RNA核酸酶RNA诱导的沉默复合体
- 格式:ppt
- 大小:2.21 MB
- 文档页数:47
基因沉默与RNAi技术定义:基因沉默双是指链RNA被特异的核酸酶降解,产生干扰小RNA(siRNA),这些siRNA与同源的靶RNA互补结合,特异性酶降解靶RNA,从而抑制、下调基因表达。
RNA干扰是指在进化过程中高度保守的、由双链RNA诱发的、同源mRNA高效特异性降解的现象。
由双链引发的植物RNA沉默,主要有转录水平的基因沉默(TGS)和转录后水平的基因沉默(PTGS)两类:TGS是指由于DNA修饰或染色体异染色质化等原因使基因不能正常转录;PTGS是启动了细胞质内靶mRNA序列特异性的降解机制。
有时转基因会同时导致TGS和PTGS。
基因沉默是一种RNA干扰技术。
RNA干扰是由双链RNA 引发的转录后基因静默机制。
其原理是:RNaseIII核酶家族的Dicer,与双链RNA结合,将其剪切成21 - 25nt及3'端突出的小干扰RNA (small interfering RNA,siRNA),随后siRNA与RNA诱导沉默复合物(RNA - induced silencing complex,RISC结合,解旋成单链,活化的RISC受已成单链的siRNA引导,序列特异性地结合在靶mRNA上并将其切断,引发靶mRNA的特异性分解,从而阻断相应基因表达的转录后基因沉默机制.一、基因沉默的分类及其机制(一)转录水平基因沉默转录水平基因沉默是指对基因专一的细胞核RNA合成的失活,它的发生主要是由于基因无法被顺利转录成相应的RNA而导致基因沉默。
转录水平基因沉默可以通过有性世代传递,表现为减数分裂的可遗传性。
引起转录水平基因沉默的机制主要有以下几种:1.基因及其启动子甲基化甲基化是活体细胞中最常见的一种DNA共价修饰形式,通常发生在DNA的CG序列的碱基上,该区碱基甲基化往往导致转录受抑制,该区甲基化的频率在人类及高等植物中分别可达4%和36%。
[4]近来的研究表明,发生在转基因启动子5’端的甲基化是造成转录水平基因沉默的主要原因。
RNA干扰技术的原理与应用RNA干扰技术是一种基因沉默技术,利用特定的RNA分子靶向破坏特定基因的mRNA分子,从而沉默该基因的表达。
一般来说,RNA干扰技术分为两种:siRNA和shRNA。
一、siRNA的原理与应用siRNA(小干扰RNA)是由外源体切割的21-25个核苷酸的双链RNA,它们与RISC(RNA诱导的沉默复合物)结合后,在靶基因的mRNA上形成RNA/RISC复合体,从而沉默靶基因的表达。
siRNA是一种非常特定的干扰技术,可以实现精确地调节基因表达。
siRNA技术在研究基因功能和药物开发等领域发挥着重要作用。
例如,研究发现某些癌症患者的基因中存在高度具有变异性的序列,而它们的表达与癌症的发展有关。
因此,通过siRNA技术靶向破坏这些序列,就可以达到治疗的目的。
另外,在昆虫和植物领域,RNAi技术还可以用来控制害虫和杂草,从而达到环保和粮食安全的目的。
siRNA技术的应用前景非常广阔,是研究者们不断探索和研究的热点之一。
二、shRNA的原理与应用shRNA(短发夹RNA)是一种由人工构建的RNA,其结构为一个小的RNA环,环内有一个十分特殊的序列,可以与相应的RISC相结合,从而靶向破坏mRNA分子,实现对基因表达的调控。
与siRNA相比,shRNA的优点是能够更长时间地沉默基因表达。
在实际应用中,shRNA技术被广泛用于研究多个基因的相互作用以及各自在复杂生命现象中所起的重要作用,如疾病的发生和发展等。
另外,shRNA技术还能够实现不同发展阶段组织特异性的沉默基因表达,这为研究发育遗传学以及疾病治疗等提供了很好的工具。
总结RNA干扰技术是一种利用RNA靶向破坏基因表达的技术,其应用领域涵盖了基因功能研究、药物开发、害虫、杂草的控制等众多方面。
siRNA和shRNA是RNA干扰技术的重要手段,各自具有其独特的优点和应用场景。
随着生命科学和医疗技术的快速发展,RNA干扰技术将会在未来的研究中发挥更加重要的作用。
近年来的研究表明,一些短片断的双链RNA可以通过促使特定基因的mRNA降解来高效、特异的阻断体内特定基因表达,诱使细胞表现出特定基因缺失的表型, 称为RNA干扰(RNA interference,RNAi).siRNA (small interfering RNAs)就是这种短片断双链RNA分子,能够以序列同源互补的mRNA为靶目标,降解特定的mRNA.RNAi的发现具有划时代的意义,它不仅深入揭示了细胞内基因沉默的机制,而且它还是后基因组时代基因功能分析的有力工具,极大地促进了人类揭示生命奥秘的进程.现在越来越多的研究人员开始采用RNAi 来研究生物体的基因表达.RNAi技术可广泛应用到包括功能基因组学,药物靶点筛选,细胞信号传导通路分析,疾病治疗等等.目前为止较为常用的5种制备siRNAs的方法包括:·化学合成·体外转录·长片断dsRNAs经RNase III 类降解(e.g. Dicer, E. coli, RNase III) ·siRNA表达载体或者病毒载体在细胞中表达siRNAs·PCR制备的siRNA表达框在细胞中表达获得高纯度的siRNA产物是进行实验的第一步,而转染的效率则是非常关键的因素.