考点 任意角和弧度制及任意角的三角函数
- 格式:doc
- 大小:47.24 KB
- 文档页数:2
高三数学一轮复习知识点讲解专题5.1 任意角和弧度制及任意角的三角函数【考纲解读与核心素养】1.了解角、角度制与弧度制的概念,掌握弧度与角度的换算.2. 理解正弦函数、余弦函数、正切函数的定义.3.本节涉及所有的数学核心素养:数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析等. 4.高考预测:(1)三角函数的定义;(2)扇形的面积、弧长及圆心角;(3)在大题中考查三角函数的定义,主要考查:一是直接利用任意角三角函数的定义求其三角函数值;二是根据任意角三角函数的定义确定终边上一点的坐标. 5.备考重点:(1) 理解三角函数的定义;(2) 掌握扇形的弧长及面积计算公式.【知识清单】知识点1.象限角及终边相同的角 1.(1)任意角的分类:①按旋转方向不同分为正角、负角、零角. ②按终边位置不同分为象限角和轴线角. (2)终边相同的角:终边与角α相同的角可写成α+k ·360°(k ∈Z ). 2.弧度制:①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=lr ,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”做单位来度量角的制度叫做弧度制.比值lr 与所取的r 的大小无关,仅与角的大小有关.3.弧度与角度的换算:360°=2π弧度;180°=π弧度.若一个角的弧度数为α,角度数为n ,则α rad =(180απ)°,n °=n ·π180rad .知识点2.三角函数的定义 1.任意角的三角函数定义:设α是一个任意角,角α的终边与单位圆交于点P (x ,y ),那么 (1)点P 的纵坐标叫角α的正弦函数,记作sin α=y ; (2)点P 的横坐标叫角α的余弦函数,记作cos α=x ;(3)点P 的纵坐标与横坐标之比叫角α的正切函数,记作tan α=yx .它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.将正弦函数、余弦函数和正切函数统称为三角函数,通常将它们记为: 正弦函数y =sinx ,x ∈R ; 余弦函数 y =cosx ,x ∈R ; 正切函数 y =tanx ,x ≠π2+k π(k ∈Z ).2.三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦 知识点3.扇形的弧长及面积公式 (1)弧长公式在半径为r 的圆中,弧长为l 的弧所对的圆心角大小为α,则|α|=lr ,变形可得l =|α|r ,此公式称为弧长公式,其中α的单位是弧度. (2)扇形面积公式由圆心角为1 rad 的扇形面积为πr 22π=12r 2,而弧长为l 的扇形的圆心角大小为l r rad ,故其面积为S =l r ×r 22=12lr ,将l =|α|r 代入上式可得S =12lr =12|α|r 2,此公式称为扇形面积公式.(3)弧长公式及扇形面积公式的两种表示名称 角度制 弧度制 弧长公式 l =n πr180l =__|α|r __ 扇形面积公式 S =n πr 2360S =|α|2r 2 = 12lr 注意事项r 是扇形的半径,n 是圆心角的角度数r 是扇形的半径,α是圆心角的弧度数,l 是弧长【典例剖析】高频考点一 象限角及终边相同的角【典例1】(2019·乐陵市第一中学高三专题练习)如果,那么与终边相同的角可以表示为A .B .C .D .【答案】B 【解析】 由题意得,与终边相同的角可以表示为.故选B . 【规律方法】象限角的两种判断方法(1)图象法:在平面直角坐标系中,作出已知角并根据象限角的定义直接判断已知角是第几象限角. (2)转化法:先将已知角化为k ·360°+α(0°≤α<360°,k ∈Z )的形式,即找出与已知角终边相同的角α,再由角α终边所在的象限判断已知角是第几象限角.【变式探究】若角α是第二象限角,试确定α2,2α的终边所在位置.【答案】角α2的终边在第三象限或第四象限或y 轴的负半轴上,2α的终边在第一象限或第三象限.【解析】∵角α是第二象限角,∴ 22,2k k k Z ππαππ+<<+∈,(1)4242,k k k Z ππαππ+<<+∈,∴ 角α2的终边在第三象限或第四象限或y 轴的负半轴上. (2) ,422k k k Z παπππ+<<+∈,当2 ,k n n Z =∈时, ∴ 22 ,422n n n Z παπππ+<<+∈,∴2α的终边在第一象限.当2 1 ,k n n Z =+∈时, ∴5322 ,422n n n Z παπππ+<<+∈, ∴2α的终边在第三象限.综上所述,2α的终边在第一象限或第三象限.【总结提升】象限角与轴线角(终边在坐标轴上的角)的集合表示 (1)象限角:象限角集合表示第一象限角{α|k·360°<α<k·360°+90°,k∈Z}第二象限角{α|k·360°+90°<α<k·360°+180°,k∈Z}第三象限角{α|k·360°+180°<α<k·360°+270°,k∈Z}第四象限角{α|k·360°+270°<α<k·360°+360°,k∈Z} (2)轴线角:角的终边的位置集合表示终边落在x轴的非负半轴上{α|α=k·360°,k∈Z}终边落在x轴的非正半轴上{α|α=k·360°+180°,k∈Z}终边落在y轴的非负半轴上{α|α=k·360°+90°,k∈Z}终边落在y轴的非正半轴上{α|α=k·360°+270°,k∈Z}终边落在y轴上{α|α=k·180°+90°,k∈Z}终边落在x轴上{α|α=k·180°,k∈Z}终边落在坐标轴上{α|α=k·90°,k∈Z}高频考点二三角函数的定义【典例2】已知角的终边过点,且,则的值为( )A. B. C. D.【答案】B【解析】由题意可知,,,是第三象限角,可得,即,解得,故选B.【典例3】已知角的终边落在直线y=2x上,求sinα、cosα、tanα的值.【答案】【解析】当角的终边在第一象限时,在角的终边上取点P(1,2),由r=|OP|=12+22=5,得sinα=2 5=255,cos α=15=55,tan α=21=2. 当角的终边在第三象限时,在角的终边上取点Q (-1,-2), 由r =|OQ |=-12+-22=5,得:sin α=-25=-255,cos α=-15=-55,tan α=-2-1=2.【典例4】(2011·江西高考真题(文))已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若()4,p y 是角θ终边上一点,且25sin 5θ=-,则y=_______. 【答案】-8 【解析】根据正弦值为负数,判断角在第三、四象限,再加上横坐标为正,断定该 角为第四象限角.=【规律方法】1.已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后利用三角函数的定义求解.2.已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义求解相关的问题.若直线的倾斜角为特殊角,也可直接写出角α的三角函数值. 【变式探究】1.(浙江省嘉兴市第一中学期中)已知角的终边与单位圆交于点,则的值为( )A. B. C. D.【答案】B 【解析】由三角函数的定义可得.故选B .2.已知角的终边在射线上,则等于( )A. B. C. D.【答案】A 【解析】由题得在第四象限,且,所以故答案为: A.【总结提升】(1)已知角α的终边在直线上的问题时,常用的解题方法有以下两种:①先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应三角函数值. ②注意到角的终边为射线,所以应分两种情况处理,取射线上任意一点坐标(a ,b ),则对应角的正弦值sin α=b a 2+b2,余弦值cos α=aa 2+b2,正切值tan α=ab. (2)当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论. 高频考点三:三角函数值的符号判定 【典例5】已知且,则角的终边所在的象限是A. 第一象限B. 第二象限C. 第三象限D. 第四象限 【答案】B【解析】依据题设及三角函数的定义可知角终边上的点的横坐标小于零,纵坐标大于零,所以终边在第二象限,应选答案B.【典例6】确定下列各式的符号: (1)sin105°·cos230°; (2)sin 7π8·tan 7π8;(3)cos6·tan6. 【答案】【解析】先确定角所在象限,进而确定各式的符号. (1)∵105°、230°分别为第二、第三象限角, ∴sin105°>0,cos230°<0. 于是sin105°·cos230°<0.(2)∵π2<7π8<π,∴7π8是第二象限角,则sin 7π8>0,tan 7π8<0. ∴sin 7π8·tan 7π8<0.(3)∵3π2<6<2π,∴6是第四象限角.∴cos6>0,tan6<0,则cos6·tan6<0. 【总结提升】判定三角函数值的符号,关键是要搞清三角函数中的角是第几象限角,再根据正、余弦函数值在各象限的符号确定值的符号.如果角不能确定所在象限,那就要进行分类讨论求解. 【变式探究】1.