粉末冶金实验技术实验课讲义
- 格式:docx
- 大小:27.14 KB
- 文档页数:16
《粉末冶金实验技术》实验课程授课讲义课程编号:课程名称:粉末冶金实验技术实验名称:电解法制取铜粉、粉末流动性测定、空气透过法测定粉末粒度、显微镜观察粉末的形状、粉末压缩性的测定、金属粉末压制过程研究适用专业:金属材料工程一、实验课程教材及主要参考资料1、教材:廖寄乔主编. 《粉末冶金实验技术》. 中南大学出版社, 2003.2、参考书:黄培云主编. 《粉末冶金原理》. 冶金工业出版社, 2004.二、实验课时分配(小四号黑体)三、实验成绩考核方式与成绩核定办法(小四号黑体)1. 考核方式:实际操作和实验报告撰写2. 成绩核定办法:现场动手能力占50%,实验报告占50%实验1 电解法制取铜粉一、实验目的1. 掌握水溶液电解法制取金属粉末的一般操作;2. 熟悉电解制铜粉应控制的电解条件。
二、基本原理电解液使用酸性的硫酸铜水溶液,阳极用电解铜板或杂铜板,阴极用不锈钢或光滑紫铜板。
电解发生时,电极发生下列主要反应:1)在阳极,铜失去电子变成离子进入溶液Cu – 2e = Cu2+2)在阴极,铜离子得到电子而析出铜Cu2+ + 2e = Cu电解过程中,由于Cu+的氧化和少量H+在阴极上放电析出H2使得硫酸浓度降低;同时,由于电极的化学溶液及二次反应等原因而使硫酸铜浓度提高。
所以,电解液的浓度要按时调整,即定期加入适量的硫酸和放置不溶性铅阳极进行脱铜处理。
三、实验内容与步骤1. 接好线路本实验所用的直流电源是最大输出直流为10A的硒整流器,整个线路采用四个电解槽串联的方式,为了满足槽电压的要求,整流器前加了一个调压器,槽电压可用万用电表测量。
通过线路的电流强度控制在2.6-3安培,可在整流器上的电流表读出。
2. 配制电解液本实验所用的电解槽是用塑料板制成,容积1450ml,实验时每槽装电解液约1200ml。
电解液成分采用65g/L CuSO4 5H2O以及71ml/L H2SO4来配制。
先按成分要求把硫酸铜晶体溶于水中,再加入硫酸,用PH值试纸测定电解液的PH 值。
前言粉末冶金专业课程试验是采用自蔓延高温合成(SHS)和微波技术烧结烧结材料的方法复合制备的WSi2/MoSi2复合材料。
自蔓延合成MoSi2-WSi2复合粉末以Mo、W和Si粉为原料,采用自蔓延热爆合成制备了不同组分的MoSi2-WSi2复合粉末,热爆反应产物纯净,MoSi2-WSi2复合粉末中只有MoSi2和WSi2两相存在。
然后利用微波技术烧结的方法烧结,该方法采用频率为900~3000 兆赫兹的工业微波源作为反应和烧结的微波源,在高真空下利用工业微波源产生的微波将砖坯进行烧结。
通过这种方法制备的WSi2/MoSi2复合材料具有细晶组织结构,较高的抗弯强度、硬度和断裂韧性以及较好的耐磨性能。
因为基体的致密化及强化有利于降低其摩擦磨损,使得WSi2/MoSi2复合材料具有较佳的力学性能和摩擦学性能。
实验目的:1、了解粉末冶金的基本内容与过程。
2、了解自蔓延高温合成技术和微波烧结技术的操作方法。
3、分析讨论采用自蔓延高温合成(SHS)和微波技术烧结烧结材料的方法复合制备的TiN及TiC和16%不锈钢粉复合材料的机械性能(强度、韧度、耐磨性等等)。
实验内容:一、粉末冶金工艺的基本工序是:1、原料粉末的制取和准备。