一、基本概念RNAi:(RNA interference)RNA干扰内源性或外源性双链RNA(dsRNA)介导的能诱导细胞内与其序列同源的特异基因表达沉默或抑制的效应,诱使细胞表现出特定基因缺失的表型,称为RNA干扰,它也是体内抵御外在感染的一种重要保护机制. siRNA :(small interfering RNAs)小干扰RNA由长dsRNA裂解而成的一种19-25nt的短片断双链RNA分子,能够以同源互补序列的RNA为靶目标降解特定的mRNA, RNAi的关键效应分子.shRNAs:(small hairpin RNA )小发夹RNA是设计为能够形成发夹结构的非编码小RNA分子,shRNA需通过载体导入细胞后,然后利用细胞内的酶切机制得到siRNA而最终发挥RNA 干扰作用.Dicer:属于RNaseⅢ家族,是dsRNA的特异性核酸内切酶RISC:(RNA-inducing silencing complex) RNA诱导的沉默复合体,具有核酸内切、外切以及解旋酶活性二、机制目前普遍认为,共抑制、基因压制和RNAi很可能具有相同的分子机制,都是通过dsRNA的介导而特异地降解靶mRNA, 抑制相应基因的表达. 即RNAi、共抑制、quelling均属于PTGS!现已初步阐明dsRNA介导的同源性靶mRNA降解过程主要分为两步.第一步(起始阶段)是较长ds RNA在ATP参与下被RNaseⅢ样的特异核酸酶切割加工成21~23nt的由正义和反义链组成的小干扰RNA (small interfering RNA,siRNA).第二步(效应阶段)是siRNA 在ATP参与下被RNA解旋酶解旋成单链,并由其中反义链指导形成RNA诱导的沉默复合体(RNA-inducedsilencing complex,RISC).RNAi途径主要存在于细胞浆中,但是siRNA产生、靶mRNA降解的亚细胞位置尚未明确.外源性(注射或喂养)的dsRNA和病毒性dsRNA 可能可以直接进入细胞浆中的RNAi途径,仅在细胞浆中复制的RNA病毒可被dsRNA介导的沉默机制所抑制.外源性dsRNA则还可导致细胞核中的同源早期RNA转录产物减少.在许多机体中反向重复转基因序列在细胞核内转录成发夹dsRNA,进而可介导RNAi,这种dsRNA可能需要转移至胞浆中才可有效地沉默同源靶mRNA.RNAi的放大效应机制siRNA不仅可引导RISC切割靶RNA,而且可作为引物在RNA依赖的RNA 聚合酶(RdRP)作用下以靶mRNA为模板合成新的dsRNA.新合成的长链dsRNA同样可被RNaseⅢ样核酸酶切割、降解而生成大量的次级siRNA.次级siRNA又可进入合成-切割的循环过程,进一步放大RNAi作用.这种合成-切割的循环过程称为随机降解性PCR(random degradative PCR).三、RNAi表达载体的构建1. 目的基因的确定(1)、检索文献获取有实验证明有效的靶点序列(核对)(2)、/(3)、/ or 2、设计siRNA靶序列在制备siRNA 前都需要单独设计siRNA序列.研究发现对哺乳动物细胞,最有效的siRNAs是21-23个碱基大小、3’端有两个突出碱基的双链RNA;而对非哺乳动物,比较有效的是长片段dsRNA.siRNA的序列专一性要求非常严谨,与靶mRNA之间一个碱基错配都会显著削弱基因沉默的效果.(1)、选择siRNA靶位点:从转录AUG起始密码子开始,搜寻下游AA序列,记录跟每个AA 3’端相邻的19个核苷酸作为候选的siRNA靶位点.有研究结果显示GC含量在30%—50%左右的siRNA要比那些GC含量偏高的更为有效. Tuschl 等建议在设计siRNA时不要针对5'和3'端的非编码区(untranslated regions,UTRs),原因是这些地方有丰富的调控蛋白结合区域,而这些UTR结合蛋白或者翻译起始复合物可能会影响siRNP核酸内切酶复合物结合mRNA从而影响siRNA的效果.(2)、序列同源性分析:将潜在的序列和相应的基因组数据库(人,或者小鼠,大鼠等等)进行比较,排除那些和其他编码序列/EST同源的序列.例如使用BLAST (/BLAST/)选出合适的目标序列进行合成.并非所有符合条件的siRNA都一样有效,其原因还不清楚,可能是位置效应的结果,因此对于一个目的基因,一般要选择3-5个靶位点来设计siRNA.通常来说,每个目标序列设计3—4对siRNAs,选择最有效的进行后续研究. (3)、设计阴性对照:一个完整的siRNA实验应该有阴性对照,作为阴性对照的siRNA应该和选中的siRNA序列有相同的组成,但是和mRNA没有明显的同源性.通常的做法是将选中的siRNA中的碱基序列打乱.当然,同样要保证它和其他基因没有同源性.3、RNAi表达载体的选用化学合成与体外转录方法都是在体外得到siRNA后再导入细胞内,但是这两种方法主要有两方面无法克服的缺点:siRNA进入细胞后容易被降解;进入细胞siRNA在细胞内的RNAi效应持续时间短.针对这种情况,出现了质粒、病毒类载体介导的siRNA体内表达.该方法的基本思路是:将siRNA对应的DNA双链模板序列克隆入载体的RNA聚合酶III的启动子后,这样就能在体内表达所需的siRNA分子.这种方法总体的优点在于不需要直接操作RNA,能达到较长时间的基因沉默效果. 通过质粒表达siRNAs大都是用Pol III启动子启动编码shRNA(small hairpin RNA)的序列.选用Pol III启动子的原因在于这个启动子总是在离启动子一个固定距离的位置开始转录合成RNA,遇到4—5个连续的U即终止,非常精确.