三年级-第四讲-乘法的速算与巧算
- 格式:pptx
- 大小:5.60 MB
- 文档页数:63
小学三年级数学:乘、除法速算巧算精要+专项练习一、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。
理论依据:乘法交换率:a×b=b×a乘法结合率:(a×b) ×c=a×(b×c)乘法分配率:(a+b) ×c=a×c+b×c积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)二、乘、除法混合运算的性质⑴商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变。
⑵在连除时,可以交换除数的位置,商不变。
⑶在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家)。
⑷在乘、除混合运算中,去掉或添加括号的规则去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变。
②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”。
添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”。
竖式计算25×38= 98×87= 52×39= 92×68=46×59= 17×75= 19×53= 75×18=99×45= 93×39= 65×19= 93×35=33×16= 69×42= 26×76= 68×88=42×59= 84×93= 44×64= 15×95=68×69= 83×29= 32×75 76×92=39×69= 74×64= 73×76= 48×54=35×74= 29×29= 24×18= 96×18=22×56= 55×57= 32×95= 68×19=66×43= 74×38= 98×48= 98×32=29×57= 33×94= 14×49= 83×29=53×93= 85×74= 96×22= 98×26=竖式计算,有☆的验算。
小学三年级数学乘、除法的速算与巧算知识点一、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。
理论依据:乘法交换率:a×b=b×a乘法结合率:(a×b) ×c=a×(b×c)乘法分配率:(a+b) ×c=a×c+b×c积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)二、乘、除法混合运算的性质⑴商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变。
⑵在连除时,可以交换除数的位置,商不变。
⑶在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家)。
⑷在乘、除混合运算中,去掉或添加括号的规则去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变。
②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”。
添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”。
竖式计算25×38= 98×87= 52×39= 92×68=46×59= 17×75= 19×53= 75×18=99×45= 93×39= 65×19= 93×35=33×16= 69×42= 26×76= 68×88=42×59= 84×93= 44×64= 15×95=68×69= 83×29= 32×75 76×92=39×69= 74×64= 73×76= 48×54=35×74= 29×29= 24×18= 96×18=22×56= 55×57= 32×95= 68×19=66×43= 74×38= 98×48= 98×32=29×57= 33×94= 14×49= 83×29=53×93= 85×74= 96×22= 98×26=竖式计算,有☆的验算。
1.快速计算乘法口诀表在小学三年级,学生已经开始学习乘法口诀表。
熟练掌握乘法口诀表是进行速算和巧算的基础。
学生应该掌握1乘以任意数等于该数本身,以及0乘以任意数等于0的原则。
另外,在计算乘法的过程中,还可以利用一些巧妙的方法,如利用乘法交换律和结合律,简化计算的步骤。
2.快速计算除法在小学三年级,学生已经开始学习除法运算。