粉末可以是纯金属或它的合金、非金属、金属与非金属的化合物以及其它各种化合物等;2、将金属粉末及各种添加剂均匀混合后制成所需形状的坯块;3、将坯块在物料主要组元熔点以下的温度进行烧结,使制品具有最终的物理、化学和力学性能。
二、了解粉末冶金技术的发展近代粉末冶金技术的发展有三个重要标志:一是克服了难熔金属(如钨、钼等)熔铸过程中的困难,如电灯钨丝和硬质合金的出现;二是多孔含油轴承的研制成功,继之是粉末冶金机械零件的发展,发挥了粉末冶金少、无切削的特点;三是向新材料、新工艺发展。
复合材料应用:从普通机械制造到精密仪器,从五金工具到大型机械,从电子工业到电机制造,从采矿到化工,从民用工业到军事工业,从一般技术到尖端高科技,几乎没有一个工业部门不在使用着粉末冶金材料或制品。
综合实验三粉末冶金实验3.1 粉末冶金材料制备与检测实验指导书实验学时:6 实验类型:综合、设计型前修课程名称:材料工程基础适用专业:材料类本科生一. 实验目的通过粉末冶金方法制取钨铜合金的实习,使学生熟悉粉末冶金制取材料的工艺流程与特点,掌握原始粉末的分析、模压及冷等静压成型的具体操作与特点、产品烧结过程中温度、时间对产品性能的影响、多孔材料视比重与孔隙率的测定、以及排水法测定产品密度的方法;了解钨铜合金在军事和民用方面的应用及粉末冶金制取钨铜合金的一般方法。
粉末冶金是制取金属粉末或用金属粉末作为原料,经过成型与烧结,制取各类金属制品的一种工艺技术。
粉末冶金工艺的基本工序包括:(1)制粉—原料金属粉末的制得;(2)成型—将金属粉末制得一定形状和尺寸的压坯,并使之具有一定的密度和强度;(3)烧结—即将坯料在主要组元熔点以下温度烧结,使制品具有最终的物理、化学和力学性能。
粉末冶金具有以下特点:(1)粉末冶金能生产普通熔炼法无法生产的具有特殊性能的材料。
如多孔材料、多孔含油轴承、难熔化合物与金属组成的硬质合金。
(2)粉末冶金制取某些材料与熔炼法相比,性能优越。
如难熔金属使用熔炼法时晶粒粗、纯度低。
(3)粉末冶金制造机械零件是一种少切削、无切削的新工艺,可提高劳动生产率和原材料的利用率。
粉末冶金材料和制品的应用范围十分广泛:从普通机械制造到精密仪器;从五金工艺到大型机械;从电子工业到电机制造;从采矿到化工;从民用工业到军用工业;从一般技术到尖端高科技,都有粉末冶金的用武之地。
钨铜合金是公认的三大金属钨制品之一(钨丝、钨杆;钨基重合金;钨铜、钨银)。
钨铜合金是钨与铜所组成的既不互相固溶又不形成金属间化合物的两相单体均匀混合的组织,称之为“伪合金”(Pseudoalloy)。
正是因为这一组织特点,使钨铜合金既具有钨的耐高温、高硬度、低膨胀系数等特性,又保留了铜的高的导热导电性、良好的塑性等特性,使钨铜合金具有良好的综合性能。
重庆文理学院粉末冶金原理实验课程设计课题名称硬质合金的制备与性能检测姓名滕建伟学号201304384030专业班级金属材料工程一班指导教师陈慧完成日期2015年12月硬质合金的制备工艺1.硬质合金的概述1.1硬质合金的定义硬质合金兼具有金属良好的韧性和可塑性,它是一种以难熔金属化合物(通常为碳化物)为硬质基体相,以过渡族元素(通常为Co, Fe, Ni)为软质粘结相,采用粉末冶金工艺制备的金属陶瓷工具材料。