当这种带有Pol III 启动子和shRNA模板序列的质粒转染哺乳动物细胞时,这种能表达siRNA的质粒确实能够下调特定基因的表达,可抑制外源基因和内源基因.采用质粒的优点在于,通过siRNA表达质粒的选择标记,siRNA载体能够更长时间地抑制目的基因表达.当然还有一点,那就是由于质粒可以复制扩增,相比起其它合成方法来说,这就能够显著降低制备siRNA的成本.此外,带有抗生素标记的siRNA表达载体可用于长期抑制研究,通过抗性辅助筛选,该质粒可以在细胞中持续抑制靶基因的表达数星期甚至更久.同时RNAi-Ready表达载体还能与逆转录病毒和腺病毒表达系统整合(BD Knockout RNAi Systems),大大提高siRNA表达载体对宿主细胞的侵染性,彻底克服某些细胞转染效率低的障碍,是实现哺乳动物细胞siRNAs瞬时表达与稳定表达的理想工具.4、合成模板合成编码shRNA的DNA 模板的两条单链,模板链后面接有RNA PolyIII 聚合酶转录中止位点,同时两端分别设计BamH I 和Hind III 酶切位点,可以克隆到siRNA 载体多克隆位点的BamH I 和Hind III 酶切位点之间.95℃,5min,缓慢退火, DNA 单链得到shRNA 的DNA 双链模板5、连接与转化基本步骤:(1)将100μl感受态细胞于冰上解冻.(2)取5μl连接产物加入到感受态细胞中,轻轻旋转几次以混匀内容物. 在冰上放置30分钟.(3)将管放入预加温到42℃的水浴中,热激90秒.快速将管转移到冰浴中,使细胞冷却1~2分钟.(4)每管中加700μl LB培养基,37℃振荡培养1小时,进行复苏. (5)室温4,000rpm离心5分钟,弃去上清后,用剩余100μl培养基重悬细胞并涂布到含抗性的LB琼脂平板表面.注意:细胞用量应根据连接效率和感受态细胞的效率进行调整.(6)将平板置于室温直至液体被吸收.(7)倒置平皿,于37℃培养,12~16小时后可出现菌落.6、PCR鉴定和测序鉴定在插入编码shRNA的DNA双链模板两侧设计鉴定PCR引物,扩增片段在100-200bp之间.7、特点siRNA表达载体的优点在于这是众多方法中唯一可以进行长期研究的方法——带有抗生素标记的载体可以在细胞中持续抑制靶基因的表达,持续数星期甚至更久.即使是对转染带有筛选标记质粒的细胞进行瞬时筛选,也有助于富集带质粒的细胞.这也可以帮助解决一些难转染的细胞由于转染效率低造成的问题.载体上的抗性标记有助于快速筛选出阳性克隆,而且可以在细胞中持续抑制靶基因的表达,持续数星期甚至更久,可以进行较长期研究.四、RNAi的前景展望1、研究基因功能的新工具已有研究表明RNAi能够在哺乳动物中灭活或降低特异性基因的表达,制作多种表型,而且抑制基因表达的时间可以随意控制在发育的任何阶段,产生类似基因敲除的效应.线虫和果蝇的全部基因组序列已测试完毕,发现大量未知功能的新基因,RNAi将大大促进对这些新基因功能的研究.与传统的基因敲除技术相比,这一技术具有投入少,周期短,操作简单等优势,近来RNAi成功用于构建转基因动物模型的报道日益增多,标志着RNAi将成为研究基因功能不可或缺的工具.2、研究信号传导通路的新途径联合利用传统的缺失突变技术和RNAi技术可以很容易地确定复杂的信号传导途径中不同基因的上下游关系,Clemensy等应用RNAi研究了果蝇细胞系中胰岛素信息传导途径,取得了与已知胰岛素信息传导通路完全一致的结果,在此基础上分析了DSH3PX1与DACK之间的关系, 证实了DACK是位于DSH3PX1磷酸化的上游激酶. RNAi技术较传统的转染实验简单、快速、重复性好,克服了转染实验中重组蛋白特异性聚集和转染效率不高的缺点, 因此认为RNAi技术将可能成为研究细胞信号传导通路的新途径.3、开展基因治疗的新策略RNAi具有抵抗病毒入侵,抑制转座子活动,防止自私基因序列过量增殖等作用,因此可以利用RNAi现象产生抗病毒的植物和动物,并可利用不同病毒转录序列中高度同源区段相应的dsRNA抵抗多种病毒.肿瘤是多个基因相互作用的基因网络调控的结果,传统技术诱发的单一癌基因的阻断不可能完全抑制或逆转肿瘤的生长, 而RNAi可以利用同一基因家族的多个基因具有一段同源性很高的保守序列这一特性, 设计针对这一区段序列的dsRNA分子,只注射一种dsRNA即可以产生多个基因同时剔除的表现,也可以同时注射多种dsRNA而将多个序列不相关的基因同时剔除.尽管目前RNAi技术在哺乳动物中的应用还处于探索阶段,但它在斑马鱼和老鼠等脊椎动物中的成功应用预示着RNAi将成为基因治疗中重要的组成部分,人工合成的dsRNA寡聚药物的开发将可能成为极具发展前途的新兴产业.。
rna诱导沉默复合体作用原理
RNA诱导沉默复合体(RNA-induced silencing complex, RISC)是RNA 干扰技术中起作用的重要物质。
以下是其作用原理:
当一定数量的外源性双链RNA(dsRNA)进入细胞后,会被类似于核糖核
酸酶Ⅲ的Dicer酶切割成短的21~23bp的双链小干扰RNA(siRNA)。
这些siRNA与解旋酶和其它因子结合,形成RISC。
激活RISC需要一个依赖ATP的将小分子RNA解双链的过程。
激活的RISC通过碱基配对定位到同源mRNA转录本上,并在距离siRNA
3'端12个碱基的位置切割mRNA。
切割的机制尚不明了,但每个RISC都
