有理数的加法教学设计
- 格式:doc
- 大小:82.50 KB
- 文档页数:7
有理数的加法的教案5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作报告、工作计划、心得体会、合同方案、演讲稿、作文大全、教案、述职报告、调查报告、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work reports, work plans, reflections, contract proposals, speeches, essay summaries, lesson plans, job reports, investigation reports, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!有理数的加法的教案5篇教案能够帮助教师更好地掌握教学进度,合理安排课程内容,一份实用的教案可以帮助教师更好地组织和安排课堂教学活动,提高教学效率,本店铺今天就为您带来了有理数的加法的教案5篇,相信一定会对你有所帮助。
《有理数的加法》说课稿8篇《有理数的加法》说课稿1学习目标:1、理解有理数加法意义2、掌握有理数加法法则,会正确进行有理数加法运算3、经历探究有理数有理数加法法则过程,学会与他人交流合作学习重点:和的符号的确定学习难点:异号两数相加的法则学法指导:在探讨有理数的加法法则问题时,利用物体在同一直线上两次运动的过程,理解有理数运算法则。
先仔细观察式子的特点,找到合理的运算步骤,使加法运算简便。
学习过程(一)课前学习导引:1、如果向东走5米记作+5米,那么向西走3米记作2、比较大小:2 -3,-5 - 7,43、已知a=-5,b=+ 3,则︱a ︳+︱ b︱=(二)课堂学习导引正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围。
例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。
如果,红队进4个球,失2个球;蓝队进1个球,失1个球.于是(1)红队的净胜球数为 4+(-2) ,(2)蓝队的净胜球数为 1+(-1) 。
这里用到正数和负数的加法。
那么,怎样计算4+(-2),1+(-1)的结果呢?现在让我们借助数轴来讨论有理数的加法:某人从一点出发,经过下面两次运动,结果的方向怎样?离开出发点的距离是多少?规定向东为正,向西为负,请同学们用数学式子表示①先向东走了5米,再向东走3米,结果怎样?可以表示为②先向西走了5米,再向西走了3米,结果如何?可以表示为:③先向东走了5米,再向西走了3米,结果呢?可以表示为:④先向西走了5米,再向东走了3米,结果呢?可以表示为:⑤先向东走了5米,再向西走了5米,结果呢?可以表示为:⑥先向西走5米,再向东走5米,结果呢?可以表示为:从以上几个算式中总结有理数加法法则:(1)、同号的两数相加,取的`符号,并把相加(2)。
绝对值不相等的异号两数相加,取的加数的符号,并用较大的绝对值较小的绝对值。
互为相反数的两个数相加得。
《有理数的加法》教案一、教学目标:1. 让学生理解有理数的加法概念,掌握有理数加法的基本运算方法。
2. 能够正确进行有理数的加法运算,解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学重点:1. 有理数加法的基本运算方法。
2. 能够正确进行有理数的加法运算。
三、教学难点:1. 有理数加法的运算规律。
2. 不同符号有理数加法的运算方法。
四、教学方法:1. 采用讲解法,讲解有理数加法的基本概念和运算方法。
2. 采用例题演示法,展示不同类型的有理数加法运算。
3. 采用练习法,让学生通过练习巩固所学知识。
五、教学内容:1. 有理数加法的概念:两个有理数相加的运算称为有理数加法。
2. 有理数加法的运算方法:(1)同号有理数相加:取相同符号,并把绝对值相加。
(2)异号有理数相加:取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
3. 练习题:(1)同号有理数相加:23 + 17 = 40(2)异号有理数相加:-5 + 7 = 2(3)混合运算:34 15 + 26 = 45六、教学步骤:1. 引入新课:讲解有理数加法的概念和意义。