1. 2硬质合金的特点硬质合金广泛地应用于各行各业,它具有其他材料不具备的性能特点:(1)常温下具备良好的刚性,弹性模量高,通常为(4-7)x105MPa;(2)高温下具有较高的硬度,耐磨性良好,在600℃时超过高速钢的常温硬度,在1000℃时超过碳钢的常温硬度;(3)具有普通钢材料无法比拟的抗压强度,可高达6000MPa;(4)低的热膨胀系数,减少热裂纹的产生,适于在恶劣条件下工作;(5)化学稳定性高,特殊牌号的硬质合金能耐酸、碱腐蚀,高温下不易发生氧化作用;(6)具有良好的导电、导热性能,性能接近铁及其合金。
硬质合金因其具备以上特点,自问世以来,迅速在在现代化机械加工、金属材料加工以及矿山采掘等领域中得到广泛的应用,极大地刺激了工业生产部门的效率,成为推动各行业发展不可替代的材料。
尤其在金属材料加工领域,基本上替代了传统高速钢,引起了金属削工业的技术革命,被看作是工具材料发展到第三阶段的标志,因此被人们喻为工业的“牙齿”。
1.3硬质合金的发展简史1923年,德国的施勒特尔首先提出用粉末冶金的方法生产硬质合金,成为了现代硬质合金的发明人。
1926年,第一批钨钻硬质合金在德国克虏公司诞生,由于它特殊的性能,在世界各地发展迅速,美国、奥地利、英国、苏联、日本等相继研究成功并生产硬质合金。
其发展过程主要分为以下四个阶段:.第一个发展阶段(1926年—1936年)——世界硬质合金工业的形成阶段。
第二个发展阶段(1937年一1949年)——世界硬质合金工业的成熟阶段。
《粉体工程学》实验讲义主编理学系葛金龙二OO七年五月目录绪论 (1)取样方法 (2)实验一粉体粒度分布的测定及物料可磨度测定试验 (3)实验二静置自由沉降测定颗粒的粒度分布 (14)实验三激光粒度仪测定粉体粒度 (22)实验四粉体流动性的测定 (26)实验五粉体-水溶液界面吸附量测定—紫外光谱法 (33)实验六颚式破碎机产品粒度特性测定 (36)实验七粉磨功指数的测定 (38)实验八粉体表面改性性能测定 (45)实验九粉体的化学合成 (50)实验十矿物原料直接合成粉体材料 (53)实验十一粉体真密度的测定 (55)实验十二粉体综合实验 (58)绪论粉体工程学为专业基础理论课,是无机非金属材料专业必修的主干课程,是以颗粒和粉状物料为对象,研究其性质、制备与处理的一门工程学科。
学生通过课程的学习,掌握粉体的基本性质、粉体的制备、粉体的分离、粉体的储存、粉体的输送,理解粉体分离、制备、贮存的基本原理,学会在无机材料粉体制备过程中,根据不同技术要求,合理地选用设备和优化操作过程。
粉体工程实验是粉体工程课程内容的实践部分。
通过粉体工程实验训练,使学生掌握固体颗粒和粉状物料的基本制备方法、性质及表征的基本测试方法。
提高从事粉体技术工作的工程应用能力,掌握必要的基本测试技术实验主要为粉体的制备、分级、分离、贮存知识的应用提供实践检验的平台。
同时通过实验课的开设为学生后续课程和专业技术的学习和工作打下理论和实践基础。
粉体实验教学强调粉体工程素质培养,规范实验操作,动手能力,数据处理。
课程实验课要求学生必须熟练掌握有关粉体的基本性质、粉体的制备、粉体的分离、粉体的储存、粉体的输送,理解粉体分离、制备、贮存的基本原理,通过实践操作,数据记录结果,数据计算处理和书写实验报告等环节,锻炼学生提高分析问题和解决问题的能力, 达到培养学生实事求是、严肃认真的工作作风。
取样方法采样是一个十分重要的环节。
所采样本的质量如何,直接关系到分析结果的可靠性。
