另一点B.(1)求此抛物线的解析式;(2)若抛物线的顶点为M,点P为线段OB上一动点(不与点B重合),点Q在线段MB上移动,且∠MPQ=45°,设线段OP=x,MQ2y,求y2与x的函数关系式,并直接写出自变量x的取值范围.6.抛物线y=ax2+bx+c与x轴的交点为A(m-4,0)和B(m,0),与直线y=-x+p 相交于点A和点C(2m-4,m-6).(1)求抛物线的解析式;(2)若点P在抛物线上,且以点P和A、C以及另一点Q为顶点的平行四边形ACQP的面积为12,求P、Q两点的坐标;(3)在(2)的条件下,若点M是x轴下方抛物线上的一动点,当△PQM的面积最大时,请求出△PQM的最大面积及点M的坐标.令x=0,则y=-3a,∴C(0,3-a),∴OC=3a∵D为抛物线223y ax ax a=--的顶点,∴D(1,-4a)过点D 作DM ⊥y 轴于点M ,则∠AOC =∠CMD =90°, 又∵∠ACD +∠MCD =∠AOC +∠1,∠ACD =∠AOC =90°∴∠MCD =∠1 , ∴△AOC ∽△CMD ,∴OA OCCM DM=, ∵D (1,-4a ),∴DM =1,OM =4a ,∴CM =a ∴331a a =,∴21a =,∵a >0,∴a =1 ∴抛物线的解析式为:223y x x =-- (2)当AB 为平行四边形的边时, 则BA ∥EF ,并且EF = BA =4由于对称轴为直线x =1,∴点E 的横坐标为1 ∴点F 的横坐标为5或者-3 将x =5代入223y x x =--得y =12, ∴F (5,12).将x =-3代入223y x x =--得y =12, ∴F (-3,12).当AB 为平行四边形的对角线时,点F 即为点D , ∴F (1,-4).综上所述,点F 的坐标为(5,12),(-3,12)或(1,-4). 3.解:(1)由题意,得0322a b c c ba⎧⎪++=⎪=-⎨⎪⎪-=⎩,解得143a b c =-⎧⎪=⎨⎪=-⎩∴抛物线的解析式为243y x x =-+-.(2)①令2430x x -+-=,解得1213x x ==, ∴B (3, 0)则直线BC 的解析式为3y x =- 当点P 在x 轴上方时,如图1,过点A 作直线BC 的平行线交抛物线于点P , ∴设直线AP 的解析式为y x n =+, ∵直线AP 过点A (1,0),∴直线AP 的解析式为1y x =-,交y 轴于点(01)E -,. 解方程组2143y x y x x =-⎧⎨=-+-⎩,得12121201x x y y ==⎧⎧⎨⎨==⎩⎩,∴点1(21)P , 当点P 在x 轴下方时,如图1,根据点(01)E -,,可知需把直线BC 向下平移2个单位, 此时交抛物线于点23P P 、, 得直线23P P 的解析式为5y x =-,解方程组2543y x y x x =-⎧⎨=-+-⎩,得1212x x y y ⎧⎧==⎪⎪⎪⎪⎨⎨⎪⎪==⎪⎪⎩⎩∴23P P , 综上所述,点P 的坐标为:1(21)P ,,23P P , ②过点B 作AB 的垂线,交CP 于点F .如图2,∵(30)(03)B C -,,, ∴OB =OC ,∴∠OCB =∠OBC =45° ∴∠CBF =∠ABC =45° 又∵∠PCB =∠BCA ,BC =BC ∴△ACB ≌△FCB∴BF =BA =2,则点F (3,-2) 又∵CP 过点F ,点C ∴直线CP 的解析式为133y x =-.4.解:(1)对于3342y x =-,当y =0,x =2;当x =-8时,y =-152.∴A 点坐标为(2,0),B 点坐标为15(8)2--, 由抛物线214y x bx c =-++经过A 、B 两点,得012151682b c b c =-++⎧⎪⎨-=--+⎪⎩ 解得3452b c ⎧=-⎪⎪⎨⎪=⎪⎩ 2135.442y x x ∴=--+(2)设直线3342y x =-与y 轴交于点M 当x =0时,y =32-. ∴OM =32.∵点A 的坐标为(2,0),∴OA =2,∴AM 5.2=∴OM :OA :AM =3:4:5.由题意得,∠PDE =∠OMA ,∠AOM =∠PED =90°,∴△AOM ∽△PED . ∴DE :PE :PD =3:4:5∵点P 是直线AB 上方的抛物线上一动点,∴PD 213533()()44242x x x =--+--=213442x x --+∴21213(4)542l x x =--+231848555x x =--+23(3)155l x ∴=-++由题意知:82x -<<315.x l ∴=-=最大时,5.解:(1) ∵拋物线y 1=ax 2-2ax +b 经过A (-1,0),C (0,23)两点,∴⎪⎩⎪⎨⎧==++2302b b a a ,∴1232a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴拋物线的解析式为y 1= -21x 2+x +23(2)解法一:过点M 作MN ⊥AB 交AB 于点N ,连接AM 由y 1= -21x 2+x +23可知顶点M (1,2) ,A (-1,0),B (3,0),N (1,0) ∴AB =4,MN =BN=AN =2,AM =MB =∴△AMN 和△BMN 为等腰直角三角形. ∵∠MP A +∠QPB =∠MP A +∠PMA =135° ∴∠QPB =∠PMA 又∵∠QBP =∠P AM =45° ∴△QPB ∽△PMA∴=AP BQAM BP将AM =AP =x +1,BP =3-x,BQ=22-y 代入,223y x=--,即2215=+22y x x -. ∵点P 为线段OB 上一动点 (不与点B 重合) ∴0≤x <3则y 2与x 的函数关系式为y 2=21x 2-x +25(0≤x <3) 解法二:过点M 作MN ⊥AB 交AB 于点N .由y 1= -21x 2+x +23易得M (1,2),N (1,0),A (-1,0),B (3,0), ∴AB =4,MN =BN =2,MB =22,∠MBN =45︒. 根据勾股定理有BM 2-BN 2=PM2-PN 2. ∴(()22222=1PM x ---…①,又∠MPQ =45︒=∠MBP , ∴△MPQ ∽△MBP , ∴2PM MQ MB =⨯=22y 2⨯22 由 、 得y 2=21x 2-x +25.∵0≤x <3,∴y 2与x 的函数关系式为y 2=21x 2-x +25(0≤x <3) 6.解:(1)如图1,过点C 作CE ⊥AB ,交AB 于点E . ∵点C (2m -4,m -6),∴点E (2m -4,0) ∴EC =6-m ,AE =OE +EA =m 又∵直线AC :y =-x +p ∴∠EAC =45°,AE =EC 即6-m =m ,m =3.∴A (-1,0),B (3,0),C (2,-3)可得抛物线解析式为y =x 2-2x-3,直线AC 解析式为y = -(2)如图2,AC =32,AC 所在直线的解析式为:y ∠BAC =45°∵平行四边形ACQP 的面积为12. ∴平行四边形ACQP 中AC 边上的高为2312=22过点D 作DK ⊥AC 与PQ 所在直线相交于点K ,DK = 22, 符合条件的点K 在直线AC 的两侧各有一个, ∴PQ 所在直线可能在直线AC 的两侧各有一条, 又∵∠OAD =45°,∴DN =4 ∴PQ 的解析式为y =-x +3或y =-x -5∴ 2233y x x y x ⎧=--⎨=-+⎩ ,解得1130x y =⎧⎨=⎩或2225x y =-⎧⎨=⎩2235y x x y x ⎧=--⎨=--⎩ 方程组无解. 即P 1(3,0), P 2(-2,5)∵ACPQ 是平行四边形 ,A (-1,0) C (2,-3) ∴当P (3,0)时,Q (6,-3) 当P (-2,5)时,Q (1,2)∴满足条件的P ,Q 点是P 1(3,0), Q 1(6,-3)或 P 2(-2,5),Q 2(1,2) (3)如图3,作直线l 平行于PQ 所在的直线(即BN ), 且使得l 与抛物线只有一个交点,这个交点即为M (此时以PQ 为底,高最大,面积最大) 设l 的表达式为y x b =-+,则223y x b y x x =-+⎧⎨=--⎩,得230x x b ---=,由△=0,得b =134-,∴213423y x y x x ⎧=--⎪⎨⎪=--⎩,解得12154x y ⎧=⎪⎪⎨⎪=-⎪⎩,∴M (21,154-) 设l 与y 轴交点为点G ,过G 作GH ⊥BN 于点H , 易得∠NGH =45°,则在Rt △NGH 中,GHNG 又∵N (0,3),G (0,134-),∴NG =254∴GHNG = ∵PQ =AC=∴S=11752288PQ GH =⨯=1,154),最大面积为857.∴M(2。