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( ) A .(-2,3] B .(-2,3) C .[-2,3)D .[-2,3]【答案】A【解析】 ∵00cos ,sin αα≤>,∴角α的终边落在第二象限或y 轴的正半轴上. ∴39020a a ⎧-≤⎨+>⎩∴23-a <≤.故选A.2.(1)判断下列各式的符号: ①sin3·cos4·tan5;②α是第二象限角,sin α·cos α.(2)若cos θ<0且sin θ>0,则θ2是第( )象限角.A .一B .三C .一或三D .任意象限角【答案】(1)①正,②负;(2)C【解析】 (1)①π2<3<π,π<4<3π2,3π2<5<2π,∴sin3>0,cos4<0,tan5<0,∴sin3·cos4·tan5>0. ②∵α是第二象限角,∴sin α>0,cos α<0,∴sin αcos α<0.(2)由cos θ<0且sin θ>0,知θ是第二象限角,所以θ2是第一或三象限角.高频考点四:扇形的弧长及面积公式【典例7】(2018·湖北高考模拟(理))《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,弦长为的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中,)A .15B .16C .17D .18 【答案】B 【解析】因为圆心角为,弦长为,所以圆心到弦的距离为半径为40,因此根据经验公式计算出弧田的面积为,实际面积等于扇形面积减去三角形面积,为,因此两者之差为,选B.【典例8】(2019·河南高考模拟(理))已知圆O 与直线l 相切于A ,点,P Q 同时从点A 出发,P 沿着直线l 向右、Q 沿着圆周按逆时针以相同的速度运动,当Q 运动到点A 时,点P 也停止运动,连接OQ ,OP (如图),则阴影部分面积1S ,2S 的大小关系是( )A .12S S =B .12S S ≤C .12S S ≥D .先12S S <,再12S S =,最后12S S >【答案】A 【解析】如图所示,因为直线l 与圆O 相切,所以OA AP ⊥, 所以扇形的面积为1122AOQ S AQ r AQ OA =⋅⋅=⋅⋅扇形,12AOP S OA AP ∆=⋅⋅, 因为AQ AP =,所以扇形AOQ 的面积AOP AOQ S S ∆=扇形, 即AOP AOQ AOB AOB S S S S ∆-=-扇形扇形扇形, 所以12S S =,【典例9】已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?【答案】r=10cm, θ==2rad, 100 cm 2【解析】设扇形的圆心角为θ,半径为r ,弧长为l ,面积为S ,则l +2r =40,∴l =40-2r .(0<r <20) ∴S =12lr =12×(40-2r )r =20r -r 2=-(r -10)2+100.∴当半径r =10 cm 时,扇形的面积最大,最大值为100 cm 2,此时θ=l r =40-2×1010=2(rad).【总结提升】1.(1) 弧度制下l =|α|·r ,S =12lr ,此时α为弧度.扇形面积公式,扇形中弦长公式,扇形弧长公式在角度制下,弧长l =n πr 180,扇形面积S =n πr 2360,此时n 为角度,它们之间有着必然的联系.(2)在解决弧长、面积及弓形面积时要注意合理应用圆心角所在的三角形.2.当扇形周长一定时,其面积有最大值,最大值的求法是把面积S 转化为r 的函数,函数思想、转化为方程的思想是解决数学问题的常用思想. 【变式探究】1.(2019·甘肃高三月考(理))若一个扇形的周长与面积的数值相等,则该扇形所在圆的半径不可能等于( )A .5B .2C .3D .4 【答案】B 【解析】因为扇形的周长与面积的数值相等,所以设扇形所在圆的半径为R ,扇形弧长为l ,则lR=2R+l ,所以即是lR=4R+2l , ∴l=∵l>0,∴R>2 故选:B .2.已知扇形的周长是12,面积是8,则扇形的中心角的弧度数是( ) A. 1 B. 4 C. 1或4 D. 2或4 【答案】C【解析】设扇形的半径为r ,弧长为 l ,则121282l r S lr +===,,∴解得28r l ==, 或44r l ==, 41lrα==或,故选C .3.一个扇形的周长为20 cm ,当扇形的圆心角α等于多少弧度时,这个扇形的面积最大?并求出这个扇形的最大面积.【答案】圆心角α等于2弧度时,这个扇形的最大面积是25 cm 2. 【解析】设扇形的半径为r cm ,则弧长为l =(20-2r ) cm . 由0<l <2πr ,得0<20-2r <2πr ,∴10π+1<r <10.于是扇形的面积为S =12(20-2r )r =-(r -5)2+25(10π+1<r <10).当r =5时,l =10,α=2,S 取到最大值,此时最大值为25 cm 2.故当扇形的圆心角α等于2弧度时,这个扇形的面积最大,最大面积是25 cm 2. 【特别提醒】应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度;(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决;(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.11金榜题名前程似锦。
完整版)三角函数知识点归纳三角函数一、任意角、弧度制及任意角的三角函数1.任意角1)角的概念的推广角可以按照旋转方向分为正角、负角和零角,也可以按照终边位置分为象限角和轴线角。
2)终边与角α相同的角可写成α+k·360°(k∈Z)。
3)弧度制弧度制是一种角度量,1弧度的角是指长度等于半径长的弧所对的圆心角。
弧度与角度可以互相转换。
2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P(x,y),它与原点的距离为r(x^2+y^2),那么角α的正弦、余弦、正切分别是:sinα=y/r,cosα=x/r,tanα=y/x。
3.特殊角的三角函数值特殊角的三角函数值可以通过计算得到,如30度角的正弦为1/2,余弦为√3/2,正切为√3/3,以此类推。
注意:删除了明显有问题的段落,同时对每段话进行了小幅度的改写以提高表达清晰度。
和周期;2掌握三角函数的图像及其性质;3熟练运用诱导公式和基本关系进行化简和求值。
二、同角三角函数的基本关系与诱导公式A.基础梳理1.同角三角函数的基本关系1)平方关系:sin^2α+cos^2α=1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)2)商数关系:sinα/cosα=tanα,cosα/sinα=1/tanα,1+tan^2α=sec^2α,1+ cot^2α=csc^2α。
2.诱导公式公式一:sin(α+2kπ)=sinα,cos(α+2kπ)=cosα,tan(α+2kπ)=tanα其中k∈Z.公式二:sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα.公式三:sin(π-α)=sinα,cos(π-α)=-cosα,XXX(π-α)=-tanα.公式四:sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα.公式五:sin(π/2-α)=cosα,cos(π/2-α)=sinα.公式六:sin(π/2+α)=cosα,cos(π/2+α)=-sinα.诱导公式可概括为k·±α的各三角函数值的化简公式.口诀:奇变偶不变,符号看象限.其中的奇、偶是指的奇数22倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称要变(正弦变余弦,余弦变正弦);若是偶数倍。
任意角和弧度制及任意角的三角函数考点与提醒归纳一、基础知识1.角的概念的推广(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+2k π,k ∈Z }.终边相同的角不一定相等,但相等的角其终边一定相同.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式:有关角度与弧度的两个注意点(1)角度与弧度的换算的关键是π=180°,在同一个式子中,采用的度量制度必须一致,不可混用.(2)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度. 3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx (x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线、余弦线和正切线.二、常用结论汇总——规律多一点(1)一个口诀三角函数值在各象限的符号:一全正、二正弦、三正切、四余弦. (2)三角函数定义的推广设点P (x ,y )是角α终边上任意一点且不与原点重合,r =|OP |,则sin α=y r ,cos α=xr ,tan α=yx(x ≠0).(3)象限角(4)轴线角考点一 象限角及终边相同的角[典例] (1)若角α是第二象限角,则α2是( )A .