为了进行快速计算除法,学生需要熟悉乘法和除法之间的关系。
例如,学生可以通过将除法问题转化为乘法问题来进行计算。
另外,学生还需要熟悉常见的除法口诀,如9除以任意数的口诀。
3.快速计算加法与减法在小学三年级,学生已经开始学习加法和减法运算。
为了进行速算和巧算,学生可以借助一些技巧。
例如,学生可以利用补数进行计算,将加法问题转化为减法问题或将减法问题转化为加法问题。
另外,在计算的过程中,学生还可以利用进位和借位的方法简化计算的步骤。
4.快速计算小数在小学三年级,学生已经开始学习小数的运算。
为了进行快速计算小数,学生需要熟悉小数的基本概念,如小数点的意义和小数的大小比较。
另外,在计算小数的过程中,学生还可以利用近似计算和适当舍入的方法简化计算的步骤。
5.快速计算整数问题在小学三年级,学生已经开始学习整数的运算。
为了进行速算和巧算,学生需要熟悉整数的基本概念,如正数、负数和零的概念。
另外,在计算整数的过程中,学生还可以利用相反数的概念简化计算的步骤。
6.快速计算组合问题在小学三年级,学生已经开始学习组合的概念。
为了进行快速计算组合问题,学生需要熟悉排列组合的基本原理,如乘法原理和加法原理。
另外,在计算组合的过程中,学生还可以利用化简问题和分类讨论的方法简化计算的步骤。
7.快速计算面积和周长问题在小学三年级,学生已经开始学习面积和周长的计算。
为了进行速算和巧算,学生需要熟悉面积和周长的基本公式,如长方形的面积和周长的计算公式。
另外,在计算面积和周长的过程中,学生还可以利用化简问题和近似计算的方法简化计算的步骤。
小学三年级是学生接触数学的关键时期,良好的速算和巧算技巧可以帮助他们更好地理解和掌握数学知识。
下面是一些适合小学三年级学生的速算和巧算技巧:1.知识点梳理:首先,要帮助学生梳理和掌握好基本的数学知识点,如加减法、乘除法的口诀和技巧。
例如,学生可以通过加减法口诀表来熟悉数字之间的加减法关系,并可以用乘法口诀表来快速计算乘法运算。
2.数字分解:学生可以通过数字的分解来进行速算。
例如,对于两位数相加相减的计算,在计算过程中,可以将两位数拆分为个位数和十位数,然后进行运算。
对于乘法,学生可以将一个较大的数拆分为易于计算的数,然后进行运算。
3.近似计算:近似计算是一种巧算的技巧,可以快速得到近似答案。
学生可以将复杂的计算问题简化为简单的计算,然后进行近似计算。
例如,将一个数取近似值,然后进行计算,最后再修正结果。
4.列竖式计算:列竖式计算是一种有效的计算方法,可以帮助学生进行加减乘除法的计算。
学生可以按照正确的步骤进行计算,将数字对齐,并逐位进行运算。
5.快速乘除法:对于较大的乘法和除法问题,学生可以通过一些特殊的规律和技巧进行快速计算。
例如,学生可以利用乘法法则中的分配律和结合律来简化乘法计算,或者通过减法法则中的除法运算来简化除法计算。
6.数量关系的转化:对于一些涉及到数量转化的问题,学生可以通过一些简单的技巧来求解。
例如,将百分数转化为小数,然后进行计算;或者将分数转化为小数,然后进行比较大小等。
7.倍数关系:学生可以通过找到数与数之间的倍数关系来进行速算。
例如,学生可以利用倍数关系快速计算两个数的最小公倍数或最大公约数。
8.抽象问题的转化:对于一些抽象的问题,学生可以尝试将其转化为具体的数学问题进行求解。
例如,对于一些关于物体的问题,可以尝试将其转化为长度、面积或体积的问题进行求解。
通过以上的速算和巧算技巧,小学三年级的学生可以更加灵活地运用数学知识,提高计算速度和准确性。
同时,这些技巧也可以让学生更好地理解数学概念和思维方法,培养他们的数学思维能力。
速算与巧算1.加法中的巧算(1)加法交换律:两个数相加,交换加数的位置,它们的和不变。
即:a+b=b+a (2)加法结合律:三个数相加,先把前两个数相加,再加上第三个数,或者先把后两个数相加,在和第一个数相加,它们的和不变。
即:a+b+c=(a+b)+c=a+(b+c) 2.减法和加减混合运算中的巧算(1)一个数连续减去几个数,等于减去这几个数的和。
相反,一个数减去几个数的和,等于连续减去这几个数。
即:a-b-c=a-(b+c)(2)在加减混合运算中,如果算式中没有括号,那么计算时可以带着运算符号“搬家”。
如:a-b+c=a+c-b(3)加减混合运算中去括号(或添括号)时,如果括号前面是“-”号,那么括号里“-”变“+”;如果括号前面是“+”号,那么括号里的符号不变。
如:a+(b-c)=a+b-c,a-(b-c)=a-b+c3.“基准数加累计差”方法几个相近的数相加,可以选择其中一个数,最好是整十,整百的数位“基准数”,、再找出每个加数与基准数的差,大于基准数的差做加数,小于基准数的差做减数,把这些差累计起来再加上基准数与加数个数的乘积就可以得到结果。