2. 讲解有理数加法的运算方法,并通过例题展示。
3. 让学生进行练习,巩固所学知识。
4. 总结本节课的主要内容和知识点。
七、课后作业:1. 完成练习册上的相关题目。
2. 找一些实际问题,运用有理数加法解决。
八、教学反思:通过本节课的教学,学生应该能够掌握有理数加法的基本概念和运算方法,能够正确进行有理数的加法运算。
在教学过程中,要注意引导学生理解有理数加法的运算规律,并通过练习让学生熟练掌握。
要关注学生的学习情况,及时解答学生的疑问,提高教学效果。
六、教学评价:1. 通过课堂讲解、练习和课后作业,评估学生对有理数加法的理解和掌握程度。
2. 观察学生在解决问题时的思路和方法,评估其应用能力和创新意识。
3. 收集学生反馈意见,了解教学方法的适用性和改进方向。
七、教学拓展:1. 引导学生探索有理数加法的运算规律,例如:a + (-a) = 0,a + b = b + a 等。
数学有理数的加法教案精选8篇有理数的加法教案篇一(一)知识与技能目标1、经历探索有理数加法法则的过程,理解有理数的加法法则。
2、运用有理数加法法则熟练进行整数加法运算。
(二)过程与方法目标1、在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。
2、在探索过程中感受数形结合和分类讨论的数学思想。
3、渗透由特殊到一般的唯物辩证法思想(三)情感态度与价值观目标(1)通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质。
(2)让学生体会到数学知识于生活、服务于生活,培养学生对数学的热爱,培养学生运用数学的意识。
(3)培养学生合作意识,体验成功,树立学习自信心。
二、教学重点、难点:重点:理解和运用有理数的加法法则难点:理解有理数加法法则,尤其是理解异号两数相加的法则三、教学组织与教材处理:在教学过程中一如既往的开展“新、行、省、信”四字教育模式的教学。
新:创设新的问题情境(足球净胜球数)、开展新的学习方式(自主、合作、交流)、进行新的评价体系(个人评价、教师评价与小组评价相结合);行:在教师的启发引导下自主、合作探究新知(有理数的加法法则),教师关注学生是否积极思考问题(几组有理数加法的符号与绝对值特征)、是否主动参与讨论(同号与异号的特征)、是否敢于发表自己的见解(有理数加法法则的概括);省:在特殊实例的基础上观察、归纳、概括有理数的加法法则,在实例讲解和自主练习的基础上总结心得、反省得失(如:解后思)。
信:在本节课的探究法则与运用法则中体验成功,增添学习兴趣,树立学习自信心(如在教师用数带正号球的方法得出(+2)+(+3)=+5后,学生按照此思路可以很快得出(-2)+(-3)等其它情形。
又如以口答形式判断几组有理数加法的和的符号和在最后以“挑战老师”的形式判断一句话的正误等等)。
同时本节课在运用“正负抵消”和数轴探讨有理数法则时,教师只对第一个或前两个进行指导和示范,其它的留给学生独立得出或合作完成。
有理数的加法的教学设计(精选11篇)有理数的加法的教学设计第1篇《有理数加法法则》是华东师大版教材七年级上册第二章第六节第一课时内容,主要是通过问题情境理解有理数加法的意义,探究、总结、归纳有理数的加法法则,并能根据有理数加法法则进行有理数加法运算,它是有理数运算的基础,也是实数运算的基础,也就是一切运算的基础。
教法:以学生为主体创设问题情境,通过设计问题串,诱导学生探究、总结、归纳有理数的加法法则,并能自主运用法则进行计算。
重点突出异号两数相加,明确有理数的加法,名义上是加,但实际上同号是加,异号则要转化成减法。
最后将巩固法则融入游戏中,并将法则编成顺口溜,活跃课堂气氛,让学生学得轻松。
学法:认真听讲,积极思考回答老师提出的问题,自主分类归纳有理数的加法法则,通过将法则巩固融入游戏、顺口溜中,让学生学得轻松,乐于学习,并提高学习的兴趣。
教学目标:1、理解加法的意义。
2、总结归纳有理数的加法法则,并能运用法则进行有理数的加法运算。
3、通过法则的探索,向学生渗透分类、归纳、转化的数学思想。
教学重点:法则的探索与应用教学难点:异号两数相加教学准备:预习教材,填上相应的空白,思考并举出运用有理数加法的实例。
