初一数学期中复习一教案
- 格式:pdf
- 大小:83.74 KB
- 文档页数:5
初一数学复习教案初一数学复习教案作为一无名无私奉献的教育工作者,就有可能用到教案,教案有助于顺利而有效地开展教学活动。
那么你有了解过教案吗?以下是店铺收集整理的初一数学复习教案,仅供参考,欢迎大家阅读。
初一数学复习教案篇1一、等式的概念和性质1等式的概念,用等号“=”表示相等关系的式子,叫做等式在等式中,等号左、右两边的式子,分别叫做这个等式的左边、右边等式可以是数字算式,可以是公式、方程,也可以是用式子表示的运算律、运算法则2等式的类型(1)恒等式:无论用什么数值代替等式中的字母,等式总能成立如:数字算式(2)条等式:只能用某些数值代替等式中的字母,等式才能成立方程需要才成立(3)矛盾等式:无论用什么数值代替等式中的字母,等式都不能成立如,注意:等式由代数式构成,但不是代数式代数式没有等号体3等式的性质等式的性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式若,则;等式的性质2:等式两边都乘以(或除以)同一个数(除数不能是0)或同一个整式,所得结果仍是等式若,则,注意:(1)在对等式变形过程中,等式两边必须同时进行即:同时加或同时减,同时乘以或同时除以,不能漏掉某一边(2)等式变形过程中,两边同加或同减,同乘或同除以的数或整式必须相同(3)在等式变形中,以下两个性质也经常用到:①等式具有对称性,②等式具有传递性,二、方程的相关概念1方程,含有未知数的等式叫作方程注意:定义中含有两层含义,即:方程必定是等式,即是用等号连接而成的式子;方程中必定有一个待确定的数即未知的字母二者缺一不可2方程的次和元方程中未知数的最高次数称为方程的次,方程中不同未知数的个数称为元3方程的已知数和未知数已知数:一般是具体的数值,如中(的系数是1,是已知数但可以不说)5和0是已知数,如果方程中的已知数需要用字母表示的话,习惯上有、、、、等表示未知数:是指要求的数,未知数通常用、、等字母表示如:关于、的方程中,、、是已知数,、是未知数4方程的解使方程左、右两边相等的未知数的值,叫做方程的解5解方程求得方程的解的过程注意:解方程与方程的解是两个不同的概念,后者是求得的结果,前者是求出这个结果的过程6方程解的检验楷体要验证某个数是不是一个方程的解,只需将这个数分别代入方程的左边和右边,如果左、右两边数值相等,那么这个数就是方程的解,否则就不是三、一元一次方程的定义1一元一次方程的概念只含有一个未知数,并且未知数的最高次数是1,系数不等于0的方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数2一元一次方程的形式标准形式:(其中,,是已知数)的形式叫一元一次方程的标准形式最简形式:方程(,,为已知数)叫一元一次方程的最简形式注意:(1)任何一元一次方程都可以转化为最简形式或标准形式,所以判断一个方程是不是一元一次方程,可以通过变形为最简形式或标准形式验证如方程是一元一次方程如果不变形,直接判断就出会现错误(2)方程与方程是不同的,方程的解需要分类讨论完成四、一元一次方程的解法1解一元一次方程的一般步骤(1)去分母:在方程的两边都乘以各分母的最小公倍数注意:不要漏乘不含分母的项,分子是个整体,含有多项式时应加上括号(2)去括号:一般地,先去小括号,再去中括号,最后去大括号注意:不要漏乘括号里的项,不要弄错符号(3)移项:把含有未知数的项都移到方程的一边,不含未知数的项移到方程的另一边注意:①移项要变号;②不要丢项(4)合并同类项:把方程化成的形式注意:字母和其指数不变(5)系数化为1:在方程的两边都除以未知数的系数(),得到方程的解注意:不要把分子、分母搞颠倒体2解一元一次方程常用的方法技巧解一元一次方程常用的方法技巧有:整体思想、换元法、裂项、拆添项以及运用分式的恒等变形等3关于x的方程 ax b 解的情况⑴当a 0时,x⑵当a ,b 0时,方程有无数多个解⑶当a 0,b 0时,方程无解练习1、等式的概念和性质1.