《受弯构件变形验算》PPT课件
- 格式:ppt
- 大小:1.25 MB
- 文档页数:10
第十章受弯构件的裂缝与变形验算第一节概述1.一、钢筋混凝土受弯构件在使用阶段的计算特点:1.使用阶段一般指梁带裂缝工作阶段。
2.使用阶段计算是按照构件使用条件对已设计的构件进行计算,以保证在使用情况下的应力、裂缝和变形小于正常使用极限状态的限值。
当构件验算不满足要求时,必须按承载能力极限状态要求对已设计好的构件进行修正、调整,直至满足两种极限状态的设计要求。
3.使用阶段计算中涉及到的内力,是各种使用荷载在构件截面上各自产生的同类型内力,按荷载组合原则简单叠加,不带任何荷载系数。
二、结构按正常使用极限状态设计采用的两种效应组合:1 1.作用短期效应组合。
永久作用标准值效应与可变作用频遇值效应相组合,其效应组合表达式为:2 2.作用长期效应组合。
永久作用标准值效应与可变作用准永久值效应相组合,其效应组合表达式为:第二节换算截面一、基本假定二、截面变换三、换算截面的几何特性表达式一、基本假定1.平截面假定。
2.弹性体假定。
3.受拉区出现裂缝后,受拉区的混凝土不参加工作,拉应力全部由钢筋承担。
4.同一强度等级的混凝土,其拉、压弹性模量视为同一常值,不随应力大小而变,从而钢筋的弹性模量和混凝土的弹性模量之比值为一常数值,即/。
与混凝土的强度等级有关。
《公桥规》规定钢筋混凝土构件的截面换算系数。
二、截面变换将截面受拉区纵向受拉钢筋的截面面积换算成假想的能承受拉应力的混凝土截面面积,如图。
并满足:1、虚拟混凝土块仍居于钢筋的重心处且应变相同,即2、虚拟混凝土块与钢筋承担的内力相同,即由虎克定律(Hookelaw)得:根据换算截面面积承受拉力的作用应与原钢筋的作用相同的原则可得所以,上式表明,截面面积为的纵向受拉钢筋的作用相当于截面面积为的受拉混凝土的作用,即称为钢筋的换算截面面积。
<top>三、换算截面的几何特性表达式(一)、单筋矩形截面1、换算截面面积:2、换算截面对中性轴的静矩:2、换算截面对中性轴的静矩:受压区:受拉区:3、换算截面对中性轴的惯性矩4、受压区高度x:对于受弯构件,开裂截面的中性轴通过其换算截面的形心轴,即若将符号(受压区相对高度)及(配筋率)代入上式,则可得到5、受压区边缘混凝土应力6、受拉钢筋应力(二)、双筋矩形截面对于双筋矩形截面,截面换算的方法就是将受拉钢筋的截面和受压钢筋截面分别用两个虚拟的混凝土块代替,形成换算截面。
第四章钢筋混凝⼟受弯构件的应⼒、裂缝和变形验算第四章钢筋混凝⼟受弯构件的应⼒、裂缝和变形验算对钢筋混凝⼟构件,除应进⾏承载能⼒极限状态计算外,还要根据施⼯和使⽤条件进⾏持久状况正常使⽤极限状态和短暂状况的验算。
第⼀节抗裂计算桥梁构件按短暂状况设计时,应计算其在制作、运输及安装等施⼯阶段,由⾃重和施⼯荷载等引起的应⼒,并不应超过规范规定的限值。
施⼯荷载除有特别规定外均采⽤标准值,当进⾏构件运输和安装计算时,构件⾃重应乘以动⼒系数,当有组合时不考虑荷载组合系数。
在钢筋混凝⼟受弯构件抗裂验算和变形验算中,将⽤到“换算截⾯”的概念,因此,本章先引⼊换算截⾯的概念,然后依次介绍各项验算⽅法。
4.1.1 换算截⾯依据材料⼒学理论,对钢筋混凝⼟受弯构件带裂缝⼯作阶段的截⾯应⼒计算作如下假定:1、服从平截⾯假定由钢筋混凝⼟受弯构件的试验可知,从宏观尺度看平截⾯假定基本成⽴。
据此有同⼀⽔平纤维处钢筋与混凝⼟的纵向应变相等,即:s c εε= (4.1-1)2、钢筋和混凝⼟为线弹性材料钢筋混凝⼟受弯构件在正常施⼯或使⽤阶段,钢筋远未屈服,可视为线弹性材料;混凝⼟虽为弹塑性体,但在压应⼒⽔平不⾼的条件下,其应⼒与应变近似服从虎克定律。
故有c c c E εσ=,s s s E εσ= (4.1-2)3、忽略受拉区混凝⼟的拉应⼒钢筋混凝⼟构件在受弯开裂后,其受拉区混凝⼟的作⽤在计算上可近似忽略。
将式(4.1-1)代⼊式(4.1-2)可得:c s c c c E E εεσ==''因为 s ss E σε=所以 s ES c s sc E E σασσ1'== (4.1-3)其中:ES α-钢筋与混凝⼟弹性模量之⽐,即c s ES E E =α。
为便于利⽤匀质梁的计算公式,通常将钢筋截⾯⾯积s A 换算成等效的混凝⼟截⾯⾯积sc A ,依据⼒的等效代换原则:1、⼒的⼤⼩不变:换算截⾯⾯积sc A 承受拉⼒与原钢筋承受的拉⼒相等。