包含一个siRNA和一个不同于Dicer的RNA酶。
因此,siRNA能够以序列同源互补的mRNA为靶点,通过促使特定基因的mRNA降解来高效、特意地阻断体内特定基因表达,诱发细胞呈现出特定基因表达降低表型。
以上内容仅供参考,建议查阅关于RISC的资料、文献,或者咨询生物学家,以获取更准确的信息。
1.简述真核生物三种RNA聚合酶的特点?下边是详细的RNA聚合酶Ⅰ的转录产物是45SrRNA,经剪接修饰后生成除5SrRNA 外的各种rRNA。
rRNA与蛋白质组成的核糖体是蛋白质合成的场所。
RNA聚合酶Ⅱ在核内转录生成hnRNA,经剪接加工后生成的mRNA被运送到胞质中作为蛋白质合成的模板。
RNA聚合酶Ⅲ的转录产物是tRNA,5SrRNA,snRNA,其中snRNA参与RNA的剪接。
24.简述乳糖操纵子的调控原理?答:答:(1)乳糖操纵子的组成:大肠杆菌乳糖操纵子含Z、Y、A三个结构基因,分别编码半乳糖苷酶、透酶和半乳糖苷乙酰转移酶,此外还有一个操纵序列O,一个启动子P和一个调节基因I.(2)阻遏蛋白的负性调节:没有乳糖存在时,I基因编码的阻遏蛋白结合于操纵序列O处,乳糖操纵子处于阻遏状态,不能合成分解乳糖的三种酶;有乳糖存在时,乳糖作为诱导物诱导阻遏蛋白变构,不能结合于操纵序列,乳糖操纵子被诱导开放合成分解乳糖的三种酶。
所以,乳糖操纵子的这种调控机制为可诱导的负调控。
(3)CAP的正调节:在启动子上游有CAP结合位点,当大肠杆菌从以葡糖糖为碳源的环境转变为以乳糖为碳源的环境时,cAMP浓度升高,与CAP结合,使CAP发生变构,CAP结合于乳糖操纵子启动序列附近的CAP结合位点,激活RNA聚合酶活性,促进结构基因转录,调节蛋白结合于操纵子后促进结构基因的转录,对乳糖操纵子实行正调控,加速合成分解乳糖的三种酶。
(4)协调调节:乳糖操纵子中的I基因编码的阻遏蛋白的负调控与CAP的正调控两种机制,互相协调、互相制约。
25.简述DNA聚合酶和DNA连接酶在DNA复制中的作用?答:DNA聚合酶(DNA polymerase)是细胞复制DNA的重要作用酶。
DNA聚合酶 , 以DNA为复制模板,从将DNA由5'端点开始复制到3'端的酶。
DNA聚合酶的主要活性是催化DNA的合成(在具备模板、引物、dNTP等的情况下)及其相辅的活性。
基因干扰(RNAi)是一种在动物、植物和微生物中高度保守的基因表达调控工具。
1998年,Fire等首次在秀丽隐杆线虫(Caenorhabditis elegans)中证明了触发基因沉默的关键因子是双链RNA(dsRNA),而非单链RNA。
具体而言,dsRNA被Dicer-like蛋白随机剪切成长度为21~24 nt的小RNA (siRNA或miRNA),siRNA与Argonaute蛋白(AGOs)结合形成RNA 诱导的沉默复合体(RISCs),该复合体与目标RNA链互补,诱导mRNA降解或抑制翻译进程。
利用RNAi技术靶向有害生物的必须基因,实现高效的基因沉默,可有效控制病虫害的发生。
基于RNAi技术创制的新型核酸农药被称为农药史上第三次革命,与传统化学农药相比,具有靶向性高、易降解、靶点丰富及可灵活设计等优势。
目前,RNAi在植物病虫害防控领域的应用主要通过4种途径实现(图1):(1)HIGS,即培育表达dsRNA的转基因植物以防治病虫害;(2)VIGS,即利用病毒或微生物表达和递送靶标生物dsRNA 的方法;(3)SIGS,即创制喷洒型RNA农药,直接喷施于植物表面以控制病原菌和害虫;(4)NDGS,即利用纳米载体递送dsRNA以诱导靶标基因沉默的方法。
图1 RNAi在植物病虫害防控领域的4种应用策略示意图本文介绍了以RNAi为核心的病虫害防治技术的研究现状,分别论述了基于HIGS、VIGS、SIGS和NDGS策略的RNAi技术用于防治植物病虫害的应用实例及商业化情况,并对核转基因技术培育转基因作物和创制喷洒型RNA 农药的瓶颈问题进行总结,点明了叶绿体介导的RNAi技术和纳米载体递送dsRNA策略的优势。
dsRNA的合成成本、保护剂和载体制备工艺、转基因植物和载体的生物安全性评估,仍然是未来在研发和商业化生产中需要关注的问题。
01利用HIGS策略防控病虫害1.1 核转基因技术的应用研究人员已成功实现利用转基因植物表达调控病虫害生长发育关键基因dsRNA,降低靶基因的表达量,导致靶标生物死亡或发育畸形,从而控制病虫害发展的策略。
分子生物学课程论文题目:RNA在生物进化中的角色、作用及其在疾病治疗中的应用作者:付亚茹RNA在生物进化中的角色、作用及其在疾病治疗中的应用作者:付亚茹摘要:核酸是所有生物遗传信息的携带者,生物界中有两种核酸,DNA、RNA。
其中RNA是唯一的一种既能够携带遗传信息又能够行使酶催化功能的生物大分子,RNA在生物进化中有着十分重要的作用,它促进了生物进化,增加了遗传多样性。
RNA的种类多样,包括mRNA、hnRNA、rRNA、tRNA、snRNA和snoRNA,它们均与遗传信息的表达有关,在生物体内承担着重要的任务。
现在,在疾病治疗中RNA的应用十分广泛,其中最为重要的应用就是使用RNA干扰。
特别是在治疗乙肝病毒感染,以及癌症的治疗中应用也已经开始起步。
关键字:RNA、进化、snRNA、rRNA、 RNA干扰、疾病治疗。
核酸是由核苷酸聚合而成的高分子化合物,是所有生物遗传信息的携带者。
生物界中有两种核酸,DNA、RNA 。