下列说法不正确的是()A等式两边都加上一个数或一个等式,所得结果仍是等式B等式两边都乘以一个数,所得结果仍是等式C等式两边都除以一个数,所得结果仍是等式D一个等式的左、右两边与另一个等式的左、右两边分别相加,所得结果仍是等式2.根据等式的性质填空(1),则;(2),则;(3),则;(4),则练习2、方程的相关概念1.列各式中,哪些是等式?哪些是代数式,哪些是方程?2.判断题(1)所有的方程一定是等式()(2)所有的等式一定是方程()(3)是方程()(4)不是方程()(5)不是等式,因为与不是相等关系()(6)是等式,也是方程()(7)“某数的3倍与6的差”的含义是,它是一个代数式,而不是方程()练习3、一元一次方程的定义1.在下列方程中哪些是一元一次方程?哪些不是?说明理由:(1)3x+5=12;(2) + =5;(3)2x+y=3;(4)y2+5y-6=0;(5) =2.2.已知是关于的一元一次方程,求的值3.已知方程是关于x的一元一次方程,则m=_________4.已知方程是一元一次方程,则;练习4、一元一次方程的解与解法1)一元一次方程的解一)、根据方程解的具体数值确定1.若关于x的方程的解是,则代数式的值是_________。
初一数学上册复习教案关于初一数学上册复习教案初一上册数学第一章丰富的图形世界复习教案(1)常见的几何体;(2)构成图形的基本元素——点、线、面及点、线与平面图形的一些简单性质;点动成线,线动成面,面动成体(3)棱柱的特征;并注意棱柱和圆柱的联系与区别(4)长方体、正方体的表面沿某些棱展开的平面图形及圆柱、圆锥的侧面展开图;(5)用一个平面去截一个几何体,截面的形状;(6)物体的三视图,立方体及其简单组合的三视图;(7)中的平面图形.一.填空:1.这个几何体的名称是______;它有_____个面组成;它有____个顶点;经过每个顶点有____条边。
2.正方体或长方体是一个立体图形,它是由______个面,______条棱,_____个顶点组成的.3.在①长方体、②球、③圆锥、④圆柱、⑤三棱柱这五种几何体中,其主视图、左视图、俯视图都完全相同的是(填上序号即可)4.一个棱柱有十个顶点,且所有侧棱的和为30cm,则每条侧棱长为cm.5.将下面4个图用纸复制下来,然后沿所画线折起来,把折成的立体图形名称写在图的下边横线上:6.如图是一些相同的正方块构成的立体图形的三视图,则构成这个立体图形的小方块数为.7.如图所示,木工师傅把一个长为1.6米的长方体木料锯成3段后,表面积比原来增加了80,那么这根木料本来的体积是8.要把一个长方体的表面剪开展成平面图形,至少需要剪开________条棱.9.如图,截去正方体一角变成一个多面体,这个多面体有____个面,____条棱.10.若要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为6,x=____,y=____.11.四棱柱按如图粗线剪开一些棱,展成平面图形,请画出平面图来:12.薄薄的硬币在桌面上转动时,看上去象球,这说明了_____________.13.右图中,三角形共有个。
14.如图是用边长为1的小正方体摆放成的一个几何体的三视图,这个几何体的表面积为。
初一数学上册第一章有理数复习教案最新3篇篇一:数学《有理数》教案篇一一、教材分析:(一)教材的地位和作用:本节课的内容是《新人教版七年级数学》教材中的第一章第四节,“有理数的乘除法”是把“有理数乘法”和“有理数除法”的内容进行整合,在“有理数的加减混合运算”之后的一个学习内容。
在本章教材的编排中,“有理数的乘法”起着承上启下的作用,它既是有理数加减的深入学习,又是有理数除法、有理数乘方的基础,在有理数运算中有很重要的地位。
