第一章 函数与极限
第一节
• • • • • 一、基本概念 二、函数概念 三、函数的特性 四、反函数 五、小结
函数
一、基本概念
总体. 1.集合: 具有某种特定性质的事物的总体 1.集合: 具有某种特定性质的事物的总体. 集合 组成这个集合的事物称为该集合的元素. 组成这个集合的事物称为该集合的元素. 元素 a∈ M, a∉ M,
y
y = f ( x)
f ( x1 )
f ( x2 )
x1
恒有
f ( x1 ) > f ( x2 ),
o
x2
则称函数 f ( x )在区间 I上 是单调减少的 ;
I
x
3.函数的奇偶性: 函数的奇偶性:
设D关于原点对称 , 对于∀x ∈ D, 有
f (− x ) = f ( x )
y
y = f ( x)
五、小结
基本概念 集合, 区间, 邻域, 常量与变量, 绝对值. 集合, 区间, 邻域, 常量与变量, 绝对值 函数的概念 函数的特性 有界性,单调性,奇偶性,周期性. 有界性,单调性,奇偶性,周期性. 反函数
思考题
1 设 ∀x > 0 , 函 数 值 f ( ) = x + 1 + x , 求 函 数 x
前言
高等数学》 《高等数学》是研究变量及变量间依赖关系的 一门数学课程。 一门数学课程。它的内容包括一元及多元函数微 积分学、空间解析几何、无穷级数和微分方程。 积分学、空间解析几何、无穷级数和微分方程。 高等数学》共讲授192学时,共计12 192学时 12学分 《高等数学》共讲授192学时,共计12学分 高等数学》的研究方法主要应用极限法。 《高等数学》的研究方法主要应用极限法。