如果两个数的和恰好可以凑成整十,整百,整千……的数,那么其中一个数叫做另一个数的“补数”。
例如:1+9=10,1叫做9的补数。
判断两个数是否为补数:只要看两个数的个位数之和是否为104.等差数列求和公式和=(首项+末项)×项数÷2项数=(末项-首项)÷公差+1例1(1)82+354+18 (2)364+97+636+1003例2(1)400-21-29 (2)1000-27-60-73-40例2(1)624+31-324+69 (2)35+27-42-35-27+82例3(1)724-(180-76)(3)685-327+127例4(1)574+499 (2)1592-197 (3)987-399例5 (1)54+47+50+57+48+45 (2)29999+2999+299+29+9例6 (1)1+2+3+…+18+19+20 (2)1+4+7+…+19+22+25练习1.783+68+32 345+45+552.864+1673+136+327 78+23+222+179+21+3573.9998+998+98 9+99+999+9999+44.875-364-236 587-231-695.1797-(797-215)876-(376+123)6.4796-998 248+997.85+83+78+76+82+77+80+79 45+43+47+38+35+39+448.1000-90-80-70-60-50-40-30-20-10 1-2+3-4+5-6+7-8+9-10+114.乘法具有以下三个运算定律(1)乘法交换律:2个数相乘,交换2个数的位置,积不变。
第四讲速算与巧算(二)这一讲主要介绍内容是:在小学阶段学习乘法定律和商不变性质的基础上进一步灵活运用所学知识,使计算简便。
一、乘法中的速算和巧算1.直接利用乘法结合律的速算利用乘法结合律,可以把两个因数相乘积是整十、整白、整千的先进行计算,使计算简便。
为了计算迅速,可以把有些较常用的乘法算式记熟,例如:25x4 = 100, 125x8 = 1000, 12x5=60 .................................................例]计算236x4x25解:236x4x25=236x (4x25)= 236x100= 236002.乘法交换律、结合律同时运用的速算儿个因数相乘,先交换因数的位置,使因数相乘积为整十、整百、整千的凑在一起,根据结合律分组计算比较简便。
例2125x2x8x25x5x4解:原式=(125x8) x (25x4) x (5x2)= 1000x100x10= 10000003.直接利用乘法分配律的简算例3计算:(1) 175x34x175x66(2) 67x12+67x35+67x52+67解:(1)根据乘法分配律:原式= 175x (34+66)= 175x100= 17500(2)把67看作67x1后,利用乘法分配律简算。
原式= 67x (12+35+52+1)= 67x100= 67004.把一个因数拆分成两个因数,利用交换律、结合律进行巧算。
例4计算(1) 28x25(2) 48x125(3) 125x5x32x5解:(1)原式=4x7x25=7x (4x25)= 7x100= 700(2) 原式=6x8xl25=6x (8x125)= 6x1000= 6000(3) 原式=125x8x4x5x5=(125x8) x (4x25)= 1000x100= 1000005.间接利用乘法分配律进行巧算例5计算(1) 26x99(2) 1236x199(3) 713x101解:(1)由99 = 100-1,原式=26x (100-1)= 26x100-26x1= 2600—26= 2574(2) 由199=200-1,原式=1236x (200-1)= 1236x200-1236x1= 247200 — 1236= 246000—36= 245964(3) 原式=713x (100+1)= 713x100+713x1= 71300+713= 720136.几种常见的特殊因数乘积的巧算(1)任何一个自然数乘以0,其积都等于0。
一、乘法中的巧算1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:5×2=10 25×4=100 125×8=1000例1 计算①123×4×25②125×2×8×25×5×4解:①式=123×(4×25)=123×100=12300②式=(125×8)×(25×4)×(5×2)=1000×100×10=1000000分解因数,凑整先乘。