教学过程:一、复习回顾1、一个不为零的有理数可以看做是由哪两部分组成的?2、比较下列各组数绝对值哪个大?①-22与30;②-与;③-4.5和63、小学里学过哪类数的加法?引入负数后又该如何进行有理数的加法运算呢?(建立在学生已有知识的基础之上复习回顾与本节课相关的旧知识。
)二、新知探究1、打开教材,请一位学生将他通过预习得到的加法算式说出来写在黑板上,并说出该式子表示的实际意义。
2、你还能举出类似用加法运算的实例吗?3、观察这些算式,从加数上看你可以将它们分成几类?每一类和的符号与加数的符号有何关系?和的绝对值与加数的绝对值有何关系?4、总结归纳有理数的加法法则。
突破难点:异号相加好比正数和负数进行拔河比赛,谁的力量(绝对值)大,谁胜(用谁的符号),结果考察力量悬殊有多大(较大绝对值减较小绝对值)。
有理数的加减混合运算教案(优秀4篇)有理数的加减混合运算教案篇一教学目标让学生熟练地进行有理数加减混合运算,并利用运算律简化运算。
教学重点和难点重点:加减运算法则和加法运算律。
难点:省略加号与括号的代数和的计算。
课堂教学过程一、从学生原有认知结构提出问题什么叫代数和?说出-6+9-8-7+3两种读法。
二、讲授新课1.计算下列各题:2.计算:(1)-12+11-8+39;(2)+45-9-91+5;(3)-5-5-3-3;(7)-6-8-2+3.54-4.72+16.46-5.28;3.当a=一三,b=-12.1,c=-10.6,d=25.1时,求下列代数式的值:(1)a-(b+c);(2)a-b-c;(3)a-(b+c+d);(4)a-b-c-d;(5)a-(b-d);(6)a-b+d;(7)(a+b)-(c+d);(8)a+b-c-d;(9)(a-c)-(b-d);(10)a-c-b+d.请同学们观察一下计算结果,可以发现什么规律?a-(b+c)=a-b-c;a-(b+c+d)=a-b-c-d;a-(b-d)=a-b+d;(a+b)-(c+d)=a+b-c-d;(a-c)-(b-d)=a-c-b+d.括号前是“-”号,去括号后括号里各项都改变了符号;括号前是“+”号(没标符号当然也是省略了“+”号)去括号后各项都不变。
4.用较简便方法计算:(4)-16+25+16-壹五+4-10.三、课堂练习1.判断题:在下列各题中,正确的在括号中打“√”号,不正确的在括号中打“×”号:(1)两个数相加,和一定大于任一个加数.()(2)两个数相加,和小于任一个加数,那么这两个数一定都是负数.()(3)两数和大于一个加数而小于另一个加数,那么这两→←数一定是异号.()(4)当两个数的符号相反时,它们差的绝对值等于这两个数绝对值的和.()(5)两数差一定小于被减数.()(6)零减去一个数,仍得这个数.()(7)两个相反数相减得0.()(8)两个数和是正数,那么这两个数一定是正数.()2.填空题:(1)一个数的绝对值等于它本身,这个数一定是______;一个数的倒数等于它本身,这个数一定是______;一个数的相反数等于它本身,这个数是______。
有理数的加法说课稿有理数的加法教案篇一一、教学内容《有理数的加法》是北师大版七年级数学上册第二章《有理数及其运算》第四节课的内容,这节课的内容应两个课时完成。
本课时是本节内容的第一课时,依据教材的安排本节课应是让学生理解有理数的加法法则和运算律,最终熟练地进行整数加法运算,并能用运算律简化运算。
在有理数范围内进行的各种运算:加、减法可以统二、设计理念七年级年龄段的学生思维活跃、求知欲强、有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇,又刚从小学升上初中三周时间,人人都自信满满,摩拳擦掌,准备大施拳脚,因此我采用探究式的学习方法,以问题串引领整个课堂,请同学们通过动脑、计算、分析得出结论,并利用组间游戏帮助学生理解法则,运用法则。
三、教学目标与重难点目标:1、使学生掌握有理数加法法则,并能运用法则进行计算。
2、让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律。
3、让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。
重点:会用有理数加法法则进行运算。
难点:异号两数相加的法则。
四、学情分析1、学生非常熟悉正数加正数,正数加零的情况。
2、有理数的分类、数轴、绝对值的相关知识已经掌握。