代几综合题(以代数为主的综合)知识梳理教学重、难点作业完成情况典题探究例1 已知抛物线c bx ax y ++=2与y 轴交于点A (0,3),与x 轴分别交于B (1,0)、C (5,0)两点.(1)求此抛物线的解析式;(2)若点D 为线段OA 的一个三等分点, 求直线DC 的解析式;(3)若一个动点P 自OA 的中点M 出发,先到达x 轴上的某点(设为点E ),再到达抛物线的对称轴上某点(设为点F ),最后运动到点A ,求使点P 运动的总路径最短的点E 、点F 的坐标,并求出这个最短总路径的长.例2 在平面直角坐标系xOy 中,抛物线2y mx n =++经过(02)P A ,两点. (1)求此抛物线的解析式;(2)设抛物线的顶点为B ,将直线AB 沿y 轴向下平移两个单位得到直线,直线与抛物线的对称轴交于C 点,求直线的解析式;(3)在(2)的条件下,求到直线OB OC BC ,,距离相等的点的坐标.例3在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于A 、B 两点(点A 在点B的左侧..),与y 轴交于点C ,点B 的坐标为(3,0),将直线y kx =沿y 轴向上平移 3个单位长度后恰好经过B 、C 两点.(1) 求直线BC 及抛物线的解析式;(2)设抛物线的顶点为D ,点P 在抛物线的对称轴上,且∠APD =∠ACB ,求点P的坐标;(3)连结CD ,求∠OCA 与∠OCD 两角和的度数.例4在平面直角坐标系xOy 中,抛物线23454122+-++--=m m x m x m y 与x 轴的交点分别为原点O 和点A ,点B(2,n)在这条抛物线上.(1) 求点B 的坐标;(2) 点P 在线段OA 上,从O 点出发向点运动,过P 点作x 轴的垂线,与直线OB 交于点E 。
延长PE 到点D 。
使得ED=PE. 以PD 为斜边在PD 右侧作等腰直角三角形PCD(当P 点运动时,C 点、D 点也随之运动)当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长;若P 点从O 点出发向A 点作匀速运动,速度为每秒1个单位,同时线段OA 上另一点Q 从A 点出发向O 点作匀速运动,速度为每秒2个单位(当Q 点到达O 点时停止运动,P 点也同时停止运动)。
二次函数代几综合与最值二次函数是高中数学中的重要内容,也是数学建模和实际问题解决中经常遇到的数学工具之一。
二次函数的标准形式为:\[f(x) = ax^2 + bx + c \]其中,\(a\)、\(b\)、\(c\)为实数且\(a \neq 0\)。
与一次函数不同的是,二次函数是一个抛物线,其图像可以打开向上或向下。
下面将从二次函数的图像特征、最值、综合问题等方面进行探讨。
1. 图像特征:由于二次函数的图像是一个抛物线,其图像的开口方向和顶点坐标是直观判断函数性质的重要参考。
1.1 开口方向:二次函数 \(f(x) = ax^2 + bx + c\) 中,\(a\) 的正负决定了图像的开口方向。
- 若 \(a > 0\) ,则抛物线开口向上;- 若 \(a < 0\) ,则抛物线开口向下。
1.2 顶点坐标:二次函数的顶点坐标可以通过求导或利用对称关系求解。
顶点的横坐标为 \(-\frac{b}{2a}\),纵坐标为 \(f\left(-\frac{b}{2a}\right)\)。
顶点是抛物线的最值点,也是讨论二次函数最值的重要参考。
2. 最值问题:二次函数的最值问题,一般是指求解二次函数的最大值或最小值。
针对给定的二次函数 \(f(x) = ax^2 + bx + c\),可以通过以下方法解决最值问题:2.1 完全平方公式:对于标准形式的二次函数,若 \(a > 0\) ,则函数的最小值等于顶点的纵坐标,即最小值为 \(f\left(-\frac{b}{2a}\right)\);若\(a < 0\) ,则函数的最大值等于顶点的纵坐标,即最大值为\(f\left(-\frac{b}{2a}\right)\)。
2.2 求导法:通过对二次函数求导,可以得到导函数 \(f'(x) = 2ax + b\)。
当导函数的值为 0 时,即 \(2ax + b = 0\),解得 \(x = -\frac{b}{2a}\),这个点即为顶点,函数在该点取得最值。
二次函数中常见的几种综合题型二次函数常见的几类综合题型一、求线段最大值及根据面积求点坐标问题1.已知抛物线 $y=x^2+bx+c$ 的图象与 $x$ 轴的一个交点为 $B(5,0)$,另一个交点为 $A$,且与 $y$ 轴交于点 $C(0,5)$。
1) 求直线 $BC$ 与抛物线的解析式;2) 若点 $M$ 是抛物线在 $x$ 轴下方图象上的一个动点,过点 $M$ 作 $MN\parallel y$ 轴交直线 $BC$ 于点 $N$,求$MN$ 的最大值;3) 在 (2) 的条件下,$MN$ 取得最大值时,若点 $P$ 是抛物线在 $x$ 轴下方图象上任意一点,以 $BC$ 为边作平行四边形 $CBPQ$,设平行四边形 $CBPQ$ 的面积为 $S_1$,$\triangle ABN$ 的面积为 $S_2$,且 $S_1=6S_2$,求点$P$ 的坐标。
2.对称轴为直线 $x=-1$ 的抛物线$y=ax^2+bx+c(a\neq0)$ 与 $x$ 轴相交于 $A$、$B$ 两点,其中点 $A$ 的坐标为 $(-3,0)$。
1) 求点 $B$ 的坐标;2) 已知 $a=1$,$C$ 为抛物线与 $y$ 轴的交点。
①若点 $P$ 在抛物线上,且 $S_{\trianglePOC}=4S_{\triangle BOC}$,求点 $P$ 的坐标;②设点 $Q$ 是线段 $AC$ 上的动点,作 $QD\perp x$ 轴交抛物线于点 $D$,求线段 $QD$ 长度的最大值。
二、求三角形周长及面积的最值问题3.已知抛物线 $y=ax^2+bx+c$ 经过 $A(-3,a-b+c)$,$B(1,a+b+c)$,$C(c,a+3c-b)$ 三点,其顶点为 $D$,对称轴是直线 $l$,$l$ 与 $x$ 轴交于点 $H$。
1) 求该抛物线的解析式;2) 若点 $P$ 是该抛物线对称轴 $l$ 上的一个动点,求$\triangle PBC$ 周长的最小值;3) 如图 (2),若 $E$ 是线段 $AD$ 上的一个动点($E$ 与$A$、$D$ 不重合),过点 $E$ 作平行于 $y$ 轴的直线交抛物线于点 $F$,交 $x$ 轴于点 $G$,设点 $E$ 的横坐标为 $m$,$\triangle ADF$ 的面积为 $S$。
二次函数详解(附习题、答案)一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
:2. 2y ax c =+的性质: 上加下减。