第一象限角B .第二象限角C .第一或第三象限角D .第二或第四象限角(2)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为________. [解析] (1)∵α是第二象限角, ∴π2+2k π<α<π+2k π,k ∈Z , ∴π4+k π<α2<π2+k π,k ∈Z. 当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.故选C.(2)如图,在坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,4π3;在[-2π,0)内满足条件的角有两个:-2π3,-5π3,故满足条件的角α构成的集合为⎩⎨⎧⎭⎬⎫-5π3,-2π3,π3,4π3.[答案] (1)C (2)⎩⎨⎧⎭⎬⎫-5π3,-2π3,π3,4π3[题组训练]1.集合⎩⎨⎧⎭⎬⎫α⎪⎪k π≤α≤k π+π4,k ∈Z 中的角所表示的范围(阴影部分)是( )解析:选B 当k =2n (n ∈Z )时,2n π≤α≤2n π+π4(n ∈Z ),此时α的终边和0≤α≤π4的终边一样,当k =2n +1(n ∈Z )时,2n π+π≤α≤2n π+π+π4(n ∈Z ),此时α的终边和π≤α≤π+π4的终边一样. 2.在-720°~0°范围内所有与45°终边相同的角为________. 解析:所有与45°终边相同的角可表示为: β=45°+k ×360°(k ∈Z ),则令-720°≤45°+k ×360°<0°(k ∈Z ), 得-765°≤k ×360°<-45°(k ∈Z ), 解得-765360≤k <-45360(k ∈Z ),从而k =-2或k =-1, 代入得β=-675°或β=-315°. 答案:-675°或-315°考点二 三角函数的定义[典例] 已知角α的终边经过点P (-x ,-6),且cos α=-513,则1sin α+1tan α=________.[解析] ∵角α的终边经过点P (-x ,-6),且cos α=-513,∴cos α=-x x 2+36=-513,解得x =52或x =-52(舍去),∴P ⎝⎛⎭⎫-52,-6,∴sin α=-1213, ∴tan α=sin αcos α=125,则1sin α+1tan α=-1312+512=-23.[答案] -23[解题技法]用定义法求三角函数值的2种类型及解题方法(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解.(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求解.[题组训练]1.已知角α的终边经过点(3,-4),则sin α+1cos α=( )A .-15B.3715C.3720D.1315解析:选D ∵角α的终边经过点(3,-4),∴sin α=-45,cos α=35,∴sin α+1cos α=-45+53=1315. 2.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35C .35D .45解析:选B 设P (t,2t )(t ≠0)为角θ终边上任意一点,则cos θ=t5|t |.当t >0时,cos θ=55;当t <0时,cos θ=-55.因此cos 2θ=2cos 2θ-1=25-1=-35. 考点三 三角函数值符号的判定[典例] 若sin αtan α<0,且cos αtan α<0,则角α是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角[解析] 由sin αtan α<0可知sin α,tan α异号, 则α为第二象限角或第三象限角. 由cos αtan α<0可知cos α,tan α异号, 则α为第三象限角或第四象限角. 综上可知,α为第三象限角. [答案] C[解题技法] 三角函数值符号及角所在象限的判断三角函数在各个象限的符号与角的终边上的点的坐标密切相关.sin θ在一、二象限为正,cos θ在一、四象限为正,tan θ在一、三象限为正.学习时首先把取正值的象限记清楚,其余的象限就是负的,如sin θ在一、二象限为正,那么在三、四象限就是负的.值得一提的是:三角函数的正负有时还要考虑坐标轴上的角,如sin π2=1>0,cos π=-1<0.[题组训练]1.下列各选项中正确的是( ) A .sin 300°>0 B .cos(-305°)<0 C .tan ⎝⎛⎭⎫-22π3>0 D .sin 10<0解析:选D 300°=360°-60°,则300°是第四象限角,故sin 300°<0;-305°=-360°+55°,则-305°是第一象限角,故cos(-305°)>0;-22π3=-8π+2π3,则-22π3是第二象限角,故tan ⎝⎛⎭⎫-22π3<0;3π<10<7π2,则10是第三象限角,故sin 10<0,故选D. 2.已知点P (cos α,tan α)在第三象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选B 由题意得⎩⎨⎧cos α<0,tan α<0⇒⎩⎪⎨⎪⎧cos α<0,sin α>0,所以角α的终边在第二象限.[课时跟踪检测]A 级1.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( ) A .2 B .4 C .6D .8解析:选C 设扇形的半径为r (r >0),弧长为l ,则由扇形面积公式可得2=12lr =12|α|r 2=12×4×r 2,解得r =1,l =|α|r =4,所以所求扇形的周长为2r +l =6. 2.(2019·石家庄模拟)已知角α(0°≤α<360°)终边上一点的坐标为(sin 150°,cos 150°),则α=( )A .150°B .135°C .300°D .60°解析:选C 由sin 150°=12 >0,cos 150°=-32<0,可知角α终边上一点的坐标为⎝⎛⎭⎫12,-32,故该点在第四象限,由三角函数的定义得sin α=-32,因为0°≤α<360°,所以角α为300°.3.(2018·长春检测)若角α的顶点为坐标原点,始边在x 轴的非负半轴上,终边在直线y =-3x 上,则角α的取值集合是( )A.⎩⎨⎧⎭⎬⎫α⎪⎪α=2k π-π3,k ∈Z B.⎩⎨⎧⎭⎬⎫α⎪⎪α=2k π+2π3,k ∈Z C.⎩⎨⎧⎭⎬⎫α⎪⎪ α=k π-2π3,k ∈Z D.⎩⎨⎧⎭⎬⎫α⎪⎪α=k π-π3,k ∈Z 解析:选D 当α的终边在射线y =-3x (x ≤0)上时,对应的角为2π3+2k π,k ∈Z ,当α的终边在射线y =-3x (x ≥0)上时,对应的角为-π3+2k π,k ∈Z ,所以角α的取值集合是⎩⎨⎧⎭⎬⎫α⎪⎪α=k π-π3,k ∈Z .4.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3]解析:选A 由cos α≤0,sin α>0可知,角α的终边落在第二象限或y 轴的正半轴上,所以有⎩⎪⎨⎪⎧3a -9≤0,a +2>0,解得-2<a ≤3.5.在平面直角坐标系xOy 中,α为第二象限角,P (-3,y )为其终边上一点,且sin α=2y4,则y 的值为( ) A.3 B .-5 C.5 D.3或5解析:选C 由题意知|OP |=3+y 2,则sin α=y 3+y 2=2y4,解得y =0(舍去)或y =±5,因为α为第二象限角,所以y >0,则y = 5.6.已知角α=2k π-π5(k ∈Z ),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3解析:选B 由α=2k π-π5(k ∈Z )及终边相同的概念知,角α的终边在第四象限,因为角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y =-1+1-1=-1. 7.已知一个扇形的圆心角为3π4,面积为3π2,则此扇形的半径为________. 解析:设此扇形的半径为r (r >0),由3π2=12×3π4×r 2,得r =2.答案:28.(2019·江苏高邮模拟)在平面直角坐标系xOy 中,60°角终边上一点P 的坐标为(1,m ),则实数m 的值为________.解析:∵60°角终边上一点P 的坐标为(1,m ),∴tan 60°=m1,∵tan 60°=3,∴m = 3.答案:39.若α=1 560°,角θ与α终边相同,且-360°<θ<360°,则θ=________. 解析:因为α=1 560°=4×360°+120°, 所以与α终边相同的角为360°×k +120°,k ∈Z , 令k =-1或k =0,可得θ=-240°或θ=120°. 答案:120°或-240°10.在直角坐标系xOy 中,O 为坐标原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.解析:依题意知OA =OB =2,∠AOx =30°,∠BOx =120°, 设点B 坐标为(x ,y ),则x =2cos 120°=-1,y =2sin 120°=3,即B (-1,3). 答案:(-1,3)11.