33吸收带类型与溶剂效应
- 格式:ppt
- 大小:737.00 KB
- 文档页数:25
溶剂概述和溶剂效应摘要:对化学反应中溶剂的种类和作用做概述,以及溶剂效应在紫外,荧光,红外,核磁波谱和液相色谱中的作用。
关键词:溶剂溶剂效应吸收光谱液相色谱1,溶剂1.1溶剂的定义溶剂是一种可以溶化固体,液体或气体溶质的液体,继而成为溶液,最常用的溶剂是水。
1.2溶剂的分类溶剂按化学组成分为有机溶剂和无机溶剂有机溶剂是一大类在生活和生产中广泛应用的有机化合物,分子量不大,常温下呈液态。
有机溶剂包括多类物质,如链烷烃、烯烃、醇、醛、胺、酯、醚、酮、芳香烃、氢化烃、萜烯烃、卤代烃、杂环化物、含氮化合物及含硫化合物等等,多数对人体有一定毒性。
(本文主要概述有机溶剂在化学反应以及波谱中的应用)2,溶剂效应2.1溶剂效应的定义溶剂效应是指溶剂对于反应速率,平衡甚至反应机理的影响。
溶剂对化学反应速率常数的影响依赖于溶剂化反应分子和相应溶剂化过渡态的相对稳定性。
2.2溶剂效应在紫外,荧光,红外,核磁中的应用2.2.1溶剂效应在紫外吸收光谱中的应用[5]有机化合物紫外吸收光谱的吸收带波长和吸收强度,与所采用的溶剂有密切关系。
通常,溶剂的极性可以引起谱带形状的变化。
一般在气态或者非极性溶剂(如正己烷)中,尚能观察到振动跃迁的精细结构。
但是改为极性溶剂后,由于溶剂与溶质分子的相互作用增强,使谱带的精细结构变得模糊,以至完全消失成为平滑的吸收谱带。
这一现象称为溶剂效应。
例如,苯酚在正庚烷溶液中显示振动跃迁的精细结构,而在乙醇溶液中,苯酚的吸收带几乎变得平滑的曲线,如图所示2.2.1.1溶剂极性对n→π*跃迁谱带的影响[2]n→π*跃迁的吸收谱带随溶剂的极性的增大而向蓝移。
一般来说,从以环己烷为溶剂改为以乙醇为溶剂,会使该谱带蓝移7nm:如改为以极性更大的水为溶剂,则将蓝移8nm。
增大溶剂的极性会使n→π*跃迁吸收谱带蓝移的原因如下:会发生n→π*跃迁的分子,都含有非键电子。
例如C=O在基态时碳氧键极化成Cδ+=Oδ-,当n电子跃迁到π*分子轨道时,氧的电子转移到碳上,使得羰基的激发态的极性减小,即Cδ+=Oδ-(基态)→C=O(激发态)。
红外吸收光谱峰位的影响因素光谱峰位的影响因素分子内基团的红外吸收会受到邻近基团及整个分子其他部分的影响,也会因测定条件及样品的物理状态而改变。
所以同一基团的特征吸收会在一定范围内波动。
影响因素有: 1. 化学键的强度一般地说化学键越强,则力常数K 越大,红外吸收频率ν 越大。
如碳碳三键,双键和单键的伸缩振动吸收频率随键强度的减弱而减小。
伸缩振动频率 (cm -1) 2150 1715 1200 2. 诱导效应诱导效应可以改变吸收频率。
如羰基连有拉电子基团可增强碳氧双键,加大C=O 键的力常数K ,使C=O 吸收向高频方向移动。
C=O 伸缩振动频率(cm -1 ) 1715 1815 ~ 17853. 共轭效应共轭效应常使C =O 双键的极性增强,双键性降低,减弱键的强度使吸收向低频方向移动。
例如羰基与α、β不饱和双键共轭,从而削弱了碳氧双键,使羰基伸缩振动吸收频率向低波数位移。
C=O 伸缩振动频率(cm -1) 1715 1685 ~ 16704. 成键碳原子的杂化状态一般化学键的原子轨道s 成分越多,化学键力常数K 越大,吸收频率越高。