】3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:?三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ~⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.【六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标)..注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b 】在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.<ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:@根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;~()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+./5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.,② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.`⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数图像参考:,十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少2-32y=-2x 2y=3(x+4)22y=3x 2y=-2(x-3)2二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:…已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )y y y y1 10 x o-1 x 0 x 0 -1 x A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
代几综合与动手操作集锦(一)1、如图,M 为线段AB 的中点,AE 与BD 交于点C ,∠DME =∠A =∠B =α,且DM 交AC 于F ,ME 交BC 于G . (1)写出图中三对相似三角形,并证明其中的一对;(2)连结FG ,如果α=45°,AB=AF =3,求FG 的长.2、如图,直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,已知AD =AB =3,BC =4,动点P 从B 点出发,沿线段BC 向点C 作匀速运动;动点Q 从点D 出发,沿线段DA 向点A 作匀速运动.过Q 点垂直于AD 的射线交AC 于点M ,交BC 于点N .P 、Q 两点同时出发,速度都为每秒1个单位长度.当Q 点运动到A 点,P 、Q 两点同时停止运动.设点Q 运动的时间为t 秒.(1)求NC ,MC 的长(用t 的代数式表示);(2)当t 为何值时, 四边形PCDQ 构成平行四边形?(3)是否存在某一时刻,使射线 QN 恰好将△ABC 的面积和周长同时平分?若存在,求出此时t 的值; 若不存在,请说明理由;(4)探究:t 为何值时,△PMC 为等腰三角形?3、如图,在边长为5的正方形中,点、分别是、边上的点,且,延长交正方形外角平分线,边上是否存在一点,使得四边形是平行四边形?若存在,请给予证明;若不存在,请说明理由.ABCD E F BC DC AE EF EF CP P 于点AB MDMEP4、如图(1),抛物线22y x x k =-+与x 轴交于A 、B 两点,与y 轴交于点C (0,3-). [图(2)、图(3)为解答备用图](1)k = ,点A 的坐标为 ,点B 的坐标为 ; (2)设抛物线22y x x k =-+的顶点为M ,求四边形ABMC 的面积;(3)在x 轴下方的抛物线上是否存在一点D ,使四边形ABDC 的面积最大?若存在,请求出点D 的坐标;若不存在,请说明理由;(4)在抛物线22y x x k =-+上求点Q ,使△BCQ 是以BC 为直角边的直角三角形.5、已知:如图所示,直线MA NB MAB ∠∥,与NBA ∠的平分线交于点C ,过点C 作一条直线l 与两条直线MA NB 、分别相交于点D E 、.(1)如图1所示,当直线l 与直线MA 垂直时,猜想线段AD BE AB 、、之间的数量关系,请直接写出结论,不用证明;(2)如图2所示,当直线l 与直线MA 不垂直且交点D E 、都在AB 的同侧时,(1)中的结论是否成立?如果成立,请证明:如果不成立,请说明理由;(3)当直线l 与直线MA 不垂直且交点D E 、在AB 的异侧时,(1)中的结论是否仍然成立?如果成立,请说明理由;如果不成立,那么线段AD BE AB 、、之间还存在某种数量关系吗?如果存在,请直接写出它们之间的数量关系.图(1) 图(2) 图(3)ABED CM NABED CM N l ABCM NABCM N图1图2备用图备用图6、如图所示,在△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC ,如图①,然后将△ADE 绕A 点顺时针旋转一定角度,得到图②,然后将BD 、CE 分别延长至M 、N ,使DM =21BD ,EN =21CE ,得到图③,请解答下列问题: (1)若AB =AC ,请探究下列数量关系:①在图②中,BD 与CE 的数量关系是________________;②在图③中,猜想AM 与AN 的数量关系、∠MAN 与∠BAC 的数量关系,并证明你的猜想;(2)若AB =k·AC(k>1),按上述操作方法,得到图④,请继续探究:AM 与AN 的数量关系、∠MAN 与∠BAC 的数量关系,直接写出你的猜想,不必证明.7、如图,二次函数的图象经过点D(0,),且顶点C的横坐标为4,该图象在x 轴上截得的线段AB 的长为6. ⑴求二次函数的解析式;⑵该抛物线的对称轴上找一点P ,使PA+PD 最小,求出点P 的坐标;⑶在抛物线上是否存在点Q ,使△QAB 与△ABC 相似?如果存在,求出点Q 的坐标;如果不存在,请说明理由.3978、如图,已知点A (0,1)是y 轴上一个定点,点B 是x 轴上一个动点,以AB 为边,在OAB ∠外部作,OAB BAE ∠=∠过点B 作,AB BC ⊥交AE 于点C ,设点C 的坐标为(y x ,),当点B 在x 轴上运动时,求y 关于x 的函数关系式。
代几综合问题—知识讲解(提高)【中考展望】代几综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以代几综合题的形式出现.解代几综合题一般可分为“认真审题、理解题意;探求解题思路;正确解答”三个步骤,解代几综合题必须要有科学的分析问题的方法.数学思想是解代几综合题的灵魂,要善于挖掘代几综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程(不等式)的思想等,把实际问题转化为数学问题,建立数学模型,这是学习解代几综合题的关键.题型一般分为:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题.题型特点:一是以几何图形为载体,通过线段、角等图形寻找各元素之间的数量关系,建立代数方程或函数模型求解;二是把数量关系与几何图形建立联系,使之直观化、形象化,从函数关系中点与线的位置、方程根的情况得出图形中的几何关系.以形导数,由数思形,从而寻找出解题捷径. 解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中寻找这两部分知识的结合点,从而发现解题的突破口.【方法点拨】方程与几何综合问题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明.函数型综合题主要有:几何与函数结合型、坐标与几何、方程与函数结合型问题,是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象,结合函数的性质、方程等解题.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等.函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,有较好的区分度,因此是各地中考的热点题型.几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力.1.几何型综合题,常以相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现.2.几何计算是以几何推理为基础的几何量的计算,主要有线段和弧长的计算,角的计算,三角函数值的计算,以及各种图形面积的计算等.3.几何论证题主要考查学生综合应用所学几何知识的能力.4.解几何综合题应注意以下几点:(1)注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系;(2)注意推理和计算相结合,力求解题过程的规范化;(3)注意掌握常规的证题思路,常规的辅助线作法;(4)注意灵活地运用数学的思想和方法.