3、学生善于形象思维,思维活跃,能积极参与讨论。
五、教学策略1、将本节课的教学内容设计成六个重要问题,引导学生深层次的思考;2、由学生自己举出生活中的具体实例,认识到运算的。
作用,加深对运算意义的理解;3、在教学过程中,将每一个环节的要点及时归纳,并准确地表达,帮助学生构建知识体系。
六、教学流程1、回顾旧知,启发思维展示课件上的三个问题,请同学们思考并回答。
(1)有理数是怎么分类的?(2)有理数的绝对值是怎么定义的?(3)下列各组数中,哪一个数的绝对值大?7和4;-7和4;7和—4;-7和-4设计意图回顾与本节课有关的概念和性质,为新课引入进行铺垫。
有理数的加法教学设计(精选6篇)有理数的加法教学设计(精选6篇)作为一名人民教师,就难以避免地要准备教学设计,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。
那么写教学设计需要注意哪些问题呢?下面是小编为大家整理的有理数的加法教学设计,希望能够帮助到大家。
有理数的加法教学设计篇1教学目标1.通过实例,了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算。
2.正确地进行有理数的加法运算;用数结合的思想方法得出有理数加法的法则。
并能运用有理数加法解决实际问题。
3.对学生加强数感的培养,感受数的意义,培养实事求是的科学态度,既会独立思考,又能勇于创新。
重点难点重点:了解有理数加法的意义,会根据有理数加法进行运算。
难点:有理数加法中的异号两数的加法运算。
教学过程一、问题情境小明在一条东西的跑道上先走了5m,又走了3m,如果以向东为正,他两次运动后的总结果是什么?5+3=8如果小明先向西运动5m,再向东运动3m,两次运动的结果是什么?(-5)+(-3)=-8如果小明先向东运动5m,再向西运动3m,两次运动的结果是什么?5+(-3)=2足球循球赛中,通常把进球数记为正,失球数记为负数,它们的和叫做净胜球数。
图中,红队进4个球,失2个球;蓝队进1个球,失1个球,那么红队和蓝队的净胜球数如何表示?二、知识点拔:有理数加法法则:1.同号两数相加,取相同符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,与为相反数的两个数相加得0.3.一个数同0相加,仍得这个数。
三、例题指导例1计算(1)(-3)+(-9)(2)(-4.7)+3.9解:(1)(-3)+(-9)=-(3+9)=-12(2)(-4.7)+3.9=-(4.7-3.9)=-0.8四、练习巩固:P221、2。
五、小结:这节课我们学习了哪些知识?六、作业:习题1.31、8、12题有理数的加法教学设计篇2一、教材分析分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标、重点和难点。
有理数的加法教案优秀15篇有理数的加法教案篇一一、教学目标(一)知识与技能1、使学生掌握有理数加法法则,并能运用法则进行计算;2、在有理数加法法则的教学过程中,注意培养学生的运算能力。
(二)过程与方法1、在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。
2、在探索过程中感受数形结合和分类讨论的数学思想。
(三)情感、态度与价值观1、认识到通过师生合作交流,学生主动参与探索获得数学知识,从而提高学生学习数学的积极性。
2、创设教学情境,使学生更好地体验教学内容中的情境,理解数学的意义与数学实际应用。
二、教学重点会用有理数加法法则进行运算。
三、教学难点异号两数相加的#39;法则。
四、教学方法探究法、引导发现法五、教具准备多媒体课件、导学案六、教学过程(一)创设情景,引入新课。
小明沿着一条直线,先走两米,又走了三米,能否确定小明现在位于原来位置的哪个方向,与原来位置相距多少米?请把�(二)探究新知1、大家开始画数轴,以原点为起点,规定向右的�(1)若两次都是向右走,很明显,一共向右走了5米。
记作:(+2)+(+3)= +5(2)若两次都是向左走,很明显,一共向左走了5米。
记作:(-2)+(-3)= -5(3)若第一次向右走2米,第二次向左走3米,在数轴上,我们可以看到,小明位于原来位置的左方1米处。
记作:(+2)+(-3)= -1(4)若第一次向左走2米,第二次向右走3米,在数轴上,我们可以看到,小明位于原来位置的右方1米处。