sp sp 2 sp 3C?H伸缩振动频率(cm-1)3300 3100 29005. 键张力的影响主要是环状化合物环的大小不同影响键的力常数,使环内或环上基团的振动频率发生变化。
具体变化在不同体系也有不同。
例如:环丙烷的C-H伸缩频率在3030 cm-1,而开链烷烃的C-H伸缩频率在3000 cm-1以下。
6.氢键的影响氢键的形成使电子云密度平均化,从而使伸缩振动频率降低。
形成氢键后基团的伸缩频率都会下降。
游离羧酸的C=O键频率出现在1760 cm-1 左右,在固体或液体中,由于羧酸形成二聚体,C=O键频率出现在1700 cm-1 。
分子内氢键不受浓度影响,分子间氢键受浓度影响较大。
例如:乙醇的自由羟基的伸缩振动频率是3640 cm-1,而其缔合物的振动频率是3350 cm-1。
实验六芳香族化合物的紫外吸收光谱及溶剂效应[ 实验目的]1.了解紫外可见光光度计的结构、用途及使用方法。
2.了解紫外吸收光谱在有机化合物结构鉴定中的作用及原理。
3.了解溶剂对吸收光谱的影响及原理。
[ 实验原理]作为有机化合物结构解析四大光谱之一,紫外吸收光谱具有方法简单、仪器普及率高、操作简便,紫外吸收光谱吸收强度大检出灵敏度高,可进行定性、定量分析的特点。
尽管紫外光谱谱带数目少、无精细结构、特征性差,只能反映分子中发色团和助色团及其附近的结构特征,无法反映整个分子特性,单靠紫外光谱数据去推断未知物的结构很困难,但是紫外光谱对于判断有机物中发色团和助色团种类、位置、数目以及区别饱和与不饱和化合物,测定分子中共轭程度进而确定未知物的结构骨架等方面有独到之处。
因此紫外吸收光谱是配合红外、质谱、核磁进行有机物定性鉴定和结构分析的重要手段。
利用有机光谱定性的依据是化合物的吸收光谱特征,主要步骤是绘制纯样品的吸收光谱曲线,由光谱特征依据一般规律作出判断;用对比法比较未知物和已知纯化合物的吸收光谱,或将未知物吸收光谱与标准谱图对比,当浓度和溶剂相同时,若两者谱图相同(曲线形状、吸收峰数目、λmax及εmax等),说明两者是同一化合物。
为进一步确证可换溶剂进行比较测定。
常用的光谱图集是Sadtler谱图,它收集了46000多种化合物的紫外吸收光谱图,并附有五种索引,使用方便。
最后要用其他化学、物理或物理化学等方法进行对照验证才能作出正确的结论。
有机物的紫外吸收光谱谱图解析:1.如果化合物在200-400nm内无吸收带,可推断未知物可能是饱和直链烃、脂环烃或只含一个双键的烯烃。
2.如果化合物只在270-350nm内有弱吸收带(ε =10-100L .mol-1 .cm-1)这是R带吸收的特征,则可推断未知物可能是一个简单的、非共轭的含有杂原子的双键化合物,如:羰基、硝基等,此谱带是n →Π∗跃迁产生的吸收带。
3.如果化合物在210-250nm内有强吸收带(ε ≥104L .mol-1 .cm-1)这是K带吸收的特征,则可推断未知物可能是含有共轭双键的化合物。
实验八 有机化合物紫外吸收光谱及溶剂对其吸收光谱的影响一、实验目的:1、学习并掌握紫外-可见分光光度计的使用;2、了解不同的助色团对苯的紫外吸收光谱的影响;3、观察pH 对苯酚的吸收光谱的影响。