【典型例题】类型一、方程与几何综合的问题1.(2015•大庆模拟)如图,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.点P从B出发沿BA向A运动,速度为每秒1cm,点E是点B以P为对称中心的对称点,点P运动的同时,点Q从A出发沿AC向C运动,速度为每秒2cm,当点Q到达顶点C时,P,Q同时停止运动,设P,Q两点运动时间为t秒.(1)当t为何值时,PQ∥BC?(2)设四边形PQCB的面积为y,求y关于t的函数关系式;(3)四边形PQCB面积能否是△ABC面积的?若能,求出此时t的值;若不能,请说明理由;(4)当t为何值时,△AEQ为等腰三角形?(直接写出结果)【思路点拨】(1)先在Rt△ABC中,由勾股定理求出AB=10,再由BP=t,AQ=2t,得出AP=10﹣t,然后由PQ∥BC,根据平行线分线段成比例定理,列出比例式,求解即可;(2)正确把四边形PQCB表示出来,即可得出y关于t的函数关系式;(3)根据四边形PQCB面积是△ABC面积的,列出方程,解方程即可;(4)△AEQ为等腰三角形时,分三种情况讨论:①AE=AQ;②EA=EQ;③QA=QE,每一种情况都可以列出关于t的方程,解方程即可.【答案与解析】解:(1)Rt△ABC中,∵∠C=90°,BC=8cm,AC=6cm,∴AB=10cm.∵BP=t,AQ=2t,∴AP=AB﹣BP=10﹣t.∵PQ∥BC,∴=,∴=,解得t=;(2)∵S四边形PQCB=S△ACB﹣S△APQ=AC•BC﹣AP•AQ•sinA∴y=×6×8﹣×(10﹣t)•2t•=24﹣t(10﹣t)=t2﹣8t+24,即y关于t的函数关系式为y=t2﹣8t+24;(3)四边形PQCB面积能是△ABC面积的,理由如下:由题意,得t2﹣8t+24=×24,整理,得t2﹣10t+12=0,解得t1=5﹣,t2=5+(不合题意舍去).故四边形PQCB面积能是△ABC面积的,此时t的值为5﹣;(4)△AEQ为等腰三角形时,分三种情况讨论:①如果AE=AQ,那么10﹣2t=2t,解得t=;②如果EA=EQ,那么(10﹣2t)×=t,解得t=;③如果QA=QE,那么2t×=5﹣t,解得t=.故当t为秒秒秒时,△AEQ为等腰三角形.【总结升华】本题考查了勾股定理,等腰三角形的判定等,综合性较强,难度适中.解答此题时要注意分类讨论,不要漏解;其次运用方程思想是解题的关键.举一反三:【变式】(2016•镇江)如图1,在菱形ABCD中,AB=6,tan∠ABC=2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.(1)求证:BE=DF;(2)当t= 秒时,DF的长度有最小值,最小值等于;(3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,△EPQ是直角三角形?(4)如图3,将线段CD绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CG.在点E的运动过程中,当它的对应点F位于直线AD上方时,直接写出点F到直线AD的距离y 关于时间t的函数表达式.【答案】解:(1)∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,∴∠DCF=∠BCE,∵四边形ABCD是菱形,∴DC=BC,在△DCF和△BCE中,∵,∴△DCF≌△BCE(SAS),∴DF=BE;(2)如图1,当点E运动至点E′时,DF=BE′,此时DF最小,在Rt△ABE′中,AB=6,tan∠ABC=tan∠BAE′=2,∴设AE′=x,则BE′=2x,∴AB=x=6,则AE′=6∴DE′=6+6,DF=BE′=12,故答案为:6+6,12;(3)∵CE=CF,∴∠CEQ<90°,①当∠EQP=90°时,如图2①,∵∠ECF=∠BCD,BC=DC,EC=FC,∴∠CBD=∠CEF,∵∠BPC=∠EPQ,∴∠BCP=∠EQP=90°,∵AB=CD=6,tan∠ABC=tan∠ADC=2,∴DE=6,∴t=6秒;②当∠EPQ=90°时,如图2②,∵菱形ABCD的对角线AC⊥BD,∴EC与AC重合,∴DE=6,∴t=6秒;(4)y=t﹣12﹣,如图3,连接GF分别交直线AD、BC于点M、N,过点F作FH⊥AD于点H,由(1)知∠1=∠2,又∵∠1+∠DCE=∠2+∠GCF,∴∠DCE=∠GCF,在△DCE和△GCF中,∵,∴△DCE≌△GCF(SAS),∴∠3=∠4,∵∠1=∠3,∠1=∠2,∴∠2=∠4,∴GF∥CD,又∵AH∥BN,∴四边形CDMN是平行四边形,∴MN=CD=6,∵∠BCD=∠DCG,∴∠CGN=∠DCN=∠CNG,∴CN=CG=CD=6,∵tan∠ABC=tan∠CGN=2,∴GN=12,∴GM=6+12,∵GF=DE=t,∴FM=t﹣6﹣12,∵tan∠FMH=tan∠ABC=2,∴FH=(t﹣6﹣12),即y=t﹣12﹣.类型二、函数与几何综合问题2.如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长的速度运动t(t>0)秒,抛物线y=x2+bx+c经过点O和点P.已知矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).⑴求c、b(可以用含t的代数式表示);⑵当t>1时,抛物线与线段AB交于点M.在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;⑶在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接..写出t的取值范围.【思路点拨】(1)由抛物线y=x2+bx+c经过点O和点P,将点O与P的坐标代入方程即可求得c,b;(2)当x=1时,y=1-t,求得M的坐标,则可求得∠AMP的度数;(3)根据图形,可直接求得答案.【答案与解析】解:(1)把x=0,y=0代入y=x2+bx+c,得c=0,再把x=t,y=0代入y=x2+bx,得t2+bt=0,∵t>0,∴b=-t;(2)不变.∵抛物线的解析式为:y=x2-tx,且M的横坐标为1,∴当x=1时,y=1-t,∴M(1,1-t),∴AM=|1-t|=t-1,∵OP=t ,∴AP=t-1, ∴AM=AP ,∵∠PAM=90°,∴∠AMP=45°;(3)72<t<113.①左边4个好点在抛物线上方,右边4个好点在抛物线下方:无解; ②左边3个好点在抛物线上方,右边3个好点在抛物线下方: 则有-4<y 2<-3,-2<y 3<-1, 即-4<4-2t <-3,-2<9-3t <-1,∴72<t<4且103<t<113,解得72<t<113;③左边2个好点在抛物线上方,右边2个好点在抛物线下方:无解; ④左边1个好点在抛物线上方,右边1个好点在抛物线下方:无解; ⑤左边0个好点在抛物线上方,右边0个好点在抛物线下方:无解; 综上所述,t 的取值范围是:72<t<113.【总结升华】此题考查了二次函数与点的关系.此题综合性很强,难度适中,解题的关键是注意数形结合与方程思想的应用.类型三、动态几何中的函数问题3. 如图,在平面直角坐标系xOy 中,已知二次函数2+2y ax ax c =+的图象与y 轴交于(0,3)C ,与x 轴交于A 、B 两点,点B 的坐标为(-3,0)(1)求二次函数的解析式及顶点D 的坐标;(2)点M 是第二象限内抛物线上的一动点,若直线OM 把四边形ACDB 分成面积为1:2的两部分,求出此时点M 的坐标;(3)点P 是第二象限内抛物线上的一动点,问:点P 在何处时△CPB 的面积最大?最大面积是多少?并求出此时点P 的坐标.【思路点拨】(1)抛物线的解析式中只有两个待定系数,因此只需将点B 、C 的坐标代入其中求解即可.(2)先画出相关图示,连接OD 后发现:S △OBD :S 四边形ACDB =2:3,因此直线OM 必须经过线段BD 才有可能符合题干的要求;设直线OM 与线段BD 的交点为E ,根据题干可知:△OBE 、多边形OEDCA 的面积比应该是1:2或2:1,即△OBE 的面积是四边形ACDB 面积的1233或,所以先求出四边形ABDC 的面积,进而得到△OBE 的面积后,可确定点E 的坐标,首先求出直线OE (即直线OM )的解析式,联立抛物线的解析式后即可确定点M 的坐标(注意点M 的位置).