已知1|sin α|=-1sin α,且lg(cos α)有意义.(1)试判断角α所在的象限;(2)若角α的终边上一点M ⎝⎛⎭⎫35,m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值. 解:(1)由1|sin α|=-1sin α,得sin α<0,由lg(cos α)有意义,可知cos α>0, 所以α是第四象限角.(2)因为|OM |=1,所以⎝⎛⎭⎫352+m 2=1,解得m =±45. 又因为α是第四象限角,所以m <0, 从而m =-45,sin α=y r =m |OM |=-451=-45.12.已知α为第三象限角. (1)求角α2终边所在的象限;(2)试判断 tan α2sin α2cos α2的符号.解:(1)由2k π+π<α<2k π+3π2,k ∈Z , 得k π+π2<α2<k π+3π4,k ∈Z ,当k 为偶数时,角α2终边在第二象限;当k 为奇数时,角α2终边在第四象限.故角α2终边在第二或第四象限.(2)当角α2在第二象限时,tan α2<0,sin α2>0, cos α2<0,所以tan α2sin α2cos α2取正号;当角α2在第四象限时,tan α2<0,sin α2<0, cos α2>0, 所以 tan α2sin α2cos α2也取正号.因此tan α2sin α2cos α2取正号.B 级1.若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小是( )A .sin α<tan α<cos αB .cos α<sin α<tan αC .sin α<cos α<tan αD .tan α<sin α<cos α解析:选C 如图所示,作出角α的正弦线MP ,余弦线OM ,正切线AT ,因为-3π4 <α<-π2,所以α终边位置在图中的阴影部分,观察可得AT >OM >MP ,故有sin α<cos α<tan α.2.已知点P (sin α-cos α,tan α)在第一象限,且α∈[0,2π],则角α的取值范围是( )A.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫π,5π4B.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4C.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫5π4,3π2D.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫3π4,π解析:选B 因为点P 在第一象限,所以⎩⎪⎨⎪⎧ sin α-cos α>0,tan α>0,即⎩⎨⎧sin α>cos α,tan α>0.由tan α>0可知角α为第一或第三象限角,画出单位圆如图.又sin α>cos α,用正弦线、余弦线得满足条件的角α的终边在如图所示的阴影部分(不包括边界),即角α的取值范围是⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4.3.已知角θ的终边过点P (-4a,3a )(a ≠0).(1)求sin θ+cos θ的值;(2)试判断cos(sin θ)·sin(cos θ)的符号.解:(1)因为角θ的终边过点P (-4a,3a )(a ≠0),所以x =-4a ,y =3a ,r =5|a |,当a >0时,r =5a ,sin θ+cos θ=35-45=-15; 当a <0时,r =-5a ,sin θ+cos θ=-35+45=15. (2)当a >0时,sin θ=35∈⎝⎛⎭⎫0,π2, cos θ=-45∈⎝⎛⎭⎫-π2,0, 则cos(sin θ)·sin(cos θ)=cos 35·sin ⎝⎛⎭⎫-45<0; 当a <0时,sin θ=-35∈⎝⎛⎭⎫-π2,0, cos θ=45∈⎝⎛⎭⎫0,π2, 则cos(sin θ)·sin(cos θ)=cos ⎝⎛⎭⎫-35·sin 45>0. 综上,当a >0时,cos(sin θ)·sin(cos θ)的符号为负;当a <0时,cos(sin θ)·sin(cos θ)的符号为正.。
辅导讲义――任意角的三角函数教学内容任意角和弧度制及任意角的三角函数1.角的概念(1)分类⎩⎨⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(2)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }.2.弧度的定义和公式(1)定义:长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)公式:①弧度与角度的换算:360°=2π弧度;180°=π弧度;②弧长公式:l =|α|r ;③扇形面积公式:S 扇形=12lr 和12|α|r 2.3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=y x (x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线,余弦线和正切线.1.易混概念:第一象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.2.利用180°=π rad 进行互化时,易出现度量单位的混用.3.三角函数的定义中,当P (x ,y )是单位圆上的点时有sin α=y ,cos α=x ,tan α=y x,但若不是单位圆时,如圆的半径为r ,则sin α=y r ,cos α=x r ,tan α=y x. [试一试]1.若α=k ·180°+45°(k ∈Z ),则α是第______象限角.2.已知角α的终边经过点(3,-1),则sin α=________.1.三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦;2.对于利用三角函数定义解题的题目,如果含有参数,一定要考虑运用分类讨论,而在求解简单的三角不等式时,可利用单位圆及三角函数线,体现了数形结合的思想.[练一练]若sin α<0且tan α>0,则α是第______象限角.考点一角的集合表示及象限角的判定 1.给出下列四个命题:①-3π4是第二象限角;②4π3是第三象限角;③-400°是第四象限角;④-315°是第一象限角.其中正确的命题有______个.2.终边在直线y =3x 上的角的集合为________.3.在-720°~0°范围内找出所有与45°终边相同的角为________.4.设集合M =⎩⎨⎧ x ⎪⎪⎭⎬⎫x =k 2·180°+45°,k ∈Z , N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 4·180°+45°,k ∈Z ,那么集合M ,N 的关系是______.[类题通法]1.利用终边相同角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需角.2.已知角α的终边位置,确定形如kα,π±α等形式的角终边的方法:先表示角α的范围,再写出kα,π±α等形式的角范围,然后就k 的可能取值讨论所求角的终边位置.考点二 三角函数的定义[典例] (1)已知角α的终边上一点P 的坐标为⎝⎛⎭⎫sin 2π3,cos 2π3,则角α的最小正值为______. (2)已知α是第二象限角,其终边上一点P (x ,5),且cos α=24x ,则sin ⎝⎛⎭⎫α+π2=________.[类题通法]用定义法求三角函数值的两种情况(1)已知角α终边上一点P的坐标,则可先求出点P到原点的距离r,然后用三角函数的定义求解;(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求相关问题.[针对训练]已知角α的终边在直线y=-3x上,求10sin α+3cos α的值.考点三扇形的弧长及面积公式[典例](1)已知扇形周长为10,面积是4,求扇形的圆心角.(2)已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大?若本例(1)中条件变为:圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________.[类题通法]弧度制应用的关注点(1)弧度制下l=|α|·r,S=12lr,此时α为弧度.在角度制下,弧长l=nπr180,扇形面积S=nπr2360,此时n为角度,它们之间有着必然的联系.(2)在解决弧长、面积及弓形面积时要注意合理应用圆心角所在的三角形.[针对训练]已知扇形的圆心角是α=120°,弦长AB=12 cm,求弧长l.[课堂练通考点]1.如图所示,在直角坐标系xOy中,射线OP交单位圆O于点P,若∠AOP=θ,则点P的坐标是________.2.已知扇形的周长是6 cm,面积是2 cm2,则扇形的圆心角的弧度数是________.3.已知角α的终边经过点(3a-9,a+2),且cos α≤0,sin α>0,则实数a的取值范围是________.4.在与2 010°终边相同的角中,绝对值最小的角的弧度数为________.5.