数学建模word排版
- 格式:ppt
- 大小:588.00 KB
- 文档页数:11
数学建模文章格式模版word版(共5篇)第一篇:数学建模文章格式模版word版数学建模文章格式模版题目:明确题目意思一、摘要:500个字左右,包括模型的主要特点、建模方法和主要结果二、关键字:3-5个三.问题重述。
略四.模型假设根据全国组委会确定的评阅原则,基本假设的合理性很重要。
(1)根据题目中条件作出假设(2)根据题目中要求作出假设关键性假设不能缺;假设要切合题意五.模型的建立(1)基本模型:1)首先要有数学模型:数学公式、方案等2)基本模型,要求完整,正确,简明(2)简化模型1)要明确说明:简化思想,依据2)简化后模型,尽可能完整给出(3)模型要实用,有效,以解决问题有效为原则。
数学建模面临的、要解决的是实际问题,不追求数学上:高(级)、深(刻)、难(度大)。
u 能用初等方法解决的、就不用高级方法,u 能用简单方法解决的,就不用复杂方法,u 能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。
(4)鼓励创新,但要切实,不要离题搞标新立异数模创新可出现在▲建模中,模型本身,简化的好方法、好策略等,▲模型求解中▲结果表示、分析、检验,模型检验▲推广部分(5)在问题分析推导过程中,需要注意的问题:u 分析:中肯、确切u 术语:专业、内行;;u 原理、依据:正确、明确,u 表述:简明,关键步骤要列出u 忌:外行话,专业术语不明确,表述混乱,冗长。
六.模型求解(1)需要建立数学命题时:命题叙述要符合数学命题的表述规范,尽可能论证严密。
(2)需要说明计算方法或算法的原理、思想、依据、步骤。
若采用现有软件,说明采用此软件的理由,软件名称(3)计算过程,中间结果可要可不要的,不要列出。
(4)设法算出合理的数值结果。
七、结果分析、检验;模型检验及模型修正;结果表示(1)最终数值结果的正确性或合理性是第一位的;(2)对数值结果或模拟结果进行必要的检验。
结果不正确、不合理、或误差大时,分析原因,对算法、计算方法、或模型进行修正、改进;(3)题目中要求回答的问题,数值结果,结论,须一一列出;(4)列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据;(5)结果表示:要集中,一目了然,直观,便于比较分析▲数值结果表示:精心设计表格;可能的话,用图形图表形式▲求解方案,用图示更好(6)必要时对问题解答,作定性或规律性的讨论。
传染病模型摘要当今社会,人们开始意识到通过定量地研究传染病的传播规律,建立传染病的传播模型,可以为预测和控制传染病提供可靠、足够的信息。
本文利用微分方程稳定性理论对传统传染病动力学建模方式进行综述,且针对甲流,SARS等新生传染病模型进行建模和分析。
不同类型的传染病的传播过程有其各自不同的特点,我们不是从医学的角度一一分析各种传染病的传播,而是从一般的传播机理分析建立各种模型,如简单模型,SI模型,SIS模型,SIR模型等。
本文中,我们应用传染病动力学模型来描述疾病发展变化的过程和传播规律,运用联立微分方程组体现疫情发展过程中各类人的内在因果联系,并在此基础上建立方程求解算法。
然后,通过借助Matlab程序拟合出与实际较为符合的曲线并进行了疫情预测,评估各种控制措施的效果,从而不断完善文中的模型。
本文由简到难、全面地评价了该模型的合理性与实用性,而后对模型和数据也做了较为扼要的分析,进一步改进了模型的不妥之处。
同时,在对问题进行较为全面评价的基础上又引入更为全面合理的假设,运用双线性函数模型对卫生部的措施进行了评价并给出建议,做好模型的完善与优化工作.关键词:传染病模型,简单模型,SI,SIS,SIR,微分方程,Matlab。
一、问题重述有一种传染病(如SARS、甲型H1N1)正在流行,现在希望建立适当的数学模型,利用已经掌握的一些数据资料对该传染病进行有效地研究,以期对其传播蔓延进行必要的控制,减少人民生命财产的损失。
考虑如下的几个问题,建立适当的数学模型,并进行一定的比较分析和评价展望.1、不考虑环境的限制,设单位时间内感染人数的增长率是常数,建立模型求t时刻的感染人数。
2、假设单位时间内感染人数的增长率是感染人数的线性函数,最大感染时的增长率为零。
建立模型求t时刻的感染人数。
3、假设总人口可分为传染病患者和易感染者,易感染者因与患病者接触而得病,而患病者会因治愈而减少且对该传染病具有很强的免疫功能,建立模型分析t时刻患病者与易感染者的关系,并对传染情况(如流行趋势,是否最终消灭)进行预测.二、问题分析1、这是一个涉及传染病传播情况的实际问题,其中涉及传染病感染人数随时间的变化情况及一些初始资料,可通过建立相应的微分方程模型加以解决.2、问题表述中已给出了各子问题的一些相应的假设。
∙论文用白色A4纸单面打印;上下左右各留出至少2.5厘米的页边距;从左侧装订。
∙论文第一页的内容是:论文题目、组员姓名、学号、所属专业、联系电话、电子邮箱。
∙论文题目和摘要写在第二页上, 从第三页开始是论文正文。
∙论文从第二页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。
∙论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。
∙论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。
论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。
∙提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。