(3)此题必须先得到关于△CPB 面积的函数表达式,然后根据函数的性质来求出△CPB 的面积最大值以及对应的点P 坐标;通过图示可发现,△CPB 的面积可由四边形OCPB 的面积减去△OCB 的面积求得,首先设出点P 的坐标,四边形OCPB 的面积可由△OCP 、△OPB 的面积和得出. 【答案与解析】解:(1)由题意,得:3,9-60.c a a c =⎧⎨+=⎩ 解得:-1,3.a c =⎧⎨=⎩所以,二次函数的解析式为:2--23y x x =+ ,顶点D 的坐标为(-1,4). (2)画图由A、B、C、D四点的坐标,易求四边形ACDB 的面积为9.直线BD 的解析式为y=2x+6.设直线OM 与直线BD 交于点E ,则△OBE 的面积可以为3或6.①当1=9=33OBE S ∆⨯时,如图,易得E 点坐标(-2,-2),直线OE 的解析式为y=-x.E M xy O A BCD设M 点坐标(x ,-x ),21223113113,().22x x x x x -=--+---+==舍 ∴113113M ,22--+() ② 当时,同理可得M 点坐标.∴ M 点坐标为(-1,4).(3)如图,连接OP ,设P 点的坐标为(),m n , ∵点P 在抛物线上,∴232n m m =-+-, ∴PB PO OPB OB S S S S =+-△C △C △△C111||222OC m OB n OC OB =⋅-+⋅-⋅ ()339332222m n n m =-+-=--()22333273.2228m m m ⎛⎫=-+=-++ ⎪⎝⎭∵3<0m -<,∴当32m =-时,154n =. △CPB 的面积有最大值27.8∴当点P 的坐标为315(,)24-时,△CPB 的面积有最大值,且最大值为27.8【总结升华】此题主要考查了二次函数解析式的确定、图形面积的解法以及二次函数的应用等知识;(2)问中,一定先要探究一下点M 的位置,以免出现漏解的情况.举一反三:【变式】如图所示,四边形OABC 是矩形,点A 、C 的坐标分别为(3,0),(0,1),点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线y =-12x +b 交折线OAB 于点E .(1)记△ODE 的面积为S ,求S 与b 的函数关系式;(2)当点E 在线段OA 上时,若矩形OABC 关于直线DE 的对称图形为四边形OA 1B 1C 1,试探究OA 1B 1C 1与矩形OABC 的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.yxDECOAB【答案】(1)由题意得B (3,1).若直线经过点A (3,0)时,则b =32 若直线经过点B (3,1)时,则b =52若直线经过点C (0,1)时,则b =1.①若直线与折线OAB的交点在OA上时,即1<b≤32,如图1,此时点E(2b,0).∴S=12OE·CO=12×2b×1=b.②若直线与折线OAB的交点在BA上时,即32<b<52,如图2,此时点E(3,32b-),D(2b-2,1).∴S=S矩-(S△OCD+S△OAE+S△DBE)= 3-[12(2b-1)×1+12×(5-2b)•(52b-)+12×3(32b-)](2)如图3,设O1A1与CB相交于点M,C1B1与OA相交于点N,则矩形O1A1B1C1与矩形OABC的重叠部分的面积即为四边形DNEM的面积.由题意知,DM∥NE,DN∥ME,∴四边形DNEM 为平行四边形,根据轴对称知,∠MED=∠NED, 又∠MDE=∠NED,∴∠MED=∠MDE,MD=ME,∴平行四边形DNEM为菱形.过点D作DH⊥OA,垂足为H,设菱形DNEM的边长为a,由题可知,D(2b-2,1),E(2b,0),∴DH=1,HE=2b-(2b-2)=2,∴HN=HE-NE=2-a,则在Rt△DHM中,由勾股定理知:222(2)1a a=-+,∴a=5 . 4.∴S四边形DNEM =NE·DH=54.∴矩形OA1B1C1与矩形OABC的重叠部分的面积不发生变化,面积始终为54.类型四、直角坐标系中的几何问题4. 如图所示,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.(1)直接写出点E、F的坐标;(2)设顶点为F的抛物线交y轴正半轴...于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.【思路点拨】(1)由轴对称的性质,可知∠FBD=∠ABD,FB=AB,可得四边形ABFD是正方形,则可求点E、F的坐标;(2)已知抛物线的顶点,则可用顶点式设抛物线的解析式. 因为以点E、F 、P 为顶点的等腰三角形没有给明顶角的顶点,而顶角和底边都是唯一的,所以要抓住谁是顶角的顶点进行分类,可分别以E 、F 、P 为顶角顶点;(3)求周长的最小值需转化为利用轴对称的性质求解. 【答案与解析】解:(1)E(3,1);F(1,2);(2)连结EF ,在Rt △EBF 中,∠B=90°,∴EF=5212222=+=+BF EB .设点P 的坐标为(0,n),n >0,∵顶点F(1,2), ∴设抛物线的解析式为y=a(x-1)2+2,(a ≠0).①如图1,当EF=PF 时,EF 2=PF 2,∴12+(n-2)2=5,解得n 1=0(舍去),n 2=4. ∴P(0,4),∴4=a(0-1)2+2,解得a=2, ∴抛物线的解析式为y=2(x-1)2+2.②如图2,当EP=FP 时,EP 2=FP 2,∴(2-n)2+1=(1-n)2+9,解得n=-25(舍去)③当EF=EP 时,EP=5<3,这种情况不存在. 综上所述,符合条件的抛物线为y=2(x-1)2+2.(3)存在点M 、N ,使得四边形MNFE 的周长最小.如图3,作点E 关于x 轴的对称点E′,作点F 关于y 轴的对称点F′,连结E′F′,分别与x 轴、y 轴交于点M 、N ,则点M 、N 就是所求. 连结NF 、ME. ∴E′(3,-1)、F′(-1,2),NF=NF′,ME=ME′. ∴BF′=4,BE′=3. ∴FN+NM+ME=F′N+NM+ME′=F′E′=2243 =5. 又∵EF=5,∴FN+MN+ME+EF=5+5, 此时四边形MNFE 的周长最小值为5+5.【总结升华】本题考查了平面直角坐标系、等腰直角三角形、抛物线解析式的求法、利用轴对称求最短距离以及数形结合、分类讨论等数学思想. 分类讨论的思想要依据一定的标准,对问题分类、求解,要特别注意分类原则是不重不漏,最简分类常见的依据是:一是依据概念分类,如判断直角三角形时明确哪个角可以是直角,两个三角形相似时分清哪两条边是对应边;二是依运动变化的图形中的分界点进行分类,如一个图形在运动过程中,与另一个图形重合部分可以是三角形,也可以是四边形、五边形等. 几何与函数的综合题是中考常见的压轴题型,解决这类问题主要分为两步:一是利用线段的长确定出几何图形中各点的坐标;二是用待定系数法求函数关系式.类型五、几何图形中的探究、归纳、猜想与证明问题5. 如图所示,以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形ABA 1,再以等腰直角三角形ABA 1的斜边为直角边向外作第3个等腰直角三角形A 1BB 1,……,如此作下去,若OA=OB=1,则第n 个等腰直角三角形的面积S= ________(n 为正整数).B 2B 1A 1BOA【思路点拨】本题要先根据已知的条件求出S 1、S 2的值,然后通过这两个面积的求解过程得出一般性的规律,进而可得出S n 的表达式.【总结升华】本题要先从简单的例子入手得出一般化的结论,然后根据得出的规律去求特定的值. 举一反三:【变式】阅读下面的文字,回答后面的问题.求3+32+33+…+3100的值. 解:令S=3+32+33+…+3100(1),将等式两边提示乘以3得到:3S=32+33+34+…+3101(2), (2)-(1)得到:2S=3101-3问题:(1)2+22+…+22011的值为__________________;(直接写出结果)(2)求4+12+36+…+4×350的值;(3)如图,在等腰Rt△OAB中,OA=AB=1,以斜边OB为腰作第二个等腰Rt△OBC,再以斜边OC为腰作第三个等腰Rt△OCD,如此下去…一直作图到第8个图形为止.求所有的等腰直角三角形的所有斜边之和.(直接写出结果).【答案】解:(1)22012-2.(2)令S=4+12+36+…+4×350 ①,将等式两边提示乘以3得到:3S=12+36+108+…+4×351②,②-①得到:2S=4×341-4∴S=2×351-2∴4+12+36+…+4×350=2×351-2.(3)92-2 2-1().。