RNA有其独特的特性,在生物进化中、在生物体内、在疾病治疗中都有着不可忽视的重要作用。
一、RNA在生物进化中的角色关于RNA进化的研究一直是一个十分活跃的领域。
1981年,CechT发现了四膜虫的RNA前体能够通过自我拼接切除内含子,因而表明了RNA 具有催化能力,成为核酶。
在3种生物大分子中,RNA是唯一的一种既能够携带遗传信息又能够行使酶催化功能的生物大分子,因此有科学家预测RNA是在生物进化过程中最先出现的生物大分子,而且有人预测,是在RNA的催化指导之下形成了另外两个生物大分子DNA、蛋白质。
但是在生物进化过程中遗传物质由DNA 取代了RNA,原因有二:1、DNA双连比RNA单链更加稳定2、DNA链中的胸腺嘧啶取代了RNA链中的尿嘧啶使得遗传物质的修复成为了可能。
蛋白质也取代了大部分的RNA酶的催化功能,蛋白质的化学结构多样、构象多变与RNA相比蛋白质能够更为有效的催化多种生化反应,催化具有更高的专一性。
RNA诱导沉默复合体的装配及其在RNAi中的作用摘要:RNA诱导沉默复合体( RNA-induced silencing complex,RISC) 是RNA 干扰( RNA interference, RNAi)过程中的重要活性成分,它由Dicer 酶, Argonaute蛋白, siRNA 等多种生物大分子装配而成。
在RNA 干扰机制中, 双链RNA 诱导同源RNA 降解的过程依赖于RNA 诱导沉默复合体( RISC) 的活性,而RISC 的装配受到TRBP的调节。
因此,对这些大分子的结构和功能进行深入细致的研究, 有助于进一步了解RISC 的形成过程、作用方式, 以及阐明整个RNAi 过程的作用机制。
研究表明, RISC 中的Dicer 具有RNaseIII 结构域, 在RNAi 的起始阶段负责催化siRNA 的产生, 在RISC 装配过程中起稳定RISC 中间体结构和功能的作用; Argonaute 蛋白是RISC 中的核心蛋白, 有PAZ 和PIWI 两个主要的结构域, 前者为siRNA 的传递提供结合位点, 后者是RISC 中的酶切割活性中心; siRNA是RISC 完成特异性切割作用的向导, 在成熟的RISC中虽然只包含siRNA的一条链, 但siRNA 在RISC 形成过程中的双链结构是保证RNAi 效应的决定因素。
随着对RNAi 机制研究的日益深入,人们对RISC组分的结构、功能进行了较详细的研究并取得一定进展, 这不但有助于了解RISC 的形成过程、作用方式, 也有利于进一步阐明整个RNAi 作用的机制。
关键词:RNA干扰;RNA诱导沉默复合体;装配RNA-induced Silencing Complex Assembly and Its Functions in RNA InterferenceZHANG rui-quan(Biological science base class ,School of Life Science,20101070109)Abstract:RNA-induced silencing complex is the active ingredient in the process of RNA interference, assembled by Dicer, Argonaute, siRNA, and other biological macromolecules. Degradation of homologous RNA in RNA interference is carried out by functional RNA-induced silencing complex(RISC), and RISC assembly regulation by TRBP. So Researching structures and functions of these components is primary impor tant for understanding assembly and functional mechanism of RISC, as well as the whole RNAi pathway. Recent research works showed that Dicer, containing RNaseIII domain, is responsible for production of siRNA at the beginning of RNAi, and guarantees the stability of RISC intermediate in assembly process. As the core component of RISC, Argonaute protein functions as slicer to cleave target RNA and offers the binding site of siRNA in RISC assembly, which are depended on PIWI domain and PAZ domain separately. Although there is only one strand of siRNA that is the guider of RISC, the double stranded structural character of