二、实验原理:具有不饱和结构的有机化合物,特别是芳香族化合物,在近紫外区(200~400nm )有特征的吸收,给鉴定有机化合物提供了有用的信息。
苯有三个吸收带,它们都是由*ππ→跃迁引起的,E 1带:11max 180(60000)nm L cm mol λε--==⋅⋅,E 2带:11max 204(8000)nm L cm mol λε--==⋅⋅,两者都属于强吸收带。
B 带出现在230~270nm ,其11max 254(200)nm L cm mol λε--==⋅⋅ 。
在气态或非极性溶剂中,苯及其许多同系物的B 带有许多精细结构,这是振动跃迁在基态电子跃迁上叠加的结果。
在极性溶剂中,这些精细结构消失。
当苯环上有取代基时,苯的三个吸收带都将发生显著的变化,苯的B 带显著红移,并且吸收强度增大。
溶剂的极性对有机物的紫外吸收光谱有一定的影响。
当溶剂的极性由非极性改变到极性时,精细结构消失,吸收带变平滑。
显然,这是由于未成键电子对的溶剂化作用降低了n 轨道的能量使*π→n 跃迁产生的吸收带发生紫移,而*ππ→跃迁产生的吸收带则发生红移。
影响有机化合物的紫外吸收光谱的因素有:内因(共轭效应、空间位阻、助色效应)和外因(溶剂的极性和酸碱性)。
溶剂的极性和酸碱性不仅影响待测物质吸收波长的移动,还影响吸收峰吸收强度和它的形状。
本实验重点在了解不同的助色团对苯的紫外吸收光谱的影响和观察pH 对苯酚的吸收光谱的影响。
三、仪器:紫外-可见分光光度计,带盖石英比色皿(1.0cm )。
四、试剂:苯、环己烷、0.1mol/L HCl 、0.1mol/L NaOH 、苯的环己烷溶液(1:250)、甲苯的环己烷溶液(1:250)、苯酚的环己烷溶液(0.3g/L )、苯酚的水溶液(0.4 g/L )。
紫外光谱吸收带的分类总觉得这一块被忽略了,所以赶紧弄上来,唤起大家的回忆.原来感觉四谱分析(红外、紫外、质谱和核磁)在有机分析中一直占据着主导地位,但现在感觉紫外光谱一直被人们所忽视,一直没想明白怎么回事。
前一段时间参加仪器展览的时候,听一老师讲多极质谱,原来可以代替四谱分析来解决问题。
突然明白怎么回事,也感觉自己已经赶不上时代了,知识的更新速度远比俺学习的速度快的多。
感慨之余,和大家一起来学习分享紫外光谱吸收带的一些问题。
紫外及可见光谱包括有几个谱带系,不同的谱带系相当于不同电子能级的跃迁。
俺以前结构化学没有学好,现在很后悔啊!!!1、远紫外(真空紫外)吸收带这一块用的比较少,应该是非常少,一般紫外分光光度计的波长都是从200纳米开始的,因为远紫外(真空紫外)吸收带被空气强烈吸收,顾名思义,也叫真空紫外。
主要是烷烃化合物的吸收带,如C-C、C-H基团中,为δ→δ*跃迁,最大吸收波长小于200纳米,范围在10-200纳米。
2、尾端吸收带饱和卤代烃、胺类或含杂原子的单键化合物的吸收带,由于这类化合物含有一个或几个孤对电子,因此产生n→δ*跃迁,其范围从远紫外区末端到近紫外区,在200纳米附近。
所以,一般在紫外区扫描或全波长扫描的时候,建议从210纳米开始,因为很多物质都存在末端吸收,多扫了没有多大意义,从节省时间和氘灯的角度考虑,建议从210纳米开始扫描。
3、R带这个吸收属于弱吸收带,但是溶剂效应比较明显,所以俺在此友情提醒,在选择溶剂的时候一定要注意哦。