中考总复习:代几综合问题【中考展望】代几综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以代几综合题的形式出现.解代几综合题一般可分为“认真审题、理解题意;探求解题思路;正确解答”三个步骤,解代几综合题必须要有科学的分析问题的方法.数学思想是解代几综合题的灵魂,要善于挖掘代几综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程(不等式)的思想等,把实际问题转化为数学问题,建立数学模型,这是学习解代几综合题的关键.题型一般分为:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题.题型特点:一是以几何图形为载体,通过线段、角等图形寻找各元素之间的数量关系,建立代数方程或函数模型求解;二是把数量关系与几何图形建立联系,使之直观化、形象化.以形导数,由数思形,从而寻找出解题捷径. 解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中寻找这两部分知识的结合点,从而发现解题的突破口.【方法点拨】方程与几何综合问题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明.函数型综合题主要有:几何与函数结合型、坐标与几何、方程与函数结合型问题,是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象,结合函数的性质、方程等解题.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等.函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,有较好的区分度,因此是各地中考的热点题型.几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力.1.几何型综合题,常以相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现.2.几何计算是以几何推理为基础的几何量的计算,主要有线段和弧长的计算,角的计算,三角函数值的计算,以及各种图形面积的计算等.3.几何论证题主要考查学生综合应用所学几何知识的能力.4.解几何综合题应注意以下几点:(1)注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系;(2)注意推理和计算相结合,力求解题过程的规范化;(3)注意掌握常规的证题思路,常规的辅助线作法;(4)注意灵活地运用数学的思想和方法.【典型例题】类型一、方程与几何综合的问题1.如图所示,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=12,∠ABE=45°,若AE =10,则CE的长为_________.【思路点拨】过B作DA的垂线交DA的延长线于M,M为垂足,延长DM到G,使MG=CE,连接BG.求证△BEC≌△BGM,△ABE≌△ABG,设CE=x,在直角△ADE中,根据AE2=AD2+DE2求x的值,即CE的长度.【答案与解析】解:过B作DA的垂线交DA的延长线于M,M为垂足,延长DM到G,使MG=CE,连接BG,∴∠AMB=90°,∵AD∥CB,∠DCB=90°,∴∠D=90°,∴∠AMB=∠DCB=∠D=90°,∴四边形BCDM为矩形.∵BC=CD,∴四边形BCDM是正方形,∴BC=BM,且∠ECB=∠GMB,MG=CE,∴Rt△BEC≌Rt△BGM.∴BG=BE,∠CBE=∠GBM,∵∠CBE+∠EBA+∠ABM=90°,且∠ABE=45°∴∠CBE+∠ABM=45°∴∠ABM+∠GBM=45°∴∠ABE=∠ABG=45°,∴△ABE≌△ABG,AG=AE=10.设CE=x,则AM=10-x,AD=12-(10-x)=2+x,DE=12-x,在Rt△ADE中,AE2=AD2+DE2,∴100=(x+2)2+(12-x)2,即x2-10x+24=0;解得:x1=4,x2=6.故CE的长为4或6.【总结升华】本题考查了直角三角形中勾股定理的运用,考查了全等三角形的判定和性质,本题中求证△ABE≌△ABG,从而说明AG=AE=10是解题的关键.类型二、函数与几何问题2.如图,二次函数y =(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围.【思路点拨】(1)将点A(1,0)代入y=(x-2)2+m求出m的值,根据点的对称性,将y=3代入二次函数解析式求出B的横坐标,再根据待定系数法求出一次函数解析式;(2)根据图象和A、B的交点坐标可直接求出满足kx+b≥(x-2)2+m的x的取值范围.【答案与解析】解:(1)将点A(1,0)代入y=(x-2)2+m得,(1-2)2+m=0,1+m=0,m=-1,则二次函数解析式为y=(x-2)2-1. 当x=0时,y=4-1=3, 故C 点坐标为(0,3),由于C 和B 关于对称轴对称,在设B 点坐标为(x ,3), 令y=3,有(x-2)2-1=3,解得 x=4或x=0.则B 点坐标为(4,3).设一次函数解析式为y=kx+b ,将A (1,0)、B (4,3)代入y=kx+b 中,得,解得,则一次函数解析式为y=x-1; (2)∵A 、B 坐标为(1,0),(4,3),∴当kx+b≥(x-2)2+m 时,1≤x≤4.【总结升华】本题考察了待定系数法求二次函数,一次函数函数解析式以及数形结合法解不等式.求出B 点坐标是解题的关键.举一反三:【变式】如图,二次函数的图象与x 轴交于A 、B 两点,其中A 点坐标为(-1,0),点C (0,5)、D (1,8)在抛物线上,M 为抛物线的顶点. (1)求抛物线的解析式. (2)求△MCB 的面积.2(0)y ax bx c a =++≠【答案】解:(1)设抛物线的解析式为,根据题意,得, 解之,得. ∴所求抛物线的解析式为.(2)∵C 点的坐标为(0,5).∴OC =5.令,则,解得.∴B 点坐标为(5,0).∴OB =5.∵,∴顶点M 坐标为(2,9).过点M 作MN ⊥AB 于点N ,则ON =2,MN =9.∴. 类型三、动态几何中的函数问题2y ax bx c =++058a b c c a b c -+=⎧⎪=⎨⎪++=⎩145a b c =-⎧⎪=⎨⎪=⎩245y x x =-++0y =2450x x -++=121,5x x =-=2245(2)9y xx x =-++=--+11(59)9(52)551522MCB BNM OBC OCMN S S S S ∆∆∆=+-=+⨯⨯--⨯⨯=梯形3.如图,在平面直角坐标系中,已知点A(-2,-4),OB=2,抛物线y=ax2+bx+c经过点A、O、B 三点.(1)求抛物线的函数表达式;(2)若点M是抛物线对称轴上一点,试求AM+OM的最小值;(3)在此抛物线上,是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形?若存在,求点P的坐标;若不存在,请说明理由.【思路点拨】(1)把A、B、O的坐标代入到y=ax2+bx+c得到方程组,求出方程组的解即可;(2)根据对称求出点O关于对称轴的对称点B,连接AB,根据勾股定理求出AB的长,就可得到AM+OM 的最小值.(3)①若OB∥AP,根据点A与点P关于直线x=1对称,由A(-2,-4),得出P的坐标;②若OA∥BP,设直线OA的表达式为y=kx,设直线BP的表达式为y=2x+m,由B(2,0)求出直线BP的表达式为y=2x-4,得到方程组,求出方程组的解即可;③若AB∥OP,设直线AB的表达式为y=kx+m,求出直线AB,得到方程组求出方程组的解即可.