《粉末冶金实验技术》实验课程授课讲义课程编号:课程名称:粉末冶金实验技术实验名称:电解法制取铜粉、粉末流动性测定、空气透过法测定粉末粒度、显微镜观察粉末的形状、粉末压缩性的测定、金属粉末压制过程研究适用专业:金属材料工程一、实验课程教材及主要参考资料1、教材:廖寄乔主编. 《粉末冶金实验技术》. 中南大学出版社, 2003.2、参考书:黄培云主编. 《粉末冶金原理》. 冶金工业出版社, 2004.二、实验课时分配(小四号黑体)三、实验成绩考核方式与成绩核定办法(小四号黑体)1. 考核方式:实际操作和实验报告撰写2. 成绩核定办法:现场动手能力占50%,实验报告占50%实验1 电解法制取铜粉一、实验目的1. 掌握水溶液电解法制取金属粉末的一般操作;2. 熟悉电解制铜粉应控制的电解条件。
二、基本原理电解液使用酸性的硫酸铜水溶液,阳极用电解铜板或杂铜板,阴极用不锈钢或光滑紫铜板。
电解发生时,电极发生下列主要反应:1)在阳极,铜失去电子变成离子进入溶液Cu – 2e = Cu2+2)在阴极,铜离子得到电子而析出铜Cu2+ + 2e = Cu电解过程中,由于Cu+的氧化和少量H+在阴极上放电析出H2使得硫酸浓度降低;同时,由于电极的化学溶液及二次反应等原因而使硫酸铜浓度提高。
所以,电解液的浓度要按时调整,即定期加入适量的硫酸和放置不溶性铅阳极进行脱铜处理。
三、实验内容与步骤1. 接好线路本实验所用的直流电源是最大输出直流为10A的硒整流器,整个线路采用四个电解槽串联的方式,为了满足槽电压的要求,整流器前加了一个调压器,槽电压可用万用电表测量。
通过线路的电流强度控制在2.6-3安培,可在整流器上的电流表读出。
2. 配制电解液本实验所用的电解槽是用塑料板制成,容积1450ml,实验时每槽装电解液约1200ml。
电解液成分采用65g/L CuSO4 5H2O以及71ml/L H2SO4来配制。
先按成分要求把硫酸铜晶体溶于水中,再加入硫酸,用PH值试纸测定电解液的PH 值。
3. 安放电极阴极采用光滑紫铜板,总面积为80mm×50 mm,浸入面大约为60 mm×50 mm,以控制电流密度为0.08-0.1安培/厘米2(相当于8-10安培/分米2)。
阳极是面积与阴极较近的电解精铜板,把电解液倒入电解槽中后,即可把电极放入槽内,极间距离约20-20厘米。
4. 电解经老师检查无误后,就可通电电解,电解时间20分钟,电解温度不控制。
实验时,学生应严格控制电解条件,并注意观察电解中所发生各种现象。
电解完毕后,把阴极上生成的铜粉用刀刮入杯里。
5. 阴极产物的洗涤和稳定处理把刮在杯里的铜粉用清水洗涤数次,一直洗到用2%的BaCO3或BaCl2的水溶液滴定无白色沉淀为止,然后用含0.02-0.1%的钠肥皂水(或苏打稀释液)洗一次,使其相对稳定,中和残余酸,最后用清水再洗两次,在每次水洗后要进行过滤,防止粉末损失。
6. 粉末干燥把装在烧杯中的铜粉放入真空干燥炉中,在110-130℃的温度下,干燥30-45分钟,经干燥后的粉末用研制碎后就可使用了。
四、实验报告要求1. 简述本实验的操作过程,画出工艺流程图。
2. 按表1的格式填写实验记录。
计算获得铜粉的起始电流密度,计算电解的电流效率。
3. 实验结果的分析与讨论。
实验2 粉末流动性的测定一、实验目的1. 掌握测定粉末流动性的方法;2. 了解影响粉末流动性的各种因素。
二、基本原理粉末的流动性,即粉末填充一定形状容积的能力,粉末的流动性直接影响到压型时,粉末料能否均匀地填充模腔和压坯密度分布的均匀性。