“有理数的乘法”从具体情境入手,把乘法看做连加,通过类比,让学生进行充分讨论、自主探索与合作交流的形式,自己归纳出有理数乘法法则。
通过这个探索的过程,发展了学生观察、归纳、猜测、验证的能力,使学生在学习的过程中获得成功的体验,增强了自信心。
所以本节课的学习具有一定的现实地位。
(二)学情分析:因为学生在小学的学习里已经接触过正数和0的乘除法,对于两个正数相乘、正数与0相乘、两个正数相除、0与正数相除的情况学生已经掌握。
同时由于前面学习了有理数的加减法运算,学生对负数参与运算有了一定的认识,但仍还有一定的困难。
另外,经过前一阶段的教学,学生对数学问题的研究方法有了一定的了解,课堂上合作交流也做得相对较好。
(三)教学目标分析:基于以上的学情分析,我确定本节课的教学目标如下1、知识目标:让学生经历学习过程,探索归纳得出有理数的乘除法法则,并能熟练运用。
2、能力目标:在课堂学习过程中,使学生经历探索有理数乘除法法则的过程,发展观察、猜想、归纳、验证、运算的能力,同时在探索法则的过程中培养学生分类和归纳的数学思想。
3、情感态度和价值观:在探索过程中尊重学生的学习态度,树立学生学习数学的自信心,培养学生严谨的数学思维习惯。
4、教学重点:会进行有理数的乘除法运算。
5、教学难点:有理数乘除法法则的探索与运用。
确定教学目标的理由依据是:新课标中指出课堂教学中应体现知识与技能、过程与方法、情感态度与价值观的三维目标,同时也基于本节内容的地位与作用。
初一数学期中试卷讲评教案初一数学期中试卷讲评教案作为一名辛苦耕耘的教育工作者,总不可避免地需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。
怎样写教案才更能起到其作用呢?以下是小编收集整理的初一数学期中试卷讲评教案,欢迎阅读,希望大家能够喜欢。
初一数学期中试卷讲评教案1教学目标1、明确试卷存在的错误及原因,强化知识的薄弱环节。
2、培养学生养成独立订正的良好习惯,自觉查漏补缺,认真订正试卷错误。
3、引导学生自主、合作、探究更正试卷中的错误题型。
通过分析错题,把握解题的思路和方法,提高常见题型的答题策略。
教学过程一、考试情况分析:1、班级情况分析整体来说比以前有了很大进步,主要体现在:书写比以前认真了;做题格式更规范了;成绩有了很大提高。
2、表扬优秀和进步明显的学生通过这次考试,还涌现出了一批优秀的同学和进步大的同学,他们分别是……在这里,我们要用掌声向他们表示祝贺,希望他们再接再厉,取得更大进步。
其他同学也不要灰心,因为只要你稍加努力,下一次成功一定会属于你。
3、分析错题原因从试卷中不仅要看到优点,更重要的是找到不足,并加以改正从这次的考试中也暴露出了一些问题学习习惯还有待提高,比如个别同学书写不认真,出现抄错数的现象,书写格式不规范基础知识掌握不扎实,尤其表现在填空题和计算能力上解题策略问题知识缺乏问题二、学生自主订正由于这些原因,导致了试卷中一些题出现了错误,今天这节课我们就一起来研究这份试卷,看看如何利用试卷中的错误,找到解决它们的策略。
下面首先请同学们自我检查分析,完成三件事情1,自查检查自己出错的原因。
2,纠正:把自己能改正的题目改正过来。
3,记录:把自己解决不了的问题记下来。
三、小组合作,交流下面我们就进行小组交流,把刚才自己解决的问题说给小组内同学听,自己解决不了的请小组同学帮忙,最后小组长把你们小组出题较多的题记下来。
学生合作交流四、典型题型分析:课前老师也对错题进行了统计,通过刚才的小组合作有些问题已经解决了,那下面我们主要来研究这些题:(一)、填空:第4题一头牛的体重是5600kg,正好是一头牛的8倍,这头牛重()kg第8(2)题地球赤道的周长是四万零七十五点六九千米。
初一数学教案篇1一、教学目标(一)知识教学点1.了解;方程算术解法与代数解法的区别。