【答案与解析】解:(1)由OB=2,可知B(2,0),将A(-2,-4),B(2,0),O(0,0)三点坐标代入抛物线y=ax2+bx+c,得(3)①如图1,若OB∥AP,此时点A与点P关于直线x=1对称,由A(-2,-4),得P(4,-4),则得梯形OAPB.②如图2,若OA∥BP,③如图3,若AB ∥OP ,设直线AB 的表达式为y=kx+m ,则解得综上所述,存在两点P (4,-4)或P (-4,-12),使得以点P 与点O 、A 、B 为顶点的四边形是梯形.【总结升华】本题主要考查对梯形,解二元二次方程组,解一元二次方程,二次函数的性质,用待定系数法求一次函数的解析式等知识点的理解和掌握,综合运用性质进行计算是解此题的关键.举一反三:4202k m k m -=-+⎧⎨=+⎩,.12k m =⎧⎨=-⎩,.【变式】如图,直线与x 轴、y 轴的交点分别为B 、C ,点A 的坐标是(-2,0). (1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S .① 求S 与t 的函数关系式;② 设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在,请说明理由;③在运动过程中,当△MON 为直角三角形时,求t 的值.【答案】434+-=x y分为三种情况:I、当∠NOM=90°时,N在y轴上,即此时t=5;II 、当∠NMO=90°时,M 、N 的横坐标相等,即t-2=3-0.6t ,解得:t=3.125, III 、∠MNO 不可能是90°,即在运动过程中,当△MON 为直角三角形时,t 的值是5秒或3.125秒. 类型四、直角坐标系中的几何问题4.已知,如图所示,在平面直角坐标系中,四边形ABC0为梯形,BC ∥A0,四个顶点坐标分别为A (4,0),B (1,4),C (0,4),O (0,O ).一动点P 从O 出发以每秒1个单位长度的速度沿OA 的方向向A 运动;同时,动点Q 从A 出发,以每秒2个单位长度的速度沿A→B→C 的方向向C 运动.两个动点若其中一个到达终点,另一个也随之停止.设其运动时间为t 秒. (1)求过A ,B ,C 三点的抛物线的解析式; (2)当t 为何值时,PB 与AQ 互相平分;(3)连接PQ ,设△PAQ 的面积为S ,探索S 与t 的函数关系式.求t 为何值时,S 有最大值?最大值是多少?【思路点拨】(1)设出抛物线的解析式,运用待定系数法可以直接求出抛物线的解析式.(2)根据PB 与AQ 互相平分可以得出四边形BQPA 是平行四边形,得出QB=PA 建立等量关系可以求出t 值.(3)是一道分段函数,分为Q 点在AB 上和在BC 上讨论,根据三角形的面积公式表示出S 与t 的关系式,就可以求出答案. 【答案与解析】解:(1)设抛物线的解析式为y=ax 2+bx+c (a≠0),代入A 、B 、C 三点的坐标,得16a 4044b c a b c c ++=⎧⎪++=⎨⎪=⎩1(4).2PAQQ p Sy x =-82sin ,5Q p y t t x θ==2184(4)(4255PAQSt t t t =-=-1614(4)82t -=【总结升华】本题是一道二次函数综合题.考察了二次函数的最值,待定系数法求二次函数解析式以及三角形面积的求解等.类型五、几何图形中的探究、归纳、猜想与证明问题5.一个质点在第一象限及轴、轴上运动,在第一秒钟,它从原点运动到,然后接着按图中箭头所示方向运动,即,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是_______.【思路点拨】由题目中所给的质点运动的特点找出规律,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,即可得出第35秒时质点所在位置的坐标. 【答案与解析】解:质点运动的速度是每秒运动一个单位长度,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒,2秒,3秒,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,到(4,0)用16秒,依此类推,到(5,0)用35秒.故第35秒时质点所在位置的坐标是(5,0). 【总结升华】此题主要考查了数字变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间. 举一反三:x y (01),(00)(01)(11)(10)→→→→,,,, 012 3 xy1 2 3 …【变式】如图,一粒子在区域{(x,y)|x≥0,y≥0}内运动,在第1秒内它从原点运动到点B1(0,1),接着由点B1→C1→A1,然后按图中箭头所示方向在x轴,y轴及其平行线上运动,且每秒移动1个单位长度,求该粒子从原点运动到点P(16,44)时所需要的时间.【答案】解:设粒子从原点到达A n、B n、C n时所用的时间分别为a n、b n、c n,则有:a1=3,a2=a1+1,a3=a1+12=a1+3×4,a4=a3+1,a5=a3+20=a3+5×4,a6=a5+1,a2n-1=a2n-3+(2n-1)×4,a2n=a2n-1+1,∴a2n-1=a1+4[3+5+…+(2n-1)]=4n2-1,a2n=a2n-1+1=4n2,∴b2n-1=a2n-1-2(2n-1)=4n2-4n+1,b2n=a2n+2×2n=4n2+4n,c2n-1=b2n-1+(2n-1)=4n2-2n,c2n=a2n+2n=4n2+2n=(2n)2+2n,∴c n=n2+n,∴粒子到达(16,44)所需时间是到达点c44时所用的时间,再加上44-16=28(s),所以t=442+447+28=2008(s).中考冲刺:代几综合问题—巩固训练(基础)【巩固练习】一、选择题1.如图,点G 、D 、C 在直线a 上,点E 、F 、A 、B 在直线b 上,若从如图所示的位置出发,沿直线b 向右匀速运动,直到EG 与BC 重合.运动过程中与矩形重合部分....的面积(S )随时间(t )变化的图象大致是( )2.如图,在半径为1的⊙O 中,直径AB 把⊙O 分成上、下两个半圆,点C 是上半圆上一个动点(C 与点A 、B 不重合),过点C 作弦CD ⊥AB ,垂足为E ,∠OCD 的平分线交⊙O 于点P ,设CE=x ,AP=y ,下列图象中,最能刻画y 与x 的函数关系的图象是( )二、填空题3. 将抛物线y 1=2x 2向右平移2个单位,得到抛物线y2的图象如图所示,P 是抛物线y 2对称轴上的一个动点,直线x =t 平行于y 轴,分别与直线y =x 、抛物线y 2交于点A 、B .若△ABP 是以点A 或点B 为直角顶点的等腰直角三角形,求满足的条件的t 的值,则t = .a b Rt GEF ∥,△GEF △ABCD三、解答题5.一个形如六边形的点阵.它的中心是一个点(算第一层)、第二层每边有两个点,第三层每边有三个点……依次类推.(1)试写出第n层所对应的点数;(2)试写出n层六边形点阵的总点数;(3)如果一个六边形点阵共有169个点,那么它一共有几层?6.如图,Rt△ABC中,∠B=90°,AC=10cm,BC=6cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以2cm/s的速度,沿AB向终点B移动;点Q以1cm/s的速度沿BC向终点C移动,其中一点到终点,另一点也随之停止.连接PQ.设动点运动时间为x秒.(1)用含x的代数式表示BQ、PB的长度;(2)当x为何值时,△PBQ为等腰三角形;(3)是否存在x的值,使得四边形APQC的面积等于20cm2?若存在,请求出此时x的值;若不存在,请说明理由.8. 如图,在直角坐标系中,梯形ABCD的底边AB在x轴上,底边CD的端点D在y轴上.直线CB的表达式为41633y x=-+,点A、D的坐标分别为(-4,0),(0,4). 动点P从A点出发,在AB边上匀速运动. 动点Q从点B出发,在折线BCD上匀速运动,速度均为每秒1个单位长度. 当其中一个动点到达终点时,另一动点也停止运动. 设点P运动t(秒)时,△OPQ的面积为S(不能构成△OPQ 的动点除外).(1)求出点C的坐标;(2)求S随t变化的函数关系式;(3)当t为何值时,S有最大值?并求出这个最大值.