2.例2计算①24×25②56×125③125×5×32×5解:①式=6×(4×25)=6×100=600②式=7×8×125=7×(8×125)=7×1000=7000③式=125×5×4×8×5=(125×8)×(5×5×4)=1000×100=1000003.应用乘法分配律。
例3 计算①175×34+175×66②67×12+67×35+67×52+6解:①式=175×(34+66)=175×100=17500②式=67×(12+35+52+1)=67×100=6700(原式中最后一项67可看成67×1)例4 计算①123×101②123×99解:①式=123×(100+1)=123×100+123 =12300+123=12423②式=123×(100-1)=12300-123=121774.几种特殊因数的巧算。
乘法速算与巧算乘法的速算与巧算前面我们已经学习了加、减法中的巧算,大家学会了运用“凑整”的方法进行计算,实际上这种凑整的方法也同样可以运用在乘除计算中。
为了更好地凑整,要牢记以下几对补数:乘法中常用的三对补数:2×5=10,4×25=100,8×125=1000在乘法的巧算中,经常要用到一些运算定律,例如乘法交换律、乘法结合律、乘法分配律等等,善于运用运算定律,是提高巧算能力的关键。
乘法交换律:b c a c b a ⨯⨯=⨯⨯乘法结合律:)()(c b a c b a ⨯⨯=⨯⨯乘法分配律:c a b a c b a ⨯±⨯=±⨯)(乘法分配律的反用:)(c b a c a b a ±⨯=⨯±⨯乘法分配律在除法中的应用:a c b a c a b ÷±=÷±÷)(除法的性质:a ÷(b ×c)=a ÷b ÷c乘除混合运算中还可以利用倍数关系巧算,涉及到去括号和添括号。
在乘法的巧算中同样会用到三个技巧:补数先算、凑整再算、拆数凑整补数先算:2×54×258×125常用的补数要记得:2×5=104×25=1008×125=1000凑整再算:99=100-1102=100+2在做乘除法巧算时,要运用这些规律,先凑整得出10、100、1000……再进行简便计算。
拆数凑整:4=2×2、8=2×4、12=4×3、16=4×4、24=6×4、32=8×4、28=4×7……例题1:简便计算下列各题。
(1)25×17×4(2)125×77×8练习1:(1)5×41×2(2)8×18×125(3)8×25×4×125(4)125×25×8×5×2×4例题2:简便计算下列各题(1)125×32(2)25×48(3)5×25×16(4)5×25×125×64练习2:简便计算下列各题(1)125×56(2)25×5×32(3)45×25×2×4(4)125×25×72×4例题3:简算下列各题。
知识要点二、乘、除法混合运算的性质⑴商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变.即:()()()()0a b a n b n a m b m m ÷=⨯÷⨯=÷÷÷≠ ,0n ≠ ⑵在连除时,可以交换除数的位置,商不变.即:a b c a c b ÷÷=÷÷⑶在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家).例如:a b c a c b b c a ⨯÷=÷⨯=÷⨯⑷在乘、除混合运算中,去掉或添加括号的规则一、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。
例如:425100⨯=,81251000⨯=,520100⨯=123456799111111111⨯= (去8数,重点记忆) 711131001⨯⨯=(三个常用质数的乘积,重点记忆) 理论依据:乘法交换率:a×b=b×a 乘法结合率:(a×b) ×c=a×(b×c) 乘法分配率:(a+b) ×c=a×c+b×c 积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)乘除法速算与巧算两人和倍乘5、15、25、125【例 1】 下面这些题你会算吗?(1)125(408)⨯+ (2)(1004)25-⨯ (3)(1008)25-⨯【分析】 (1)125(408)125401258500010006000⨯+=⨯+⨯=+=(2)(1004)251002542525001002400-⨯=⨯-⨯=-= (3)(1008)251002582525002002300-⨯=⨯-⨯=-=【例 2】 下面这道题怎样算比较简便呢?看谁算的快!2625⨯【分析】 26不能被4整除,但26可以拆成642⨯+,这样2625⨯,可转化为6425⨯⨯再加上225⨯,这样就可速算了. 