已知角α 的终边经过点P (x ,-6),且tan α=-35,则x 的值为________. 6.已知sin α=13,且α∈⎝⎛⎭⎫π2,π,则tan α=______.第Ⅰ组:全员必做题1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是______.2.已知cos θ·tan θ<0,那么角θ是第________象限角.3.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=______. 4.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为________.5.给出下列各函数值:①sin(-1 000°);②cos(-2 200°);③tan(-10);④sin 7π10cos πtan 17π9,其中符号为负的是________(填写序号).6.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.7.如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为45,则cos α=________.8.设角α是第三象限角,且⎪⎪⎪⎪sin α2=-sin α2,则角α2是第________象限角.9.一个扇形OAB 的面积是1 cm 2,它的周长是4 cm ,求圆心角的弧度数和弦长AB .10.已知sin α<0,tan α>0.(1)求α角的集合;(2)求α2终边所在的象限;第Ⅱ组:重点选做题巩固基础和能力提升训练1.满足cos α≤-12的角α的集合为________. 2.如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP 的坐标为________.。
三角函数一、任意角、弧度制及任意角的三角函数1.任意角(1)角的概念的推广①按旋转方向不同分为正角、负角、零角.⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角②按终边位置不同分为象限角和轴线角.角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z(2)终边与角α相同的角可写成α+k ·360°(k ∈Z ).终边与角α相同的角的集合为{}360,k k ββα=⋅+∈Z (3)弧度制①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角. ②弧度与角度的换算:360°=2π弧度;180°=π弧度.③半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lrα= ④若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P (x ,y ),它与原点的距离为(r r =,那么角α的正弦、余弦、正切分别是:sin α=y r ,cos α=x r ,tan α=y x.(三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦)3.特殊角的三角函数值A.基础梳理1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号) (2)商数关系:sin αcos α=tan α. (3)倒数关系:1cot tan =⋅αα 2.诱导公式公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos_α,απαtan )2tan(=+k 其中k ∈Z . 公式二:sin(π+α)=-sin_α,cos(π+α)=-cos_α,tan(π+α)=tan α. 公式三:sin(π-α)=sin α,cos(π-α)=-cos_α,()tan tan παα-=-. 公式四:sin(-α)=-sin_α,cos(-α)=cos_α,()tan tan αα-=-. 公式五:sin ⎝⎛⎭⎫π2-α=cos_α,cos ⎝⎛⎭⎫π2-α=sin α. 公式六:sin ⎝⎛⎭⎫π2+α=cos_α,cos ⎝⎛⎭⎫π2+α=-sin_α. 诱导公式可概括为k ·π2±α的各三角函数值的化简公式.口诀:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称要变(正弦变余弦,余弦变正弦);若是偶数倍,则函数名称不变,符号看象限是指:把α看成锐角....时,根据k ·π2±α在哪个象限判断原.三角..函数值的符号,最后作为结果符号.B.方法与要点 一个口诀1、诱导公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化. (ααcos sin +、ααcos sin -、ααcos sin 三个式子知一可求二)(3)巧用“1”的变换:1=sin 2θ+cos 2θ= sin2π=tan π4 (4)齐次式化切法:已知k =αtan ,则nmk bak n m b a n m b a ++=++=++ααααααtan tan cos sin cos sin 三、三角函数的图像与性质学习目标:1会求三角函数的定义域、值域2会求三角函数的周期 :定义法,公式法,图像法(如x y sin =与x y cos =的周期是π)。
第1讲任意角和弧度制、三角函数的概念1.了解任意角的概念和弧度制的概念.2.能进行弧度与角度的互化.3.理解任意角的三角函数(正弦、余弦、正切)的定义.1.任意角(1)任意角包括正角、负角和零角.(2)象限角:在平面直角坐标系中,使角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在□1第几象限,就说这个角是第几□2象限角;如果角的终边在□3坐标轴上,就认为这个角不属于任何一个象限.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S=□4{β|β=α+k·360°,k∈Z}.2.弧度制的定义和公式(1)定义:把长度等于□5半径长的圆弧所对的圆心角叫做1弧度的角,正角的弧度数是一个□6正数,负角的弧度数是一个□7负数,零角的弧度数是□80.(2)公式角α的弧度数公式|α|=lr(弧长用l表示)角度与弧度的换算1°=π180rad;1rad=□9(180π)°弧长公式弧长l=□10|α|r扇形面积公式S=□1112lr=□1212|α|r2扇形的弧长公式、面积公式中角的单位要用弧度,在同一式子中,采用的度量制必须一致.3.任意角的三角函数(1)概念:任意角α的终边与单位圆交于点P(x,y)时,sinα=□13y,cosα=□14x,tan α=□15y x(x ≠0).(2)概念推广:三角函数坐标法定义中,若取点P (x ,y )是角α终边上异于顶点的任一点,设点P 到原点O 的距离为r ,则sin α=□16y r ,cos α=□17x r ,tan α=□18y x(x ≠0).常用结论1.三角函数值在各象限的符号规律:一全正,二正弦,三正切,四余弦.2.象限角与不属于任何象限的角(1)(2)(3)3.重要不等关系:若α∈(0,π2),则sin α<α<tan α.1.思考辨析(在括号内打“√”或“×”)(1)小于90°的角是锐角.()(2)锐角是第一象限角,第一象限角也都是锐角.()(3)角α的三角函数值与其终边上点P 的位置无关.()(4)若α为第一象限角,则sin α+cos α>1.()答案:(1)×(2)×(3)√(4)√2.回源教材(1)67°30′化为弧度是()A.3π8B.38C.673π1800D.6731800解析:A 67°30′=67.5×π180=38π.(2)已知α是第一象限角,那么α2是()A.第一象限角B.第二象限角C.第一或第二象限角D.第一或第三象限角解析:D 易知2k π<α<π2+2k π,k ∈Z ,故k π<α2<π4+k π,所以α2是第一或第三象限角.(3)已知角θ的终边经过点P (-12,5),则sin θ+cos θ=.解析:由三角函数的定义可得sin θ+cos θ=5(-12)2+52+-12(-12)2+52=513-1213=-713.答案:-713任意角及其表示例1(1)(多选)若α是第二象限角,则()A.-α是第一象限角B.α2是第一或第三象限角C.3π2+α是第二象限角D.2α是第三或第四象限角或终边在y 轴负半轴上解析:BD因为α是第二象限角,所以可得π2+2k π<α<π+2k π,k ∈Z .对于A ,-π-2k π<-α<-π2-2k π,k ∈Z ,则-α是第三象限角,所以A 错误.对于B ,可得π4+k π<α2<π2+k π,k ∈Z ,当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角,所以B 正确.对于C ,2π+2k π<3π2+α<5π2+2k π,k ∈Z ,即2(k +1)π<3π2+α<π2+2(k +1)π,k ∈Z ,所以3π2+α是第一象限角,所以C 错误.对于D ,π+4k π<2α<2π+4k π,k ∈Z ,所以2α的终边位于第三象限或第四象限或y 轴负半轴上,所以D 正确.故选BD.