siRNA is determinant of RNAi. With the deepening of the RNAi mechanism on the the RISC components of structure, function studied in detail and made some progress, which will not only help to understand RISC formation process, mode of action, but also conducive to further clarify the whole RNAi mechanism. This article reviewed the progress made in RISC assembly and its role in the RNAi.Keywords: RNAi; RISC; AssemblyRNA 干扰(RNA interference, RNAi)是指通过正反义RNA 片段形成双链RNA 从而特异性地抑制靶基因的转录后表达的现象。
miRNAMicroRNAs(miRNAs)是在真核生物中发现的一类内源性的具有调控功能的非编码RNA,其大小长约20~25个核苷酸。
成熟的miRNAs是由较长的初级转录物经过一系列核酸酶的剪切加工而产生的,随后组装进RNA诱导的沉默复合体(RNA-induced silencing complex,RISC),通过碱基互补配对的方式识别靶mRNA,并根据互补程度的不同指导沉默复合体降解靶mRNA或者阻遏靶mRNA 的翻译。
最近的研究表明miRNA参与各种各样的调节途径,包括发育、病毒防御、造血过程、器官形成、细胞增殖和凋亡、脂肪代谢等等。
简介MicroRNA (miRNA):是含有茎环结构的miRNA前体,经过Dicer加工之后的一类非编码的小RNA分子(18~25个核苷酸)。
MiRNA,以及miRISCs(RNA诱导基因沉默复合物)在动物和植物中广泛表达。
因之具有抑制靶mRNA转录、翻译或者能够剪切靶mRNA并促进其降解的功能,miRNA被认为在调控发育过程中有重要作用。
[1]microRNAs(miRNAs)是一种小的,类似于siRNA的分子,由高等真核生物基因组编码,miRNA通过和靶基因mRNA碱基配对引导沉默复合体(RISC)降解mRNA或阻碍其翻译。
miRNAs在物种进化中相当保守,在植物、动物和真菌中发现的miRNAs只在特定的组织和发育阶段表达,miRNA的组织特异性和时序性,决定组织和细胞的功能特异性,表明miRNA在细胞生长和发育过程中起多种调节作用。
作用机理miRNA基因通常是在核内由RNA聚合酶II(pol II)转录的,最初产物为大的具有帽子结构(7MGpppG)和多聚腺苷酸尾巴(AAAAA)的pri-miRNA。
pri-miRNA 在核酸酶Drosha和其辅助因子Pasha的作用下被处理成70个核苷酸组成的pre-miRNA。
RAN–GTP和exportin 5将pre-miRNA输送到细胞质中。
RNAi的原理和应用摘要:RNA干扰(RNA interference ,RNAi) 现象是一种进化上保守的抵御转基因或外来病毒侵犯的防御机制。
在内切核酸酶(一种具有RNase Ⅲ样活性的核酸酶,称为Dicer.) 作用下加工裂解形成21~25 nt (核苷酸)的由正义和反义序列组成的干扰性小dsRNA ,即siRNA。
果蝇中RNase III 样核酸酶Dicer 含有解旋酶(helicase) 活性以及dsRNA 结合域和PAZ 结构域. 已发现在哺乳动物中也存在Dicer 同类物。
siRNA与特定的酶结合形成RNA诱导的沉默复合物RISC。
关键词:RNA干扰siRNA miRNA 抑制机制Principle and application of RNAiWang ChunrongSichuan Normal University.Abstract: RNA interference(RNA interference,RNAi)is a defense mechanism of evolutionaryconserved against transgenic or alienvirus invasion.The endonucl ease(one with RNase Ⅲlike activity of nuclease,referred to as Dicer.)processing fracture formed under the action of21~ 25NT(nucleotide)composed of sense and antisense sequencesof small interfering dsRNA,namely siRNA.RNase III like nucleic acid enzyme Dicer in Drosophilacontains helicase(helicase)activity and dsRNA binding domainand PAZ domain.Have been foundin mammals there are Dicer analogues.SiRNA and specific enzyme combined with the formation of RNA induced silencingcomplex RISC.Keywords: siRNA miRNA RNA interference suppressionmechanism目录第一章对RNA干扰的基本认识 (1)1.1 RNA干扰提要 (1)1.2RNA干扰的发现 (1)第二章作用机制 (2)2.1RNA干扰的作用机制 (2)2.2RNA干扰的分子抑制机制 (3)2.2.1 转录抑制 (3)2. 