R带是共轭分子的含杂原子基团的吸收带,如C=O,N=O,N=N等基团,有n→π*跃迁产生,为弱吸收带,摩尔吸光系数K一般小于100L.mol-1.cm-1;随着溶剂极性的增加,R带会发生蓝移,附近如有强吸收带,R带有时会红移,有时可能观察不到。
4、K带这个用的比较多,也是有机物定性定量的基础,其最大吸收往往是由K带决定的,一般来说,如果某物质存在共轭双键,从理论上来将都可以用紫外去定性定量的,所以俺建议大家,要特别注意K带呀。
实验三、有机化合物的紫外吸收光谱及溶剂效应实验⼀、有机化合物的紫外吸收光谱及溶剂效应⽬的要求:1、学习⽤紫外吸收光谱进⾏化合物的定性分析。
2、学习苯环上取代基的引⼊对最⼤吸收波长的影响。
3、了解⼀元取代苯的紫外光谱的实验规则。
4、熟悉各个吸收带。
基本原理影响有机化合物紫外吸收光谱的因素,有内因和外因。
由于受到溶剂极性的影响,溶质的吸收峰的波长、强度以及形状都会发⽣不同程度的变化。
这是因为溶剂分⼦和溶质分⼦间可能形成氢键,或极性溶剂分⼦的偶极使溶质分⼦的极性增强,因⽽在极性溶剂中π→π*跃迁所需能量减消,吸收波长红移,⽽在极性溶剂中n→π*跃迁所需能量增⼤,吸收波长蓝移。
E带和B带是芳⾹族化合物的特征吸收。
它们均由π→π*跃迁产⽣,当苯环上有取代基时,E带和B带的吸收峰也随之变化。
如苯甲酸的E吸收带红移⾄230nm;ε=11600;B吸收带红移⾄273nm;ε=970;⼄酰苯胺的E吸收带红移⾄241nm;ε=14000。
本实验通过苯甲酸、⼄酰苯胺、苯在⼄醇和环⼰烷的溶剂中紫外吸收光谱的测绘,说明内因和外因对有机化合物紫外吸收光谱的影响;了解⼀元取代苯的紫外光谱的实验规则,即在苯环上有⼀元取代基时,复杂的B谱带⼀般都简单化,并且各谱带的最⼤吸收波长发⽣红移,εmax⼀般增⼤。
⼀、仪器1、紫外-可见分光光度计。
型号:760CRT⼆、试剂1、苯甲酸、苯、⼄酰苯胺、⼄醇和环⼰烷均为分析纯2、a 苯甲酸的环⼰烷溶液0.08g.100ml-1c 苯的环⼰烷溶液1:250e ⼄酰苯胺的⼄醇溶液0.08g.100ml-1f 苯的⼄醇溶液1:250三、实验条件1、波长扫描范围:190~300(400)2、参⽐:3、slit: 0.01nm4、扫描速度快速5、⽯英吸收池四、实验步骤1、各取a b c d e f 2mla b c ⽤环⼰烷定容到10mld e f ⽤⼄醇定容到10ml.2、在设定的实验条件下,⽤相应的溶剂作参⽐,分别绘测三种溶质在两种溶液中的紫外谱图。
溶剂概述和溶剂效应溶剂概述和溶剂效应摘要:对化学反应中溶剂的种类和作⽤做概述,以及溶剂效应在紫外,荧光,红外,核磁波谱和液相⾊谱中的作⽤。
关键词:溶剂溶剂效应吸收光谱液相⾊谱1,溶剂1.1溶剂的定义溶剂是⼀种可以溶化固体,液体或⽓体溶质的液体,继⽽成为溶液,最常⽤的溶剂是⽔。
1.2溶剂的分类溶剂按化学组成分为有机溶剂和⽆机溶剂有机溶剂是⼀⼤类在⽣活和⽣产中⼴泛应⽤的有机化合物,分⼦量不⼤,常温下呈液态。
有机溶剂包括多类物质,如链烷烃、烯烃、醇、醛、胺、酯、醚、酮、芳⾹烃、氢化烃、萜烯烃、卤代烃、杂环化物、含氮化合物及含硫化合物等等,多数对⼈体有⼀定毒性。
(本⽂主要概述有机溶剂在化学反应以及波谱中的应⽤)2,溶剂效应2.1溶剂效应的定义溶剂效应是指溶剂对于反应速率,平衡甚⾄反应机理的影响。