(2)集合{α|k π+π4≤α≤k π+π2,k ∈Z }中的角所表示的范围(阴影部分)是()解析:C当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样.故选C.反思感悟1.表示区间角的三个步骤(1)先按逆时针方向找到区域的起始和终止边界.(2)再按由小到大的顺序分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间{x |α<x <β},其中β-α<360°.(3)最后令起始、终止边界对应角α,β再加上360°的整数倍,即得区间角的集合.2.象限角的两种判断方法(1)图象法:在平面直角坐标系中,作出已知角并根据象限角的定义直接判断已知角是第几象限角.(2)转化法:先将已知角化为k ·360°+α(0°≤α<360°,k ∈Z )的形式,即找出与已知角终边相同的角α,再由角α的终边所在的象限判断已知角是第几象限角.训练1(1)把-380°表示成θ+2k π(k ∈Z )的形式,则θ的值可以是()A.π9B.-π9C.8π9D.-8π9解析:B∵-380°=-20°-360°,∴-380°=(-π9-2π)rad ,故选B.(2)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为.解析:如图,在平面直角坐标系中画出直线y=3x,可以发现它与x轴的夹角是π3,在[0,2π)内,终边在直线y=3x上的角有两个,即π3,4π3;在[-2π,0)内满足条件的角有两个,即-2π3,-5π3,故满足条件的角α构成的集合为{-5π3,-2π3,π3,4π3}.答案:{-5π3,-2π3,π3,4π3}弧度制及其应用例2已知扇形的圆心角是α,半径为R,弧长为l.(1)若α=π3,R=10cm,求扇形的弧长l;(2)若扇形的周长是20cm,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?(3)若α=π3,R=2cm,求扇形的弧所在的弓形的面积.解:(1)因为α=π3,R=10cm,所以l=|α|R=π3×10=10π3(cm).(2)由已知,得l+2R=20,所以S=12lR=12(20-2R)R=10R-R2=-(R-5)2+25.所以当R=5cm时,S取得最大值,此时l=10cm,α=2.(3)设弓形面积为S弓形,由题意知l=2π3cm,所以S弓形=12×2π3×2-12×22×sinπ3=(2π3-3)(cm2).反思感悟应用弧度制解决问题时的注意点(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,或用基本不等式解决.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.训练2如图,图1是杭州2022年第19届亚运会的会徽,名为“潮涌”,整个会徽象征着新时代中国特色社会主义大潮的涌动和发展.图2是会徽的几何图形,设弧AD 的长度是l 1,弧BC 的长度是l 2,几何图形ABCD 的面积为S 1,扇形BOC 的面积为S 2,若l 1l 2=2,则S1S 2=()图1图2A.1B.2C.3D.4解析:C 设∠BOC =α,由l 1l 2=2,得OA ·αOB ·α=OA OB =2,即OA =2OB ,∴S1S 2=12α·OA 2-12α·OB 212α·OB 2=OA 2-OB 2OB 2=4OB 2-OB 2OB 2=3.故选C.三角函数的定义及其应用三角函数的定义例3(1)(2024·哈尔滨期中)已知角α的终边经过点P (-3,4),则sin α-cos α-11+tan α的值为()A.-65 B.1C.2D.3解析:A由(-3)2+42=5,得sin α=45,cos α=-35,tan α=-43,代入原式得45-(-35)-11+(-43)=-65.(2)如果点P 在角23π的终边上,且|OP |=2,则点P 的坐标是()A.(1,3)B.(-1,3)C.(-3,1)D.(-3,-1)解析:B由三角函数定义知,cos 23π=x P |OP |=-12,sin 23π=y P |OP |=32,所以x P =-1,y P =3,即P 的坐标是(-1,3).三角函数值的符号例4(1)点P (sin 100°,cos 100°)落在()A.第一象限内B.第二象限内C.第三象限内D.第四象限内解析:D因为sin 100°=sin(90°+10°)=cos 10°>0,cos 100°=cos(90°+10°)=-sin 10°<0,所以点P (sin 100°,cos 100°)落在第四象限内.(2)已知sin θ<0,tan θ<0,则角θ的终边位于()A.第一象限B.第二象限C.第三象限D.第四象限解析:D 由sin θ<0,tan θ<0,根据三角函数的符号与角的象限间的关系,可得角θ的终边位于第四象限.反思感悟1.三角函数定义的应用(1)直接利用三角函数的定义,找到给定角的终边上一个点的坐标,及这点到原点的距离,确定这个角的三角函数值.(2)已知角的某一个三角函数值,可以通过三角函数的定义列出含参数的方程,求参数的值.2.要判定三角函数值的符号,关键是要搞清三角函数中的角是第几象限角,再根据正、余弦函数值在各象限的符号确定值的符号.如果不能确定角所在象限,那就要进行分类讨论求解.训练3(1)(多选)已知角α的终边与单位圆交于点P (35,m5),则sin α的值可能是()A.45B.35C.-45 D.-35解析:AC由题意可得sin α=m 5(35)2+(m 5)2=m 32+m 2=m5,解得m =±4.当m =4时,sin α=45;当m =-4时,sin α=-45.故A ,C 正确,B ,D 错误.(2)(多选)已知角θ的终边经过点(-2,-3),且θ与α的终边关于x 轴对称,则()A.sin θ=-217B.α为钝角C.cos α=-277D.点(tan θ,tan α)在第四象限解析:ACD因为角θ的终边经过点(-2,-3),所以sin θ=-37=-217,故A 正确.因为θ与α的终边关于x 轴对称,所以α的终边经过点(-2,3),则α为第二象限角,不一定为钝角,且cos α=-27=-277,故B 错误,C 正确.因为tanθ=32>0,tan α=-32<0,所以点(tan θ,tan α)在第四象限,D 正确.故选ACD.限时规范训练(二十四)A级基础落实练1.与-2023°终边相同的最小正角是()A.137°B.133°C.57°D.43°解析:A因为-2023°=-360°×6+137°,所以与-2023°终边相同的最小正角是137°.2.下列与角9π4的终边相同的角的表达式中正确的是()A.2kπ+45°(k∈Z)B.k·360°+9π4(k∈Z)C.k·360°-315°(k∈Z)D.kπ+5π4(k∈Z)解析:C对于A,B,2kπ+45°(k∈Z),k·360°+9π4(k∈Z)中角度和弧度混用,不正确;对于C,因为9π4=2π+π4与-315°是终边相同的角,故与角9π4的终边相同的角可表示为k·360°-315°(k∈Z),C正确;对于D,kπ+5π4(k∈Z),不妨取k=0,则表示的角5π4与9π4终边不相同,D错误.3.已知角θ的顶点与原点重合,始边与x轴非负半轴重合,若A(-1,y)是角θ终边上一点,且sinθ=-31010,则y=()A.3B.-3C.1D.-1解析:B因为sinθ=-31010<0,A(-1,y)是角θ终边上一点,所以y<0,由三角函数的定义,得yy2+1=-31010,解得y=-3(正值舍去).4.(2024·鹰潭期中)点A(sin1240°,cos1240°)在直角坐标平面上位于()A.第一象限B.第二象限C.第三象限D.第四象限解析:D1240°=3×360°+160°,160°是第二象限角,所以sin1240°>0,cos1240°<0,P点在第四象限.5.(2023·河东一模)在面积为4的扇形中,其周长最小时半径的值为()A.4B.22C.2D.1解析:C设扇形的半径为R(R>0),圆心角为α,则12αR2=4,所以α=8R2,则扇形的周长为2R+αR=2R+8R≥22R·8R=8,当且仅当2R=8 R,即R=2时,取等号,此时α=2,所以周长最小时半径的值为2.6.给出下列命题:①第二象限角大于第一象限角;②三角形的内角一定是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cosθ<0,则θ是第二或第三象限的角.其中正确命题的序号是()A.②④⑤B.③⑤C.③D.①③⑤解析:C①由于120°是第二象限角,390°是第一象限角,故第二象限角大于第一象限角不正确,即①不正确;②直角不属于任何一个象限,故三角形的内角是第一象限角或第二象限角错误,即②不正确;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关,即③正确;④若sinα=sinβ,则α与β的终边相同或终边关于y轴对称,即④不正确;⑤若cosθ<0,则θ是第二象限角或第三象限角或θ的终边落在x轴的负半轴上,即⑤不正确.其中正确命题的序号是③,故选C.7.(多选)已知角α的顶点为坐标原点,始边为x轴的非负半轴,终边上有一点P(1,2sinα),且|α|<π2,则角α的可能取值为()A.-π3B.0C.π6D.