评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。
∙引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。
正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。
参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号] 作者,书名,出版地:出版社,出版年。
参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。
参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间(年月日)。
摘要:此处写摘要。
摘要在整篇论文评阅中占有重要权重,请认真书写摘要(注意篇幅不能超过一页)。
组委会评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。
简要论述本文所要解决的问题及意义,解决问题的思路与方法、主要结果(数值结果或结论),建模的创新之处与特色等。
①短:字数尽量控制在500字内;语言精简,用词准确;②精:阐述细致具体的方法;列出主要结论③完整:写出主要模型(名称)、方法和结果,解决了什么问题,有何特色等;摘要应具有独立性和自明性,应是一篇完整的短文。
投资问题数学建模通过整理的投资问题数学建模相关文档,渴望对大家有所扶植,感谢观看!数学模型第一次探讨作业问题:某部门现有资金10万元,五年内有以下投资项目供选择:项目A:从第一年到第四年每年初投资,次年末收回本金且获利15%;项目B:第三年初投资,第五年末收回本金且获利25%,最大投资额为4万元;项目C:其次年初投资,第五年末收回本金且获利40%,最大投资额为3万元;项目D:每年初投资,年末收回本金且获利6%;问如何确定投资策略使第五年末本息总额最大?问题分析:用表示第i年对第j个项目的投资金额要使第五年年末本息总额最大,应当在每年将全部可用资金都用于投资,以确保资金的充分利用,由于项目投资均发生在年初,故以下只探讨年初的投资状况:第一年:其次年:手上资金(即第一年年末收回资金)为,全部用来对可投资项目投资,则有= 第三年:同理,有= 第四年:= 第五年:= 第五年年末本息和为(即第五年所能收回的全部资金)建立模型:= = = = ,求解模型:Lingo解法:可编写lingo程序如下:model: max=1.06*x54+1.15*x41+1.25*x32+1.4*x23;!目标函数; x11+x14=10;!以下约束条件表示每年资金全部用于投资;1.06*x14=x21+x23+x24; 1.15*x11+1.06*x24=x31+x32+x34;1.15*x21+1.06*x34=x41+x44; 1.15*x31+1.06*x44=x54; x23<=3;!限制B,C项目的最大投资额; x32<=4; end 运行结果如下:Global optimal solution found. Objective value: 14.37500 Infeasibilities:0.000000 Total solver iterations:1 Variable Value Reduced Cost X54 0.000000 0.000000 X41 4.500000 0.000000 X32 4.000000 0.000000 X23 3.000000 0.000000 X11 7.169811 0.000000 X14 2.830189 0.000000 X21 0.000000 0.000000 X24 0.000000 0.3036000E-01 X31 0.000000 0.000000 X34 4.245283 0.000000 X44 0.000000 0.2640000E-01 Row Slack or Surplus Dual Price1 14.37500 1.0000002 0.000000 1.4018503 0.000000 -1.3225004 0.000000 -1.2190005 0.000000 -1.1500006 0.000000 -1.0600007 0.000000 0.7750000E-018 0.000000 0.3100000E-01 所得最优值为14.375万元,对应的最优解为: x11=7.169811,x14=2.830189,x23=3,x32=4,x34=4.245283,x41=4.5,其余值为0 即第一年对A项目投资7.169811万元,对D项目投资2.830189万元;其次年对C项目投资3万元;第三年对B项目投资4万元,对D项目投资4.245283万元;第四年对A项目投资4.5万元。
数学建模论文格式规范•论文用白色A4纸单面打印;上下左右各留出至少2.5厘米的页边距;从左侧装订。
•论文第一页的内容是:论文题目、组员姓名、学号、所属专业、联系电话、电子邮箱。
•论文题目和摘要写在第二页上, 从第三页开始是论文正文。
•论文从第二页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。
•论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。
•论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。
论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。