(1)求抛物线的解析式;(2)在抛物线的对称轴上找到点M,使得M到D、B的距离之和最小,求出点M的坐标;(3)如果点P由点A出发沿线段AB以2cm/s的速度向点B运动,同时点Q由点B出发沿线段BC以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2).①求出S与运动时间t之间的函数关系式,并写出t的取值范围;10.已知:抛物线y =-x 2+2x+m-2交y 轴于点A (0,2m-7).与直线y =x 交于点B 、C (B 在右、C在左). (1)求抛物线的解析式;(2)设抛物线的顶点为E ,在抛物线的对称轴上是否存在一点F ,使得,若存在,求出点F 的坐标,若不存在,说明理由; (3)射线OC 上有两个动点P 、Q 同时从原点出发,分别以每秒个单位长度、每秒2个单位长度的速度沿射线OC 运动,以PQ 为斜边在直线BC 的上方作直角三角形PMQ (直角边分别平行于坐标轴),设运动时间为t 秒,若△PMQ 与抛物线y =-x 2+2x +m-2有公共点,求t 的取值范围.11. 在平面直角坐标系中,抛物线经过A (-3,0)、B (4,0)两点,且与y 轴交于点C ,点D 在x 轴的负半轴上,且BD =BC ,有一动点P 从点A 出发,沿线段AB 以每秒1个单位长度的速度向点B 移动,同时另一个动点Q 从点C 出发,沿线段CA 以某一速度向点A 移动. (1)求该抛物线的解析式;(2)若经过t 秒的移动,线段PQ 被CD 垂直平分,求此时t 的值;2BFE CFE ∠=∠55xOy 42++=bx ax y(3)该抛物线的对称轴上是否存在一点M ,使MQ +MA 的值最小?若存在,求出点M 的坐标;若不存在,请说明理由.【答案与解析】 一、选择题 1.【答案】B;, ∴是二次函数图象,2.【答案】 A . 21tan tan 2x x EFG x EFG ∠=∠2tan EFG ∠二、填空题3.【答案】1或3或; 【解析】解:∵抛物线y 1=2x 2向右平移2个单位,∴抛物线y 2的函数解析式为y=2(x-2)2=2x 2-8x+8,∴抛物线y 2的对称轴为直线x=2,∵直线x=t 与直线y=x 、抛物线y 2交于点A 、B ,∴点A 的坐标为(t ,t ),点B 的坐标为(t ,2t 2-8t+8),∴AB=|2t 2-8t+8-t|=|2t 2-9t+8|,AP=|t-2|,∵△APB 是以点A 或B 为直角顶点的等腰三角形,∴|2t 2-9t+8|=|t-2|,∴2t 2-9t+8=t-2 ①【解析】∵S 正方形OBAC =OB 2=9,∴OB=AB=3,∴点A 的坐标为(3,3)∵点A 在一次函数y=kx+1的图象上,5522+5.【答案与解析】解:(1)第n层上的点数为6(n -1)(n ≥2).(2)n 层六边形点阵的总点数为=1+6+12+18+…+6(n -1)=1+=3n(n -1)+1.(3)令3n(n -1)+1=169,得n =8.所以,它一共是有8层.6.【答案与解析】7.【答案与解析】 2)1)](1(66[--+n n解:(1)1,2;(2)探索应用:设P (x,),则C (x,0),D (0,), ∴CA =x+3,DB=+4, ∴S 四边形ABCD =CA ×DB=(x+3) ×(+4), 化简得:S=2(x+)+12, ∵x>0, >0,∴x+≥,只有当x=时,即x=3,等号成立.∴S ≥2×6+12=24,∴S 四边形ABCD 有最小值是24.此时,P(3,4),C(3,0),D(0,4),AB=BC=CD=DA=5,∴四边形是菱形.12x 12x12x121212x9x 9x 9x 9x<t≤5时,(如图)①在0<t <41(42OP QN =⨯1(2OP QN t =1(2OP OD t =②在4<t≤5时,对于抛物线S =综合以上三种情况,当t=6时,S 取得最大值,最大值是4.9.【答案与解析】解:(1)据题意可知:A (0,2),B (2,2),C (2,0).∵抛物线y=ax 2+bx+c 经过点A 、B 和D (4,), 28285,225525t t t --=-=⨯当时,∴,∴,∴y=﹣x2+x+2;(2)点B关于抛物线的对称轴x=1的对称点为A.连接AD,与对称轴的交点即为M.∵A(0,2)、D(4,),∴直线AD的解析式为:y=﹣x+2,当x=1时,y=,则M(1,);(3)①由图象知:PB=2﹣2t,BQ=t,AP=2t,∵在Rt△PBQ中,∠B=90°,∴S=PQ2=PB2+BQ2,∴=(2﹣2t)2+t2,即S=5t2﹣8t+4(0≤t≤1).②当S=54时,54=5t2﹣8t+4即20t2﹣32t+11=0,解得:t=,t=>1(舍)∴P(1,2),Q(2,).PB=1.若R点存在,分情况讨论:(i)假设R在BQ的右边,如图所示,这时QR=PB,RQ∥PB,则R的横坐标为3,R的纵坐标为,即R(3,),代入y=﹣x2+x+2,左右两边相等,故这时存在R(3,)满足题意;(ii)假设R在PB的左边时,这时PR=QB,PR∥QB,则R(1,)代入y=﹣x2+x+2,左右两边不相等,则R不在抛物线上综上所述,存点一点R,以点P、B、Q、R为顶点的四边形只能是口PQRB.则R(3,).此时,点R(3,)在抛物线=-x2+x+2上.10.【答案与解析】解:(1)点A(0,2m﹣7)代入y=﹣x2+2x+m﹣2,m﹣2=2m﹣7,解得:m=5故抛物线的解析式为y=﹣x2+2x+3;(2)如图1,由,得,∴B(,2),C(﹣,﹣2)B(,2),关于抛物线对称轴x=1的对称点为B′(2﹣,2),将B′,C代入y=kx+b,得:,解得:,可得直线B'C的解析式为:,由,可得,故当F(1,6)使得∠BFE=∠CFE;(3)如图2,当t秒时,P点横坐标为﹣t,则纵坐标为﹣2t,则M(﹣2t,﹣2t)在抛物线上时,可得﹣(﹣2t) 2﹣4t+3=﹣2t,整理得出:4t2+2t﹣3=0,解得:,当P(﹣t,﹣2t)在抛物线上时,可得﹣t2﹣2t+3=﹣2t,整理得出:t2=3,解得:,舍去负值,所以若△PMQ与抛物线y=﹣x2+2x+m﹣2有公共点t的取值范围是.11.【答案与解析】解:(1)∵抛物线y=ax2+bx+4经过A(﹣3,0),B(4,0)两点,∴,解得,∴所求抛物线的解析式为:y=﹣x2+x+4;(2)如图1,依题意知AP=t,连接DQ,∵A(﹣3,0),B(4,0),C(0,4),∴AC=5,BC=4,AB=7.∵BD=BC,∴AD=AB﹣BD=7﹣4,∵CD垂直平分PQ,∴QD=DP,∠CDQ=∠CDP.∵BD=BC,∴∠DCB=∠CDB.∴∠CDQ=∠DCB.∴DQ∥BC.∴△ADQ∽△ABC.∴=,∴=,∴=,解得DP=4﹣,∴AP=AD+DP=.∴线段PQ被CD垂直平分时,t的值为;(3)如图2,设抛物线y=﹣x2+x+4的对称轴x=与x轴交于点E.点A、B关于对称轴x=对称,连接BQ交该对称轴于点M.则MQ+MA=MQ+MB,即MQ+MA=BQ,∵当BQ⊥AC时,BQ最小,此时,∠EBM=∠ACO,∴tan∠EBM=tan∠ACO=,∴=,∴=,解ME=.∴M(,),即在抛物线y=﹣x2+x+4的对称轴上存在一点M(,),使得MQ+MA的值最小.。
1
【例1】
已知:抛物线y =x 2+kx -
34
k 2(k 为常数,且k >0) ⑴证明:此抛物线与x 轴总有两个交点;
⑵设抛物线与x 轴交于M 、N 两点,若这两点到原点的距离分别是OM ,ON ,且 1123
ON OM -=,求k 的值。
【例2】
已知抛物线y =x 2-mx +m -2。
⑴求证此抛物线与x 轴有两个不同的交点;
⑵若m 是整数,抛物线与x 轴交于整数点,求m 的值;
⑶在⑵的条件下,该抛物线顶点为A ,抛物线与x 轴的两个交点中右侧交点为B ,若M 为坐
标轴上一点,且MA =MB ,求点M 的坐标。
【例3】
已知:m ,n 是方程x 2-6x +5=0的两个实数根,且m <n ,抛物线y =-x 2+bx +c 的图像经
过点A (m ,0),B (0,n )。
⑴求这个抛物线的解析式;
⑵设⑴中抛物线与x 轴的另一个交点为C ,抛物线的顶点为D ,试求出点C 、D 的坐标和△
BCD 的面积;
⑶P 是线段OC 上的一点,过点P 作PH ⊥x 轴,与抛物线交于H 点,若直线BC 把△PCH
分成面积之比为2∶3的两部分,请求出P 点的坐标。
二次函数代几综合㈠。