π3解析:ABD因为角α的终边上有一点P(1,2sinα),所以tanα=2sinα,所以sinαcosα=2sinα,①若α=0,则sinαcosα=2sinα成立;②若α≠0,则cosα=12,因为|α|<π2,所以α=π3或α=-π3.8.已知角α的终边过点P(-8m,-6sin30°),且cosα=-45,则m的值为.解析:因为r=64m2+9,所以cosα=-8m64m2+9=-45,所以4m264m2+9=125,因为m>0,解得m=12.答案:1 29.α为第二象限角,且|cosα2|=-cosα2,则α2在象限.解析:∵α为第二象限角,∴α2为第一或第三象限角,又|cos α2|=-cos α2,∴cos α2<0,∴α2在第三象限.答案:第三10.若角α的终边与函数5x +12y =0(x <0)的图象重合,则2cos α+sin α=.解析:∵角α的终边与函数5x +12y =0(x <0)的图象重合,∴α为第二象限角,且tan α=-512,即sin α=-512cos α.∴sin 2α+cos 2α=(-512cos α)2+cos 2α=1,解得cos α=-1213.∴sin α=-512cos α=-512×(-1213)=513.∴2cos α+sin α=2×(-1213)+513=-1913.答案:-191311.用弧度制表示终边落在如图所示阴影部分内(含边界)的角θ的集合是.解析:由题图,终边OB 对应角为2k π-π6且k ∈Z ,终边OA 对应角为2k π+3π4且k ∈Z ,所以阴影部分角θ的集合是[2k π-π6,2k π+3π4],k ∈Z .答案:[2k π-π6,2k π+3π4],k ∈Z12.已知扇形的圆心角为23π,扇形的面积为3π,则该扇形的周长为.解析:设扇形的半径为R,利用扇形面积计算公式S=12×23πR2=3π,可得R=3,所以该扇形的弧长为l=23π×3=2π,所以周长为l+2R=6+2π.答案:6+2πB级能力提升练13.(多选)在平面直角坐标系xOy中,角α以Ox为始边,终边经过点P(-1,m)(m>0),则下列各式的值一定为负的是()A.sinα+cosαB.sinα-cosαC.sinαcosαD.sinαtanα解析:CD因为角α终边经过点P(-1,m)(m>0),所以α在第二象限,所以sinα>0,cosα<0,tanα<0,如果α=23π,所以sinα+cosα=32-12>0,所以选项A不满足题意;sinα-cosα>0;sinαcosα<0;sinαtanα<0,故CD正确.14.(2023·长治模拟)水滴是刘慈欣的科幻小说《三体Ⅱ·黑暗森林》中提到的由三体文明使用强相互作用力(SIM)材料所制成的宇宙探测器,因为其外形与水滴相似,所以被人类称为水滴.如图所示,水滴是由线段AB,AC和圆的优弧BC围成,其中AB,AC恰好与圆弧相切.若圆弧所在圆的半径为1,点A到圆弧所在圆的圆心的距离为2,则该封闭图形的面积为()A.3+2π3 B.23+2π3C.23+π3D.3+π3解析:A 如图,设圆弧所在圆的圆心为O ,连接OA ,OB ,OC ,依题意得OB ⊥AB ,OC ⊥AC ,且OB =OC =1,OA =2,则AB =AC =3,∠BAC =π3,所以∠BOC =2π3,所以该封闭图形的面积为2×12×3×1+12×(2π-2π3)×12=3+2π3.15.(2024·牡丹江模拟)在平面直角坐标系xOy 中,已知点A (35,45),将线段OA绕原点顺时针旋转π3得到线段OB ,则点B 的横坐标为.解析:易知A (35,45)在单位圆上,记终边在射线OA 上的角为α,如图所示,根据三角函数定义可知,cos α=35,sin α=45;OA 绕原点顺时针旋转π3得到线段OB ,则终边在射线OB 上的角为α-π3,所以点B 的横坐标为cos(α-π3)=cos αcos π3+sin αsin π3=3+4310.答案:3+431016.若点P (sin α-cos α,tan α)在第一象限,则在[0,2π)内α的取值范围是.解析:由题意可得α-cos α>0,α>0,∈[0,2π),α>0,∈[0,2π),可得α∈(0,π2)或α∈(π,3π2),当α∈(0,π2),即α为第一象限角,则sin α>0,cos α>0,∵sin α-cos α>0,则tan α>1,∴α∈(π4,π2);当α∈(π,3π2),即α为第三象限角,则sin α<0,cos α<0,∵sin α-cos α>0,则0<tan α<1,∴α∈(π,5π4);综上所述,α∈(π4,π2∪(π,5π4).答案:(π4,π2)∪(π,5π4)。
任意角和弧度制及任意角的三角函数考纲解读 1.通过角的变换,判断角所在象限;2.常见的角度与弧度之间的转化;3.已知角的终边求正弦、余弦、正切值;4.利用三角函数线求角的大小或角的范围;5.利用扇形面积公式和弧长公式进行相关计算.[基础梳理]1.任意角的概念(1)我们把角的概念推广到任意角,任意角包括正角、负角、零角. ①正角:按逆时针方向旋转形成的角; ②负角:按顺时针方向旋转形成的角;③零角:如果一条射线没有作任何旋转,我们称它形成了一个零角. (2)终边相同角:与α终边相同的角可表示为:{β|β=α+2k π,k ∈Z }. 2.弧度与角度的互化(1)1弧度的角:长度等于半径长的弧所对的圆心角. (2)角α的弧度数公式:|α|=lr .(3)角度与弧度的换算:360°=2π rad,1°=π180 rad,1 rad =(180π)°≈57°18′.(4)扇形的弧长及面积公式: 弧长公式:l =α·r . 面积公式:S =12l ·r =12α·r 2.3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=yx(x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫作角α的正弦线、余弦线和正切线.4.终边相同的角的三角函数 sin(α+k ·2π)=sin α, cos(α+k ·2π)=cos α,tan(α+k ·2π)=tan α(其中k ∈Z ),即终边相同的角的同一三角函数的值相等.[三基自测]1.单位圆中,200°的圆心角所对的弧长为( ) A .10π B .9π C.9π10 D.10π9答案:D2.若角θ满足tan θ>0,sin θ<0,则角θ所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:C3.弧长为3π、圆心角为34π的扇形半径为________.答案:44.(必修4·4.1例题改编)α终边上一点P (-3,4).则sin α=________,cos α=________,tan α=________.答案:45 -35 -435.(2017·高考全国卷Ⅰ改编)若α的终边过点(3,4),则cos ⎝⎛⎭⎫α-π4=__________. 答案:7210[考点例题]考点一 终边相同的角及象限角|易错突破高考总复习·数学(理)第三章 三角函数、解三角形[例1] (1)若角α满足α=2k π3+π6(k∈Z ),则α的终边一定在( )A .第一象限或第二象限或第三象限B .第一象限或第二象限或第四象限C .第一象限或第二象限或x 轴非正半轴上D .第一象限或第二象限或y 轴非正半轴上(2)已知sin α>0,cos α<0,则12α所在的象限是( )A .第一象限B .第三象限C .第一或第三象限D .第二或第四象限(3)下列与9π4的终边相同的角的表达式中正确的是( )A .2k π+45°(k ∈Z )B .k ·360°+94π(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )[解析] (1)由α=2k π3+π6,k ∈Z ,当k =0时,α=π6,终边在第一象限.当k =1时,α=2π3+π6=5π6,终边在第二象限.当k =-1时,α=-2π3+π6=-π2,终边在y 轴的非正半轴上,故选D.(2)因为sin α>0,cos α<0,所以α为第二象限角,即π2+2k π<α<π+2k π,k ∈Z ,则π4+k π<12α<π2+k π,k ∈Z .当k 为偶数时,12α为第一象限角;当k 为奇数时,12α为第三象限角,故选C.(3)由定义知终边相同的角中不能同时出现角度和弧度,应为π4+2k π或k ·360°+45°(k ∈Z ).[答案] (1)D (2)C (3)C [易错提醒][纠错训练]1.在-720°~0°范围内所有与45°终边相同的角为________. 解析:所有与45°有相同终边的角可表示为:β=45°+k ×360°(k ∈Z ), 则令-720°<45°+k ×360°<0°, 得-765°<k ×360°<-45°, 解得-765360<k <-45360,从而k =-2或k =-1,代入得β=-675°或β=-315°. 答案:-675°或-315°2.终边在直线y =3x 上的角的集合为__________. 解析:在坐标系中画出直线y =3x , 可以发现它与x 轴正半轴的夹角是π3,终边在直线y =3x 上的角的集合为 ⎩⎨⎧⎭⎬⎫α|α=k π+π3,k ∈Z .答案:⎩⎨⎧⎭⎬⎫α|α=k π+π3,k ∈Z考点二 扇形弧长、面积公式的应用|方法突破[例2] (1)(2018·合肥模拟)《九章算术》是我国古代内容极为丰富的数学名著,卷一《方田》[三三]:“今有宛田,下周三十步,径十六步.