2.掌握:代数解法解简易方程。
(二)能力训练点1.通过代数解法解简易方程的学习使学生认识问题头脑不僵化,培养其创造性思维的能力。
2.通过代数法解简易方程进一步培养学生运算能力和逻辑思维能力。
(三)德育渗透点1.培养学生实事求是的科学态度,用发展的眼光看问题的辩证唯物主义思想。
2.渗透化“未知”为“已知”的化归思想。
(四)美育渗透点通过用新的方法解简易方程,使学生初步领略数学中的方法美。
二、学法引导1.教学方法:引导发现法。
注意教学中民主意识和学生的主体作用的体现。
2.学生学法:识记→练习反馈三、重点、难点、疑点及解决办法1.重点:代数解法解简易方程。
2.难点:解方程时准确把握两边都加上(或减去)、乘以(或除以)同一适当的数。
3.疑点:代数解法解简易方程的依据。
四、课时安排1课时五、教具学具准备投影仪或电脑、自制胶片。
六、师生互动活动设计教师创设情境,学生解决问题。
教师介绍新的方法,学生反复练习。
七、教学步骤(一)创设情境,复习导入(出示投影1)引例:班上有37名同学,分成人数相等的两队进行拔河比赛,恰好余3人当裁判员,每个队有多少人?师:该问题如何解决呢?请同学们考虑好后写在练习本上.学生活动:解答问题,一个学生板演.师生共同订正,对照板演学生的做法,师问:有无不同解法?学生活动:回答问题,一个学生板演,其他学生比较两种解法.问;这两种解法有什么不同呢?学生活动:积极思索,回答问题.(一是列算式的解法,二是列方程的解法).师:很好.为了叙述问题方便,我们分别把这两种解法叫做算术解法和代数解法.小学学过的应用题可用算术方法也可用代数方法解.有时算术方法简便,有时代数方法简便,但是随着学习的逐步展开,遇到的问题越来越复杂,使用代数解法的优越性将会体现的越来越充分,因此,在初中代数课上,将把方程的知识作为一个重要的内容来学习.当然,在开始学习方程时,还是要从简单的方程入手,即简易方程.引出课题.[板书]1.5简易方程(二)探索新知,讲授新课师:谈到方程,同学们并不陌生,你能说明什么叫方程吗?学生活动:踊跃举手,回答问题。
课时:2课时教学目标:1. 让学生全面复习期中考试数学试卷,提高学生的应试能力。
2. 帮助学生查漏补缺,提高数学成绩。
3. 培养学生良好的解题习惯和思维方式。
教学重点:1. 期中考试数学试卷的解题思路和方法。
2. 常见数学问题的解题技巧。
3. 数学知识点的系统梳理。
教学难点:1. 学生在解题过程中遇到难题时的应对策略。
2. 数学知识点的灵活运用。
教学过程:第一课时一、导入1. 回顾期中考试数学试卷的结构和题型。
2. 强调复习的重要性,让学生明确复习目标。
二、复习内容1. 数与代数(1)实数的运算、性质及分类。
(2)代数式的化简、运算及因式分解。
(3)一元一次方程、一元二次方程的解法。
2. 几何(1)平面几何的基本概念、性质及定理。
(2)三角形、四边形、圆的性质及计算。
(3)立体几何的基本概念、性质及计算。
3. 统计与概率(1)统计图表的制作及分析。
(2)概率的基本概念及计算。
三、解题技巧1. 分析题目,明确解题思路。
2. 合理运用数学公式、定理。
3. 注意解题步骤的规范性。
四、课堂练习1. 让学生独立完成期中考试数学试卷中的部分题目。
2. 教师巡视指导,解答学生疑问。
第二课时一、复习总结1. 回顾第一节课的复习内容,强调重点、难点。
2. 总结解题技巧,提高学生的应试能力。
二、解题策略1. 针对学生在解题过程中遇到的难题,讲解解题策略。
2. 分析典型题目,让学生学会灵活运用数学知识。
三、课堂练习1. 让学生独立完成期中考试数学试卷中的剩余题目。
2. 教师巡视指导,解答学生疑问。
四、课堂小结1. 总结期中考试数学试卷的复习要点。
2. 鼓励学生继续努力,争取在期末考试中取得好成绩。
教学反思:1. 关注学生的复习情况,及时调整教学策略。