2.2 转录后抑制 (3)2.2.3 翻译抑制 (3)第三章RNA干扰的作用 (4)第四章RNA干扰的应用 (4)参考文献 (6)致谢 (6)正文:第一章对RNA干扰的基本认识1.1 RNA干扰提要RNA干扰(RNA interference ,RNAi) 现象是一种进化上保守的抵御转基因或外来病毒侵犯的防御机制。
一、名词解释1、分子生物学(狭义):研究核酸和蛋白质等大分子的形态、结构特征及其重要性、规律性和相互关系的科学,主要研究基因的结构和功能及基因的活动。
2、分子生物学(广义):在分子的水平上研究生命现象的科学,涵盖了分子遗传学和生物化学等学科的研究内容。
3、基因:是具有特定功能、能独立发生突变和交换的、“三位一体”的、最小的遗传单位。
4、顺反子:基因的同义词,是一个具有特定功能的、完整的、不可分割的最小遗传单位。
5、增色效应:当进行DNA热变性研究时,温度升高单链状态的DNA分子不断增加而表现出A260值递增的效应。
6、变性温度:DNA双链在一定的温度下变成单链,将开始变性的温度至完全变性的温度的平均值称为DNA的变性温度。
7、DNA的复性:DNA在适当的条件下,两条互补链全部或部分恢复到天然双螺旋结构的现象。
8、C值:一种生物中其单倍体基因组的DNA总量。
9、C值悖论:C值和生物结构或组成的复杂性不一致的现象。
10、重叠基因:共有同一段DNA序列的两个或多个基因。
11、重复基因:基因组中拷贝数不止一份的基因。
12、间隔基因(断裂基因):就是基因的编码序列在DNA分子上是不连续的,为不编码的序列所隔开。
13、转座子:在基因组中可以移动的一段DNA序列。
14、转座:一个转座子从基因组的一个位置转移到另一个位置的过程。
15、假基因:基因组中存在的一段与正常基因非常相似但不能表达的DNA序列。
16:、DNA 复制:亲代双链的DNA分子在DNA聚合酶等相关酶的作用下,别以每条单链DNA为模板,聚合与模板链碱基对可以互补的游离的dNTP,合成两条与亲代DNA分子完全相同的子代双链DNA分子的过程。
17、复制子:从复制起点到复制终点的DNA区段称为一个复制子。
18、复制体:在复制叉处装备并执行复制功能的多酶复合体。
19、复制原点(复制起点):DNA分子中能独立进行复制的最小功能单位。
20、端粒:染色体末端具有的一种特殊结构,对维持染色体的稳定起着十分重要的作用。
病毒诱导的植物基因沉默详解上个世纪20年代,科学家发现植物与病毒之间存在交叉保护现象:被病毒侵染后的植物可能产生对该病毒株系和相近株系的抗性。
但这种抗性也可能存在“恢复”的现象。
直到上世纪90年代,这些现象的产生机制才被逐渐阐释清楚:是由于病毒基因发生了转录后基因沉默而致使表达受到抑制的结果。
这种现象因此被称为“病毒诱导的基因沉默(virus-induced gene silencing, VIGS)”。
基于这种机制的启发,人们尝试将植物基因片段插入到病毒载体z 中,侵染植物达到实现基因表达的抑制。
经过多年的研究与发展,该技术已经逐渐成熟,并广泛用于植物基因功能研究和植物遗传改良应用。
图1.诱导的植物基因沉默实例。
VIGS的作用机制VIGS的作用机制与另一种常用的基因沉默技术——RNA干扰(RNAi)有很多相似之处。
相较于RNAi,基因沉默具有快速、高效、通量高等优点。
VIGS是利用携带目的基因的cDNA 片段的病毒载体侵染植物,病毒在植物体内的复制和转录能特异性诱导和插入片段序列同源的mRNA降解或者诱导其被甲基化等修饰,导致其不能正常翻译,从而引起植物表型或者指标发生变化。
具体地,病毒在植物体内的复制和表达过程中会形成双链RNA(double-strandedRNA, dsRNA)。
dsRNA首先被Dicer类似物(DCL,如DCL4)的RNase-III家族特异性核酸内切酶切割成小分子干扰RNA(small interfering RNA, siRNA)。
siRNAs进一步扩增,并以单链形式与Argonatute(AGO)RNA结合蛋白和RNase结合形成RNA诱导的沉默复合体(RNA-inducedsilencingplex,RISC)。
RISC能与同源RNA特异性互补结合,导致同源mRNA降解,发生转录后水平的基因沉默。
或者,RISC能与细胞核内的同源DNA相互作用导致其被甲基化修饰,发生转录水平的基因沉默。
RNA干扰(RNAi)实验原理与方法将与mRNA对应的正义RNA和反义RNA组成的双链RNA(dsRNA)导入细胞,可以使mRNA发生特异性的降解,导致其相应的基因沉默。
这种转录后基因沉默机制(post-transcriptional gene silencing, PTGS)被称为RNA干扰(RNAi)。
RNA干扰包括起始阶段和效应阶段(inititation and effector steps)。