问为田几何?”译成现代汉语其意思为:有一块扇形的田,弧长30步,其所在圆的直径是16步,问这块田的面积是多少(平方步)?( )A .120B .240C .360D .480(2)(2018·太原模拟)已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( )A .2B .sin 2 C.2sin 1D .2 sin 1[解析] (1)由题意可得:S =12×8×30=120(平方步).(2)如图:∠AOB =2弧度,过O 点作OC ⊥AB 于C ,并延长OC 交弧AB 于D .则∠AOD =∠BOD =1弧度,且AC =12AB =1,在Rt △AOC 中,AO =AC sin ∠AOC =1sin 1,即r =1sin 1,从而弧AB 的长为l =α·r =2sin 1.[答案] (1)A (2)C [方法提升][母题变式]将本例(1)改为已知扇形的半径是2,面积为8,则此扇形的圆心角的弧度数是( ) A .4 B .2 C .8D .1解析:设半径为r ,圆心角的弧度数为θ, 由S =12θr 2,得8=12×θ×4,∴θ=4.答案:A考点三 三角函数的定义|模型突破角度1 用三角函数的定义求值[例3] (1)(2018·大同模拟)已知角α的终边经过点P (-x ,-6),且cos α=-513,则x的值为________.(2)已知角α的终边在直线y =-3x 上,则10sin α+3cos α的值为________. [解析] (1)∵cos α=-x(-x )2+(-6)2=-x x 2+36=-513,∴⎩⎪⎨⎪⎧x >0,x 2x 2+36=25169,解得x =52.(2)设α终边上任一点为P (k ,-3k ), 则r =k 2+(-3k )2=10|k |. 当k >0时,r =10k , ∴sin α=-3k 10k =-310,1cos α=10kk=10, ∴10sin α+3cos α=-310+310=0;当k <0时,r =-10k , ∴sin α=-3k -10k =310,1cos α=-10k k=-10, ∴10sin α+3cos α=310-310=0.[答案] (1)52 (2)0[模型解法]角度2 三角函数值符号的判断[例4] (1)(2018·怀化模拟)sin 2·cos 3·tan 4的值( ) A .小于0 B .大于0 C .等于0D .不存在(2)已知点P (cos α,tan α)在第三象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限[解析] (1)∵π2<2<3<π<4<32π.∴sin 2>0,cos 3<0,tan 4>0. ∴sin 2·cos 3·tan 4<0.(2)由题意可得⎩⎪⎨⎪⎧ cos α<0,tan α<0,则⎩⎪⎨⎪⎧sin α>0,cos α<0,所以角α的终边在第二象限,故选B.[答案] (1)A (2)B [模型解法]角度3 利用三角函数线比较大小,解不等式[例5] (1)(2018·石家庄模拟)若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小是( )A .sin α<tan α<cos αB .cos α<sin α<tan αC .sin α<cos α<tan αD .tan α<sin α<cos α[解析] 如图所示,作出角α的正弦线MP ,余弦线OM ,正切线AT ,观察可得,AT >OM >MP ,故有sin α<cos α<tan α.[答案] C (2)y =sin x -32的定义域为________. [解析] ∵sin x ≥32,作直线y =32交单位圆于A 、B 两点,连接OA 、OB ,则OA 与OB 围成的区域(图中阴影部分)即为角x 的终边的范围,故满足条件的角x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π3≤x ≤2k π+2π3,k ∈Z .[答案] ⎩⎨⎧⎭⎬⎫x |2k π+π3≤x ≤2k π+2π3,k ∈Z[模型解法]形如sin α≥a 或sin α≤a ()a ∈[-1,1]的解,其关键点为: (1)作出sin α=a 的函数线;(2)根据不等式,确定α的转动方向; (3)写出α的区域.[高考类题](2014·高考大纲全国卷)设a =sin 33°,b =cos 55°,c =tan 35°,则( ) A .a >b >c B .b >c >a C .c >b >aD .c >a >b解析:∵b =cos 55°=sin 35°>sin 33°=a ,∴b >a . 又∵c =tan 35°=sin 35°cos 35°>sin 35°=cos 55°=b ,∴c >b .∴c >b >a .故选C. 答案:C[真题感悟]1.[考点一、二] (2014·高考新课标全国卷Ⅰ)如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数f (x ),则y =f (x )在[0,π]的图象大致为( )答案:C2.[考点二、三](2017·高考北京卷)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则sin β=__________.解析:由已知可得,sin β=sin(2k π+π-α)=sin(π-α)=sin α=13(k ∈Z ).1答案:3。
任意角和弧度制及任意角的三角函数
1.若α是第三象限的角,则π-12α是( )
A .第一或第二象限的角
B .第一或第三象限的角
C .第二或第三象限的角
D .第二或第四象限的角
2.点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动2π3弧长到达Q 点,则Q 的坐标为( )
A .(-12,32)
B .(-32,-12)
C .(-12,-32)
D .(-32,1
2)
3.已知点P (tan α,cos α)在第三象限,则角α的终边在第几象限( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
4.已知角α是第二象限角,且|cos α2|=-cos α2,则角α
2是( )
A .第一象限角
B .第二象限
C .第三象限角
D .第四象限角
5.若扇形圆心角的弧度数为2,且扇形弧所对的弦长也是2,则这个扇形的面积为( )
A .1sin 21 B.2sin 22 C.1cos 21 D.2cos 22
6.圆弧长度等于圆内接正三角形的边长,则其圆心角弧度数为( ) A.π
3 B.2π
3 C .3 D .2
7. 已知点P ⎝⎛⎭⎫sin 3π4,cos 3π
4落在角θ的终边上,且θ∈[0,2π),则θ的值为( ) A.π
4 B.3π4 C.5π4 D .7π
4
8. 若角α的终边与直线y =3x 重合,且sin α<0,又P (m ,n )是α终边上一点,且|OP |=10,则m -n 等于(
) A .2 B .-2 C .4 D .-4
9. 已知)20(παα<<的正弦线与余弦线相等,且符号相同,那么α的值为( ) A .π
π434或 B .ππ4745或 C .ππ454或 D .π
π47
4或
10. 1sin 、1cos 、1tan 的大小关系为 ( )
A .1tan 1cos 1sin >>
B .1cos 1tan 1sin >>
C .1cos 1sin 1tan >>
D .1sin 1cos 1tan >>
11. 下列选项中叙述正确的是 ( )
A .三角形的内角是第一象限角或第二象限角
B .锐角是第一象限的角
C .第二象限的角比第一象限的角大
D .终边不同的角同一三角函数值不相等
12. 已知0≤α≤2π,点P (sin α-cos α,tan α)在第一象限,则α的取值范围是________.
13.已知扇形的周长是6cm ,面积是2cm 2,则扇形的中心角的弧度数是________.
14.已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若()4,p y 是角θ终边上一点,且sin θ=, 则y=_______.
15.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为________.
16. 扇形的中心角为120°,则此扇形的面积与其内切圆的面积之比为________.
17. 若角β的终边与60°角的终边相同,在[0°,360°)内,终边与角β3
的终边相同的角为________. 18.(1)确定tan (-3)cos8·tan5
的符号; (2)已知α∈(0,π),且sin α+cos α=m (0<m <1),试判断式子sin α-cos α的符号.
19.已知tan αtan α-1
=-1,求下列各式的值: (1)sin α-3cos αsin α+cos α
; (2)sin 2α+sin αcos α+2.
20. 已知sin (0),()(1)1(0),x x f x f x x π⎧=⎨--⎩ 求
111166f f ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭
的值.。