粉末流动性是一种复杂的综合性能,它与许多因素有关(松装密度、粒度、粒度组成、颗粒形状等),颗粒间的摩擦和咬合阻碍它们的相对移动,是最主要的影响因素,凡是能够减小或增大这种机械摩擦和联结的性质的因素将影响到流动性。
一般说,流动性随着颗粒变小而变坏,因为细粉末具有大的比表面,颗粒的粗糙度和形状复杂同样减小流动性,粉末氧化通常提高流动性,因为这时摩擦系数降低,颗粒表面凹凸不平,粉末潮湿大大地降低其流动性,自然坡度较可以近似的表征粉末的流动性,测定自然坡度角的方法是:将通过100-150目的筛网的粉末注入无底的玻璃或金属圆筒中,圆筒放在一张纸上,因此,当提取它时,粉末就倾泻出来,形成锥形的堆,颗粒之间的摩擦力和咬合力越陡斜,锥形堆与水平面间所构成的交角就称为自然坡度角,用卡尺量出锥形的底部直径R和它的高度H就可以计算这个角度tanφ:tanφ= HR根据一机部颁布的《农机铁机·粉末冶金技术标准》规定,铁粉的流动性常用铁粉通过标准的流速漏斗的流速来表示,铁粉流动性越好,流速越快,本实验就是用该标准规定的流速仪(见图7)来测定铁粉的流动性。
三、实验步骤1.称取试样200克至于烘箱内,于150℃±5℃烘干1小时,然后移入干燥器中,冷却至室温。
2. 测定时称取试样50克,称准至0.2克,用手指止住漏斗下的流出孔,将粉末全部倒入漏斗,应注意使漏斗的孔径部分也填满。
3. 当移开手指的同时,立即掀动秒表,当粉末全部流光时,立即微停秒表,记录粉末全部流完所需要的时间(秒),重复测定三次,其误差不允许超过0.4秒,取其平均值。
4. 流速计算:流速=T×K(秒/50克)式中:T——三次测定秒数的平均值;K——流速测定仪的修正系数。
5. 流速测定用漏斗的检定:制造漏斗者必须将漏斗进行检查,在上述方法测定标准砂的流速,将5次测定的平均值(其中最大最小的秒数记录不得超过0.4秒)刻于漏斗底面。
假定标准砂在标准漏斗中的流速为40秒,则其修正系数为:修正系数K=40流速平均值当测得标准砂的流速低于37秒/50克时,则此漏斗属于报废。
四、实验报告要求1.列表记录实验数据(包括粉末质量,流出时间),并计算出流速;2. 实验结果的分析与讨论。
实验3 空气透过法测定粉末的粒度一、实验目的1、了解气体透过法测定粉末粒度的原理;2、掌握气体透过法测定粉末粒度的操作。
二、基本原理本实验采用的设备是第四代透过法测试仪。
它是基于稳定空气流动下,气体透过粉末压缩床。
气体的透过率受粉末的粒度、形状和床的有效孔隙度的影响。
当已知粉末形状、孔隙度并测出其透过率时,就可以计算出粉末的粒度和各种比表面积。
仪器由空气泵、干燥器、水柱稳压器、垂直压力计、泄气阀、试样管、粉末压缩装置、试样管夹紧装置、U型压力计、精密阀、游标卡尺和仪器计算面板等组成。
仪器的气流及测压系统如图一。
空气由微型气泵(14)加压送入系统,泄气阀(1)和水柱稳压器(13)将过量的空气排入大气,垂直压力计(12)测量供气系统的压力。
调节泄气阀开度和水柱稳压器的液面高度将供气压力稳定在500mm水柱。
稳压后的少量的空气经干燥后进入试样管,由U型压力计测得空气出试样管后,进精密阀前的压力。
空气最后经精密阀排入大气。
在上述系统中,对于一定量的粉末,按国际GB11107-89即可求得粒度值:D K=5.34[Hα(50−2H)∙(1−εPεP)3]1/2∙L其中:εp=1−mρe∙Lα=mρe式中:m—粉末的质量(g);ρe—粉末的真密度(g/cm3);α—试样的下料系数(g);L—试样(粉末床)的厚度;H—U型压力计单根水柱上升高度值(cm)。