记作:(-2)+ (+3)= +12、从刚才画数轴的过程中,我们知道了加法实际上是相继活动的合并。
我们可以借助数轴来得知两个有理数相加的结果。
请模仿刚才演示的过程,向右表示加数中的正数,向左表示加数中的负数,在数轴上表示两个数相加的过程,得到结果。
1)(-4)+ (-1)2)(+5)+(-3)3)(-4)+(+7)4)(-6)+33、通过实践,我们发现,能借助数轴很方便地得知有理数加法结果。
有理数的加法教案(优秀7篇)有理数的加法公开课教案篇一一、学情及学习内容分析“有理数的加法与减法”是基于规则为主的新授课型有理数的加法与减法是在引入“负数”的基础上,将数的范围扩展到“有理数”范围内的加、减法运算。
本节课从学生的生活经历和经验出发,创设情境,通过分析生活情境中的事理和观察温度计刻度的操作,得到了一些有理数减法的算式,用“化归”的思想方法归纳出有理数减法法则,并应用所学的有理数减法解决实际问题,整节课的设计流程和总体思路可以用下图表示:生活情境,动手操作------有理数减法算式-------有理数减法法则-------有理数减法的应用二、教学目标及教学重(难)点教学目标:1、知识与技能:会根据减法的法则进行有理数减法的运算。
2、过程与方法:经历分析生活情境中的数学事例,提炼其中的数学算式,并从中归纳有理数减法法则;经历将法则应用于解题的这一由一般到特殊的过程。
3、情感态度与价值观:在由实际情境提炼数学算式的过程中,感受数学在我们的生活中;在这一过程中,渗透转化的思想方法,感受数学思想方法的导航作用。
教学重点:有理数减法法则与运用教学难点:从实际情境到数学算式,从数学算式到法则的提炼,在法则的总结中体现化的思想方法的渗透。
教学方法:观察探究、合作交流。
三、教学过程设计:在课前让学生玩有理数加法中的扑克牌游戏。
1、情境引入:师:同学们,大家都看过天气预报,有没有注意到里面有“温差”之说呢?有效性分析:通过设计“温差”这一问题情境,进而顺利的进入课题,并从列算式角度加以认识,得到一些有理数减法算式,为后面的化归思想方法归纳出有理数减法法则做好素材和算式上的准备。
2、建构活动活动1:计算温差师:有理数加减3_百度文库生1:利用温度计的刻度直观得到算式5 + 3 = 8生2:利用日温差的定义可得到算式:5 -(-3)= 8师:比较两式,我们有什么发现吗?生:“-”变“+”,(-3)变3。
活动2:通过举例子验证刚才的变化过程,加深对有理数减法算式的理解。
《有理数的加法》教学设计
《有理数的加法》教学设计
教学目标
知识与技能:
掌握有理数加法法则,并能运用法则进行有理数加法的运算。
过程与方法:
1.经历有理数加法法则的探究过程,深刻感受分类讨论、数形结合的思想,由具体到抽象、由特殊到一般的认知规律;
2.动手、发现、分类、比较等方法的学习,培养归纳能力。
情感态度与价值观:
1.通过师生合作交流,学生主动参与探索获得数学知识,从而提高学习数学的积极性;
2.体会数学来源于生活,服务于生活,培养热爱数学的情感,体会数学的应用价值;
3. 培养善于观察、勤于思考的学习习惯,树立合作意识,体验成功,提高学习自信心。
教学重点
有理数加法法则及运用
教学难点
异号两数相加法则
教具准备
powerpoint课件
课时安排
1课时
教学过程
创设情境引入新课2010年6月11日至7月11日,第19届世
界杯足球赛在南非举行。
来自世界各国的32
支球队为全世界的球迷送上了一场完美的足
球盛宴。
(出示PPT2)
(出示PPT3)小组循环赛中,胜一场得3分,
平一场得1分,负一场得0分,积分最多的
两支队伍进入十六强。
积分相同时,净胜球
多者为胜(把进球数记为正数,失球数记为
负数,进球数与失球数的和叫做净胜球数)。
以B组为例,进入十六强的是阿根廷和韩国。
国家赛胜平负得分
阿根廷33009
韩国31114
希腊31023
尼日利
亚30121
(出示PPT4)再以A组为例,A组积分榜
国
家
赛胜平负
得
分
进
球
失
球
净
胜
球
乌
拉
圭32107+40
墨
西
哥31114+3-2
南
非31114+3-5
法
国30121+1-4
师:从A组积分榜可以看出墨西哥和南非的
积分相同,那么究竟应该确定哪个队进入十
六强呢?此时则需要计算各队的净胜球数。
你能列出计算各队净胜球数的算式吗?