原式64225=⨯+⨯()642522560050650=⨯⨯+⨯=+=【例 3】 你知道下题怎样快速的计算吗?⑴786 5 ⨯ ⑵12425⨯ ⑶96125 ⨯ ⑷75258⨯⨯ 【分析】 我们刚刚学过了乘 5,25,125的速算法,大显身手练一下吧!⑴7865786(52)2786023930⨯=⨯⨯÷=÷=或 786539325393103930⨯=⨯⨯=⨯= ⑵12425124(254)41240043100⨯=⨯⨯÷=÷=或1242531425311003100⨯=⨯⨯=⨯=⑶9612596(1258)896000812000 ⨯=⨯⨯÷=÷=或 9612512812512100012000⨯=⨯⨯=⨯= ⑷7525825475210015015000⨯⨯=⨯⨯⨯=⨯=【例 4】 计算:813125⨯⨯= 【分析】 根据乘法凑整原则81312581251310001313000⨯⨯=⨯⨯=⨯=去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变.即()()a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷ ②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”.即()()a b c a b c a b c a b c ÷⨯=÷÷÷÷=÷⨯ 添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”.即()()()()a b c a b c a b c a b c a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷÷÷=÷⨯÷⨯=÷÷ ⑸两个数之积除以两个数之积,可以分别相除后再相乘.即 ()()()()()()a b c d a c b d a d b c ⨯÷⨯=÷⨯÷=÷⨯÷ 上面的三个性质都可以推广到多个数的情形.【例 5】 为了考察大头儿子的速算能力,小头爸爸给他出了一道题,并且限时一分钟,小朋友,你能做到吗?192564125⨯⨯⨯ 【分析】 把64分成482⨯⨯,用乘法结合律便可速算.原式2541258192=⨯⨯⨯⨯⨯()()()1001000383800000=⨯⨯=【例 6】 计算:1733212525⨯⨯⨯. 【分析】 原式1734812525=⨯⨯⨯⨯()173425812517300000=⨯⨯⨯⨯=()()【例 7】 请快速计算下面各题. ⑴200425⨯ ⑵125792⨯ 【分析】 ⑴200425(20004)2520002542550100⨯=+⨯=⨯+⨯=⑵125792125(8008)1258001258100010010001000(1001)99000⨯=⨯-=⨯-⨯=⨯-=⨯-=【例 8】 456212525548⨯⨯⨯⨯⨯⨯ 【分析】 原式456252541258=⨯⨯⨯⨯⨯⨯()()()456101001000=⨯⨯⨯ 456000000=【例 9】 聪明的你也来试试吧!⑴2415 ⨯ ⑵8475⨯ ⑶3975 ⨯ ⑷56625 ⨯【分析】 ⑴2415(24242)10(2412)10360⨯=+÷⨯=+⨯=⑵8475(214)(253)(213)(425)631006300⨯=⨯⨯⨯=⨯⨯⨯=⨯= ⑶3975 (401)7540751753000752925⨯=-⨯=⨯-⨯=-=⑷56625(78)(1255)(75)(8125)35100035000⨯=⨯⨯⨯=⨯⨯⨯=⨯=【例 10】 请你简便计算.⑴5365⨯ ⑵63815⨯ ⑶3225⨯ ⑷6875⨯【分析】 ⑴5365536(52)2536022680⨯=⨯⨯÷=÷=⑵63815(6386382)109570⨯=+÷⨯= ⑶322532(254)432004800⨯=⨯⨯÷=÷=⑷6875174253173(425)5100⨯=⨯⨯⨯=⨯⨯⨯=【例 11】 计算:125161119⨯-⨯=____________. 【分析】 根据乘法凑整原则整理为125161119⨯-⨯ ()=125829992000100012000100011001⨯⨯-=--=-+=【例 12】 计算:()450002590÷⨯=【分析】()450002590÷⨯()=450005045=450005045=100050=20÷⨯÷÷÷乘9、99、999【例 13】 下面各题怎样算简便呢?