2. 针对学生存在的不足,加强个别辅导。
3. 培养学生的解题兴趣,提高学生的数学素养。
初一教案数学教案(优秀8篇)初一教案数学教案篇1教学目的:(一)知识点目标:1.了解正数和负数是怎样产生的。
2.知道什么是正数和负数。
3.理解数0表示的量的意义。
(二)能力训练目标:1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。
2.会用正、负数表示具有相反意义的量。
(三)情感与价值观要求:通过师生合作,联系实际,激发学生学好数学的热情。
教学重点:知道什么是正数和负数,理解数0表示的量的意义。
教学难点:理解负数,数0表示的量的意义。
教学方法:师生互动与教师讲解相结合。
教具准备:地图册(中国地形图)。
教学过程:引入新课:1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快?内容:老师说出指令:向前两步,向后两步;向前一步,向后三步;向前两步,向后一步;向前四步,向后两步。
如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。
[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。
讲授新课:1.自然数的产生、分数的产生。
2.章头图。
问题见教材。
让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。
3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。
根据需要有时在正数前面也加上“十”(正号)表示正数。
举例说明:3、2、0.5、等是正数(也可加上“十”)-3、-2、-0.5、- 等是负数。
4、数0既不是正,也不是负数,0是正数和负数的分界。
0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。
5、让学生举例说明正、负数在实际中的应用。
展示图片(又见教材P5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的本地某银行的存折,说出你知道的信息。
期中复习教案(一)课题课型复习课总节时35教学目标知识目标:复习整理有理数有关概念和有理数运算法则,运算律以及近似计算等有关知识;能力目标:培养学生综合运用知识解决问题的能力;情感目标:渗透数形结合的思想.重点有理数概念和有理数运算.难点负数和有理数法则的理解.教学过程差异个性设计资源一、基本概念1、正数与负数①表示大小②在实际中表示意义相反的量③带“-”号的数并不都是负数2、数轴原点①三要素正方向②如何画数轴③数轴上的点与有理数单位长度3、相反数①只有符号不同的两个数,叫做互为相反数,0的相反数是0 ②a的相反数-a③a与b互为相反数a+b=04、绝对值①一般地,数轴上表示数a的点与原点距离,表示成|a|。
a (a≥0)②|a|=-a (a≤0)5、倒数①乘积是1的两个数叫作互为倒数。
②a的倒数是(a≠0)③a与b互为倒数ab=16、相反数是它本身的数是0①倒数是它本身的数是±1 ②绝对值是它本身的数是非负数③平方等于它本身的数是0,1 ④立方等于经本身的数是±1,07、乘方①求几个相同因数的积的运算叫做乘方 a·a·…·a=a n②底数、指数、幂8、科学记数法①把一个绝对值大于10的数表示成a×10n(其中1≤|a|<10,n为正整数)②指数n与原数的整数位数之间的关系。
9、近似数与有效数字①准确数、近似数、精确度精确到万位②精确度精确到0.001保留三个有效数字③近似数的最后一位是什么位,这个数就精确到哪位。