在RNAi效应阶段,siRNA双链结合一个核酶复合物从而形成所谓RNA诱导沉默复合物(RNA-induced silencing complex, RISC)。
关键词:RNA干扰RNAi正义RNA反义RNA dsRN APTGSRISC转录后基因沉默机制RNA诱导沉默复合物近年来的研究表明,将与mRNA对应的正义RNA和反义RNA组成的双链RNA(dsRNA)导入细胞,可以使mRNA发生特异性的降解,导致其相应的基因沉默。
这种转录后基因沉默机制(post-transcriptional gene silencing, PTGS)被称为RNA干扰(RNAi)。
一、RNAi的分子机制通过生化和遗传学研究表明,RNA干扰包括起始阶段和效应阶段(inititation and effector st eps)。
在起始阶段,加入的小分子RNA被切割为21-23核苷酸长的小分子干扰RNA片段(small interfering RNAs, siRNAs)。
证据表明;一个称为Dicer的酶,是RNase III家族中特异识别双链RNA的一员,它能以一种ATP依赖的方式逐步切割由外源导入或者由转基因,病毒感染等各种方式引入的双链RNA,切割将RNA降解为19-21bp的双链RNAs(si RNAs),每个片段的3’端都有2个碱基突出。
在RNAi效应阶段,siRNA双链结合一个核酶复合物从而形成所谓RNA诱导沉默复合物(RNA-induced silencing complex, RISC)。
浅谈RNAi研究进展摘要:RNA干扰(RNAi)是生物界普遍存在的一种抵御外来基因和病毒感染的进化保守机制。
RNAi是由双链RNA触发的转录后基因沉默机制,具有序列特异性,在哺乳动物细胞中,RNAi由21~23个核苷酸组成的双链RNA引发.小干扰RNA(siRNA)可以在体外合成或通过表达载体在哺乳动物细胞内合成.由于RNAi技术具有快速、简单和特异性强等特点,在基因功能研究、抗病毒治疗和抗肿瘤治疗等方面有广泛的应用前景。
关键词:RNA干扰,小干扰RNA,哺乳动物RNA干扰(RNAi)是由双链RNA(doublestrandsRNA,dsRNA)引起的,广泛存在于动物植物中的序列特异性转录后基因沉默过程,是生物体在进化过程中,抵御病毒感染及由于重复序列和突变引起基因组不稳定性的保护机制。
Elbashir等[1]发现,一种称为短干扰或小干扰RNA(smallinterferingRNA,siRNA)的RNA干扰中间体,能在果蝇中导致mRNA的降解。
这种iRNA为21个核苷酸,形成19bp的双链RNA 分子,3′端有2个核苷酸突出(overhang),可激活哺乳动物细胞的RNAi 机制。
1 RNAi的机制RNAi在哺乳动物中的机制基本上与果蝇和其他低等生物中RNAi 的机制相似[2,3].基本步骤由启动和效应步骤构成[4],启动步骤为较长的双链RNA经过RNA酶Ⅲ核酸酶(Dicer)处理后,降解成21~23个碱基的siRNA,siRNA与靶mRNA有高度的序列特异性.siRNA在3′端有2个碱基突出.效应步骤为siRNA与RNA酶结合形成一个RNA诱导沉默复合体(RNA-inducedsilencingcomplex,RISC),RISC是分子质量为50ku的内源性核酸酶,并与siRNA序列互补的内源性mRNA结合,核酸酶在siRNA2mRNA结合体3′端大约12个碱基处切割mRNA,使之丧失转录信息,达到特异性抑制目的基因表达效果。
什么是rnarna有哪些用处RNA由核糖核苷酸经磷酸二酯键缩合而成长链状分子,那么你对RNA了解多少呢?下面就让店铺来给你科普一下什么是rna。
rna的分类RNA是以DNA的一条链为模板,以碱基互补配对原则,转录而形成的一条单链,主要功能是实现遗传信息在蛋白质上的表达,是遗传信息传递过程中的桥梁。
tRNA的功能是携带符合要求的氨基酸,以mRNA为模板,合成蛋白质。
RNA由核糖核苷酸经磷酯键缩合而成长链状分子。
一个核糖核苷酸分子由磷酸,核糖和碱基构成。
RNA的碱基主要有4种,即A腺嘌呤,G鸟嘌呤,C胞嘧啶,U尿嘧啶。
其中,U尿嘧啶取代了DNA中的T胸腺嘧啶而成为RNA的特征碱基。
mRNA又称信使RNA。
mRNA的功能就是把DNA上的遗传信息精确无误地转录下来,然后再由mRNA的碱基顺序决定蛋白质的氨基酸顺序,完成基因表过程中的遗传信息传递过程。
在真核生物中,转录形成的前体RNA中含有大量非编码序列,大约只有25%序列经加工成为mRNA,最后翻译为蛋白质。
因为这种未经加工的前体mRNA(pre-mRNA)在分子大小上差别很大,所以通常称为不均一核RNA(heterogeneousnuclearRNA,hnRNA)。
tRNA又称转运RNA。
如果说mRNA是合成蛋白质的蓝图,则核糖体是合成蛋白质的工厂。
但是,合成蛋白质的原材料——20种氨基酸与mRNA的碱基之间缺乏特殊的亲和力。
因此,必须用一种特殊的RNA——转移RNA(transferRNA,tRNA)把氨基酸搬运到核糖体上,tRNA能根据mRNA的遗传密码依次准确地将它携带的氨基酸连结起来形成多肽链。
每种氨基酸可与1-4种tRNA相结合,已知的tRNA 的种类在40种以上。
tRNA是分子最小的RNA,其分子量平均约为27000(25000-30000),由70到90个核苷酸组成。
而且具有稀有碱基的特点,稀有碱基除假尿嘧啶核苷与次黄嘌呤核苷外,主要是甲基化了的嘌呤和嘧啶。