•提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。
评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。
•引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。
正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。
参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号] 作者,书名,出版地:出版社,出版年。
参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。
参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间(年月日)。
题目(三号黑体居中)摘要:此处写摘要。
摘要在整篇论文评阅中占有重要权重,请认真书写摘要(注意篇幅不能超过一页)。
组委会评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。
简要论述本文所要解决的问题及意义,解决问题的思路与方法、主要结果(数值结果或结论),建模的创新之处与特色等。
①短:字数尽量控制在500字内;语言精简,用词准确;②精:阐述细致具体的方法;列出主要结论③完整:写出主要模型(名称)、方法和结果,解决了什么问题,有何特色等;摘要应具有独立性和自明性,应是一篇完整的短文。
数学建模格式排版的若干建议及操作步骤本文依据《全国大学生数学建模竞赛论文格式规范》(全国大学生数学建模竞赛组委会,2016年修订稿)(以下简称《2016版格式规范》)的相关要求编写,若遇到当年度格式规范与《2016版格式规范》有相悖之处,以当年度格式规范为准。
本文当中的相关操作是在Word 2010版下进行的,如果采用的是其他版本的Word 或其他的文字编辑工具,可适当参考。
须强调的是,在《2016版格式规范》的第八条明确指明“本规范中未作规定的,如排版格式(字号、字体、行距、颜色等)不做统一要求,可由赛区自行决定。
”。
因此,本文中涉及的排版格式(字号、字体、行距、颜色等)仅供参考,重点是要学会一些排版技巧。
1“承诺书”和“编号专用页”在《2016版格式规范》第3页的“2016版承诺书”和第4页的“2016版编号专用页”的下方都有特别强调“电子版论文中不得出现此页”,但是纸质版是需要这两页的,所以在编写论文时,不用考虑“承诺书”和“编号专用页”的排版问题,由协会统一打印,在论文装订之前发放给各参赛队。
但是,“承诺书”和“编号专用页”也强调“请勿改动此页内容和格式”,因此,为了保证纸质版论文前后排版格式的一致性,在编写论文时,论文中的部分格式尽量保持跟“承诺书”和“编号专用页”一致,如页面设置、正文样式等。
2页面设置2.1格式规范在《2016版格式规范》的第一条“论文用白色A4纸打印(单面、双面均可);上下左右各留出至少2.5厘米的页边距;从左侧装订”,同时,参考了《2016版格式规范》文档的页面设置,考虑到《2016版格式规范》中强调的排版统一性,因此建议论文的页面设置格式为“A4纸打印,上下左右页边距均为2.5厘米”。
2.2操作步骤a)选择“文件”→“打印”,如图1所示。
图1 文件打印界面b)点击图1右下方的“页面设置”,进入“页面设置对话框”,页边距上下左右全部设置为2.5厘米,装订线为0厘米,装订线位置为左,如图2所示。
数学建模论文高速公路道路交通事故分析预测摘要我国目前的道路交通安全状况相对于世界水平要差得多,高速公路道路交通事故所造成的损失非常高。
因此,改善交通安全状况、预防和减少高速公路交通事故具有重大的现实意义。
针对这样的现状,我们必须进行高速公路交通事故的预测,从而及早采取措施进行预防工作,从而减少事故发生次数及损失程度。
针对此次建模的要求,在对此问题的深入研究下,我们提出了合理的假设,将本问题归结为一个预测分析的问题,其基本思想是通过聚类分析、SPSS软件求解、GM(1,1)灰色预测模型、多元线性回归分析,组合模型等方法的运用得到最优的预测结果。
针对问题一,我们首先运用了聚类分析的思想,建立了基于聚类分析的模型Ⅰ,通过聚类分析方法对给定的信息的筛选、加工、延伸和扩展,从而将评价对象确定在某一范围内,通过了该方法,最终得到了各类评价等级方法,为科学预测交通事故提供了依据。
针对问题二,本文选取受伤人数这一单项指标作为预测的对象,首先运用了GM(1,1)灰色预测模型,建立模型Ⅱ,通过对给定的事故原始数据,通过MATLAB 软件预测了五年内的交通事故受伤人数;运用多元线性回归方法建立模型Ⅲ,在模型Ⅱ和模型Ⅲ的基础之上,通过基于组合模型思想的模型Ⅳ,求解得出了交通事故受伤人数在五年内的预测。
关键词:SPSS聚类分析 GM(1,1)灰色预测模型组合预测模型 MATLAB目录一.问题重述 (3)二.问题的分析 (4)三.模型假设与符号系统 (5)3.1模型假设 (5)3.2符号系统 (6)四.模型的建立及求解 (7)4.1 问题一 (7)4.1.1建立模型Ⅰ (7)4.1.2模型Ⅰ的求解及结果 (8)4.1.3实验结果的分析说明 (9)4.2 问题二 (12)4.2.1建立GM(1,1)模型Ⅱ (12)4.2.2 用MATLAB求解模型Ⅱ (16)4.2.3 建立模型Ⅲ (19)4.2.4 建立优化模型Ⅳ (20)4.2.5最优组合模型的求解 (21)五.模型的评价 (22)参考文献 (23)附录 (24)一.问题重述随着道路交通事业的发展,高速公路交通事故也在不断增加,对人类的生命和财产安全构成了极大的威胁。