④有效数字⑤如何求较大数的近似数,有两种方法,一种用单位,一种用科学记数法二、有理数的分类1、按整数与分数分2、按正负分讨论一下小数属于哪一类?三、有理数的运算1、运算种类有哪些?2、运算法则(运算的根据);3、运算定律(简便运算的根据);4、混合运算顺序①三级(乘方)二级(乘除)一级(加减);②同一级运算应从左到右进行;③有括号的先做括号内的运算;④能简便运算的应尽量简便。
人教版初一至初三数学教案全文共四篇示例,供读者参考第一篇示例:人教版初一至初三数学教案一、初一数学教案1. 教学内容:初一数学知识综合复习教学目标:通过此节课的复习,让学生巩固初一数学知识,为新知识的学习做好铺垫。
教学重点:整数的加减法、分数的加减法、平面图形的认识和性质。
教学难点:平面图形的计算。
教学准备:教师准备好教案、教材、教具以及课堂展示所需材料。
教学过程:2)复习整数的加减法:让学生做一些整数的加减法练习题,加深他们对整数运算规则的理解。
3)复习分数的加减法:同样通过练习题目让学生复习分数的加减法。
4)整数、分数的综合运用:设计一些综合题目,让学生将整数和分数的加减法结合起来进行计算。
5)平面图形的认识和性质:介绍几种常见的平面图形,让学生认识并了解它们的性质。
6)做相关练习:设计一些与平面图形相关的练习题目,让学生通过计算来熟悉图形的性质。
7)总结与反馈:对本节课所学内容进行总结,并布置相关作业。
1. 教学内容:初二代数方程与函数教学目标:通过此节课的学习,让学生掌握代数方程与函数的基本概念,并能熟练应用于解题。
教学重点:方程的意义、解方程的方法、函数的概念。
教学难点:解复杂方程与函数的计算。
1)导入:通过带入一些代数方程的实际问题,引导学生了解代数方程的意义。
3)方程的实际应用:设计一些实际问题,让学生运用所学知识解决问题。
4)函数的概念与初步认识:介绍函数的定义及函数的表示形式。
5)函数的性质与图像:通过例题和练习题目,让学生理解函数的性质和图像。
6)解相关练习:设计一些练习题目,巩固学生对代数方程和函数的掌握。
教学难点:几何图形的运用和概率的应用。
1)导入:通过引入一些几何问题和概率问题,引导学生进入本节课的学习主题。
2)几何图形的性质:介绍几何图形的性质,如角的性质、线段的性质等。
4)概率的基本概念:讲解概率的定义、计算公式和应用方法。
5)概率的实际应用:设计一些与概率相关的问题,让学生理解概率在生活中的应用。
初中整式复习教案
教学目标:
1. 掌握整式的概念及其相关性质;
2. 学会解整式方程和不等式;
3. 能够运用整式解决实际问题。
教学内容:
1. 整式的概念及分类;
2. 整式的运算;
3. 整式方程和不等式的解法;
4. 整式在实际问题中的应用。
教学过程:
一、导入(5分钟)
1. 引导学生回顾整式的定义,例如:单项式、多项式等;
2. 提问:整式有哪些性质?
二、整式的运算(15分钟)
1. 复习整式的加减法、乘法、除法运算规则;
2. 举例讲解并让学生练习一些典型题目。
三、整式方程和不等式的解法(20分钟)
1. 讲解整式方程的解法,例如:代入法、消元法等;
2. 讲解整式不等式的解法,例如:同解变形、不等式性质等;
3. 让学生练习解一些整式方程和不等式。
四、整式在实际问题中的应用(10分钟)
1. 举例讲解整式在实际问题中的应用,如:长度、面积、体积等计算;
2. 让学生尝试解决一些实际问题。
五、课堂小结(5分钟)
1. 回顾本节课所学内容,强调重点和难点;
2. 提问学生,检查学习效果。
六、作业布置(5分钟)
1. 布置一些有关整式的练习题,巩固所学知识;
2. 鼓励学生自主探索,提高解决问题的能力。
教学反思:
本节课通过复习整式的概念、运算、方程和不等式的解法以及实际应用,使学生对整式有了更深入的了解。
在教学过程中,要注意引导学生掌握整式的性质,培养学生的运算能力和解决实际问题的能力。
同时,要关注学生的学习情况,及时发现并解决他们在学习过程中遇到的问题。