⑴129⨯ ⑵1299⨯ ⑶12999⨯【分析】 ⑴利用公式,可以得出结果:12912012108⨯=-=;⑵12991200121188⨯=-=,此题也可用小技巧:“去1添补”法,“补”就是“补数”,和为整十或整百或整千的两个数都可称为互补数.注意:只适用于“两位数乘99”.的补数是88去11112=118812× 99⑶12999120001211988⨯=-=,此题可用小技巧:“去1添补,中间隔9”法. 注意:只适用于“两位数乘999”.中间隔的补数是88去1是12=1198812×【例 14】 计算:123456789876543219⨯=【分析】 原式()21111111119=⨯ 999999999111111111=⨯111111111000000000111111111=- 111111110888888889=【例 15】 算式1234567898765432163⨯值的各位数字之和为 。
第四讲整数乘除法中的巧算与简算知识结构:这一讲我们主要研究乘除法中的一些简便运算方法。
要达到运算简便,关键是要学会运用乘除法的运算定律,能根据某些算式的规律,创造条件,进行分组、分类计算,使复杂的乘、除法运算变得简便。
解题技巧:运用乘法运算定律:1乘法交换律;2乘法结合律;3乘法分配律;4除法的性质;5分拆;6商不变的性质方法探究:例1.你能很快算出下面各题的结果吗?(1)240÷5 (2)1600÷25 (3)42000÷125例2.用简便方法计算下面各题。
(1)925÷25 (2)38700÷900例3.简算下列各题。
(1)4900÷25÷4 (2)210÷42×6 (3)5400÷(25×9)例4.简算下面各题。
(1)(350+25)÷5 (2)525÷7÷5 (3)2424÷8÷3例5.巧算下面各题。
(1)560÷(28÷6)(2)364÷24×6 (3)7128÷54随堂训练:1.用简便方法计算下面各题。
(1)720÷5 (2)480÷5 (3)1320÷5 (4)2360÷5(5)425÷25 (6)825÷25 (7)3640÷70 (8)775÷252.巧算下面各题。
(1)9000÷125 (2)2200÷125 (3)4600÷25 (4)48000÷1253.用简便方法计算下面各题。
(1)(182+325)÷13 (2)(2046-1059)÷3 (3)2275÷13÷5 (4)3400÷25 (5)4800÷12÷404.你会简算吗?(1)8500÷25÷4 (2)372÷162×54 (3)243×729÷(81×81)(4)27500÷4÷25 (5)4032÷(8×9)(6)100000÷125÷8培优作业:(1)720÷(36×5)(2)78×38÷19 (3)125×(80÷50)。
三年级口算与速算集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]第1讲:加减巧算专题分析:加减巧算主要是运用“凑整”的方法,把接近整十、整百、整千的数看做所接近的数进行简算。
凑整之后,对于原数与整十、整百、整千……相差的数,要根据“多加要减去,少加要加上,多减要加上,少减要减去”的原则进行处理。
另外,可结合加法交换律、结合律及减法性质凑整,从而达到简算目的。
例1:你有好办法迅速计算出结果吗?(1)502+799-298-97(2)9999+999+99+9【思路导航】先把接近整十、整百、整千的数看成整十、整百、整千数,再算“零头”,最后把两部分数合起来。
(1)502+799-298-97(2)9999+999+99+9=500+2+800-1-300+2-100+3=10000-1+1000-1+100-1+10-1=(500+800-300-100)+(2-1+2+3)=10000+1000+100+10-4=900+6=11110-4=906=11106例2:计算下面各题。
(1)487+321+113+479(2)723-251+177(3)872+284-272(4)537-142-58【思路导航】通过观察后,发现后几位数互补或相等,通过加减正好能凑成整十、整百、整千数。
(1)487+321+113+479(2)723-251+177=(487+113)+(321+479)=(723+177)-251=600+800=900-251=1400=649(3)872+284-272(4)537-142-58=872-272+284=537-(142+58)=600+284=537-200=884=337例3:计算下面各题。
(1)321+(279-155)(2)327-(54+72)(3)432-(154-68)【思路导航】通过观察,我们可以先去括号,再进行移位凑整计算。