溶剂对化学反应速率常数的影响依赖于溶剂化反应分⼦和相应溶剂化过渡态的相对稳定性。
2.2溶剂效应在紫外,荧光,红外,核磁中的应⽤2.2.1溶剂效应在紫外吸收光谱中的应⽤[5]有机化合物紫外吸收光谱的吸收带波长和吸收强度,与所采⽤的溶剂有密切关系。
通常,溶剂的极性可以引起谱带形状的变化。
⼀般在⽓态或者⾮极性溶剂(如正⼰烷)中,尚能观察到振动跃迁的精细结构。
但是改为极性溶剂后,由于溶剂与溶质分⼦的相互作⽤增强,使谱带的精细结构变得模糊,以⾄完全消失成为平滑的吸收谱带。
这⼀现象称为溶剂效应。
例如,苯酚在正庚烷溶液中显⽰振动跃迁的精细结构,⽽在⼄醇溶液中,苯酚的吸收带⼏乎变得平滑的曲线,如图所⽰2.2.1.1溶剂极性对n→π*跃迁谱带的影响[2]n→π*跃迁的吸收谱带随溶剂的极性的增⼤⽽向蓝移。
⼀般来说,从以环⼰烷为溶剂改为以⼄醇为溶剂,会使该谱带蓝移7nm:如改为以极性更⼤的⽔为溶剂,则将蓝移8nm。
增⼤溶剂的极性会使n→π*跃迁吸收谱带蓝移的原因如下:会发⽣n→π*跃迁的分⼦,都含有⾮键电⼦。
例如C=O在基态时碳氧键极化成Cδ+=Oδ-,当n电⼦跃迁到π*分⼦轨道时,氧的电⼦转移到碳上,使得羰基的激发态的极性减⼩,即Cδ+=Oδ-(基态)→C=O(激发态)。
实验三有机化合物的吸收光谱及溶剂效应一、实验目的1.了解紫外可见分光光度计的结构及使用方法。
2.了解苯及其衍生物的紫外吸收光谱及鉴定方法。
3.观察溶剂对吸收光谱的影响。
二、实验内容1.未知有机化合物的鉴定。
2.溶剂对紫外吸收光谱的影响。
三、实验原理、方法和手段紫外吸收光谱、红外光谱、核磁共振波谱和质谱是有机结构解析的四大工具,尽管紫外吸收光谱谱带数目少,缺少精细结构,光谱的特征不强,但它在有机化合物结构鉴定中仍是一种有用的辅助手段,特别对于芳香族化合物,由于它在紫外区的特征吸收,给鉴定提供了有用的信息。
芳香族化合物的紫外光谱的特点是具有由π→π*跃迁产生的3个特征吸收带。
例如,苯在184nm附近有一个强吸收带,ε=68000;在204nm处有一较弱的吸收带,ε=8800;在254nm附近(或230~270nm)有一个弱吸收带,ε=250。
当苯处在气态时,这个吸收带具有很好的精细结构。
当苯环上带有取代基时,则强烈地影响苯的3个特征吸收带。
利用紫外吸收光谱鉴定有机化合物的方法是在相同的条件下,比较未知物与已知纯化合物的吸收光谱,或将未知物的吸收光谱与标准谱图(例如Sadtler紫外光谱图)对比,如果两者的吸收光谱完全一致,则可认为是同一种化合物。
四、仪器与试剂(一)仪器:紫外—可见分光光度计;比色管(带塞):5mL 10支,10mL 3支;移液管:lmL 6支,0.1mL 2支。
(二)试剂:苯、乙醇、环己烷、正己烷、氯仿、丁酮、异亚丙基丙酮。
溶液:HCl(0.1mol·L-1),NaOH(0.1mo1·L-1),苯的环己烷溶液(1:250),甲苯的环己烷溶液(1:250),苯的环己烷溶液(0.3g·L-1),苯甲酸的环己烷溶液(0.8g·L-1),苯胺的环己烷溶液(1:3000),苯酚的水溶液(0.4g·L-1)。
异亚丙基丙酮分别用水、氯仿、正己烷配成浓度为0.4g·L-1溶液。