学生看图表,
思考问题。
学生列出计
算净胜球数
的算式。
利用世界杯
的例子,体现
数学来源于
生活,让学生
体会学习有
理数加法的
必要性,更能
激发学生的
兴趣
体会学习有
理数运算的
必要性。
例题讲解巩固新知(出示PPT10)例1.计算:
(1)(+7)+(+6);(2)(-5)+
(-7);
(3)()+ ;(4)(-10.5)
+(+21.5);
(5)(-7.5)+(+7.5);(6)(-3.5)+ 0 。
学生逐题解答,教师选择两题板书演示解题
步骤。
(板书6)
解:
(2)原式= -(9+5)
= -14
(3)原式= -(-)
= -
教师小结:
进行有理数加法,先要判断两个加数是同号
还是异号,再根据两个加数符号的具体情
况,选用相应的加法法则,确定和的符号以
及和的绝对值。
学生观察教师
的解题步骤,
并按规范解
题。
培养学生解
题的规范性。
巩固练习(出示PPT11)练习1.比比谁的眼睛亮:下
列各计算结果是对还是错?如果错误请指
出错在哪里,并改正错误。
(1)(-4)+2=-6 ()
(2)(-15)+16=1 ()
(3)(-6)+(-1)=-5 ()
(4)(-34)+(-27)=51 ()
(5)(-9)+0=0 ()
(6)(+60)+(-60)=120 ()
(7)(-27)+36=-9 ()
学生集体口
答。
采用示错式
教学,展示学
生在运算中
容易出现的
错误,减少学
生解题时出
错。
环
节
教师活动学生活动设计意图
巩固练习(出示PPT12)练习2.计算
(1)(+ 3.5)+(+ 4.5);(2)()
+();
(3)()+();(4)()
+();
(5)100+(-100);(6)(-9.5)
+ 0
学生完成练习,同伴之间相互订正,教师对
学生的板演进行评价。
学生做练习,
两位学生板演
(2)、(4)
两题,全班同
学口答其余四
题。
通过练习让
学生熟练运
用有理数加
法法则。
拓展练习(出示PPT13)练习3.下面的说法是否正确?
如果不正确,请举例说明。
(若课堂时间不
够,可作为课后思考题)
(1)两个数的和一定比两个数中任何一个
都大;
(2)两个数的和是正数,这两个数一定是
正数。
要求学生不仅能指出说法的正误,并能举出
实例证明自己的结论。
学生思考判断
并举反例说
明。
开放性的题
目让学生在
探索的过程
中进一步理
解法则,体会
有理数的加
法与小学时
加法的区别。
归纳小结师:通过本节课的学习,你学到了哪些数学
知识?(出示PPT14)
有理数的加法法则:
1.同号两数相加,取与加数相同的符号,并
把绝对值相加;
2.异号两数相加,当绝对值不等时,取绝对
值较大的加数的符号,并用较大的绝对值减
去较小的绝对值;绝对值相等时和为0(即
互为相反数两数之和为0)。
3.一个数与零相加,仍得这个数。
学生回答。
使学生对所
学的知识有
一个总体而
深刻的认识。
作业布置1.习题1.4:1(必做题)(出示PPT15)
2.你能将-4,-3,-2,-1,0,1,2,3,4这
9个数分别填入下图幻方的9个空格中,使
得处于同一横行,同一竖列,同一斜对角线
上的3个数相加都得0吗?(选做题)
学生回家完
成。
作业分层布
置,照顾到全
体学生;第二
题是九宫格
问题,数的范
围扩大到有
理数范围后
就有一定的
难度,激发学
生挑战的意
识。
(板书1)§1.4有理数的加减
一、有理数的加法
(板书3、4、5)
1.同号两数相加,取原来的符号,并把绝对值相加。
2.异号两数相加,绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;绝对值相等时和为0(即互为相反数之和为0)。
3.一个数与零相加,仍得这个数。
(板书6)例1.
解:
(2)原式= -
(9+5)
= -14
(3)原式= -(-)
=
(板书2:用后可擦)
(+)+(-);(-)+(-);
(0)+(-)。