三、实验步骤1.仪器的调试与校准仪器使用前必须进行调试和校准(1)U型压力计的校准调节升降齿轮的旋钮,使U型压力计的基准水平面应与游标左脚上水平面平齐。
如不平行,可先调节水位微调阀;如仍调节不到位,则须对U型压力计进行加水(当U型压力计的基准水平低于卡尺左脚上水平面时)或放水的操作(当U型压力计的基准水平面高于卡尺左脚上水面时)。
加水操作为:全部松开微调阀,将水加入加水小漏斗,再松开流量计加水阀,慢慢放水入U型管,当U 型管压力计的基准水平面接近卡尺左脚水平面时,关闭加水阀。
放水操作为:松开加水阀,用注射器吸出小漏斗内多余的水,知道U型压力计的基准水平面略低于游标卡尺左脚上水平时,关闭加水阀。
最后调节微调阀,即可使U型压力计的基准水平与游标卡尺左脚上水平面平齐。
(2)气源压力的校准与调节供气压力应始终保持在500±0.5mm水柱。
将水柱稳压器加水至规定高度,记下垂直压力计水位上升,调节泄气阀,使压力计水柱上升500mm,即达到(500mm+初始值),并维持此高度至测试结束。
测试过程中,如有变动,随时调节泄气阀,保持气源压力的稳定。
(3)精密阀的校准将标准管代替试样管进行测试,气流稳定后,U型压力计的读数应与标准管上标定的数值一致;若不一致,旋转调节精密阀,使U型压力计的读数与标准管上标定的数值一致,稳定3分钟不变即可关泵停止。
2. 粉末的测定(1)试样的制备在千分之一的天平上称待测干燥粉末m克,用漏斗将其灌入带有一片快速滤纸和一多孔塞得试管中,试管插入橡皮坐上,漏斗及纸上附着的粉末用毛刷扫入试管中,然后盖一片滤纸和多孔塞。
将装有被测粉末的试管一头套在压缩装置底座的圆柱上,另一头在尺杆下紧压,用游标卡尺测出粉末床的厚度L。
(2)测量将粉末试管从尺杆下取出接入试样夹头处夹紧,开气泵,通气5分钟,稳定后,利用游标卡尺测量出U型压力计的水柱上升量H。
停泵开泵重复一次,测量数据,两者相对误差小于3%,就是本次测量的最后结果。
若大于3%再重新测样,在此孔隙度下或接近此孔隙度值,测出试样的D K值,最后三数据平均值为试样结果。
四、实验报告要求1.简述仪器调试的基本过程2. 计算被测粉末的粒度D K3.分析影响粉末力度大小的各种因素实验4 显微镜观察粉末的形状一、实验目的1.熟悉粉末的显微观察法,掌握操作技术;2. 测绘出粉末的粒度分布曲线。
二、基本原理将制备的粉末标本放在光学显微镜下进行观察,目镜是带有刻度的目镜测微器,只要用标准测微尺测出在此放大倍数下的目镜刻度的读数值,即可测出粉末的大小。
然后根据一定粒度大小的粉末的个数和被测粉末的总数,就能计算出此种粒度的粉末所占的百分数,绘出粒度分布曲线。
此法常用来测量细粉(10-40um)和超细粉末(0.5-10um),其优点是不但能测得粉末粒度,还能观察到粉末的形状,消除粉末聚集体对测量结果的影响,但此法的操作较为费时,故生产现场用得少,此法的准确度取决于被测颗粒的数量、粉末分散程度、观测技巧和取样的代表性,显微镜的清晰程度也是有影响的,因此,实验的全过程都要细心操作。
三、实验步骤本实验的内容有:(1)测定还原铁粉的粒度;(2)观察电解铜粉和喷雾青铜粉形状。
1.粉末标本制备(1)取样:取样要有代表性,可用梅花取样法,用取样钻从料桶中有不同部分抽取粉末,混匀后从其中去除10克,先用四分法取样,再用分段法取样,直取到剩余粉末不足0.5克时为止。