【必考题】九年级数学下期末一模试题及答案(1)
- 格式:doc
- 大小:607.00 KB
- 文档页数:19
【常考题】九年级数学下期末一模试卷附答案一、选择题1.已知反比例函数 y=的图象如图所示,则二次函数 y =a x 2-2x和一次函数 y=bx+a 在同一平面直角坐标系中的图象可能是()A.B.C.D.2.下列四个实数中,比1-小的数是()A.2-B.0 C.1 D.23.地球与月球的平均距离为384 000km,将384 000这个数用科学记数法表示为()A.3.84×103 B.3.84×104 C.3.84×105 D.3.84×1064.如图抛物线y=ax2+bx+c的对称轴为直线x=1,且过点(3,0),下列结论:①abc>0;②a﹣b+c<0;③2a+b>0;④b2﹣4ac>0;正确的有()个.A.1B.2C.3D.45.如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正确的结论为()A.①②B.②③C.①②③D.①③6.直线y=﹣kx+k﹣3与直线y=kx在同一坐标系中的大致图象可能是()A .B .C .D .7.估计10+1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间8.下列各曲线中表示y 是x 的函数的是( )A .B .C .D .9.如果关于x 的分式方程11222ax x x-+=--有整数解,且关于x 的不等式组0322(1)x a x x -⎧>⎪⎨⎪+<-⎩的解集为x >4,那么符合条件的所有整数a 的值之和是( ) A .7 B .8 C .4 D .510.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A .606030(125%)x x -=+ B .606030(125%)x x -=+ C .60(125%)6030x x ⨯+-= D .6060(125%)30x x⨯+-= 11.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A .1201508x x =- B .1201508x x =+ C .1201508x x =- D .1201508x x =+ 12.8×200=x+40解得:x=120 答:商品进价为120元.故选:B .【点睛】 此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.二、填空题13.已知扇形的圆心角为120°,半径等于6,则用该扇形围成的圆锥的底面半径为_________.14.如图,在Rt△ABC 中,∠ACB=90°,∠ABC=30°,将△ABC 绕点C 顺时针旋转至△A′B′C,使得点A′恰好落在AB 上,则旋转角度为_____.15.已知扇形AOB 的半径为4cm ,圆心角∠AOB 的度数为90°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为________cm16.已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a +的值等于_______.17.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得如图所放风筝的高度,进行了如下操作:(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角∠CBD =60°;(2)根据手中剩余线的长度出风筝线BC 的长度为70米;(3)量出测倾器的高度AB =1.5米.根据测量数据,计算出风筝的高度CE 约为_____米.(精确到0.1米,3≈1.73).18.计算:82-=_______________.19.如图,把三角形纸片折叠,使点B ,点C 都与点A 重合,折痕分别为,DE FG ,若15,2C AE EG ︒∠===厘米,ABC △则的边BC 的长为__________厘米。
【必考题】九年级数学下期末一模试卷(附答案)一、选择题1.在数轴上,与表示6的点距离最近的整数点所表示的数是()A.1B.2C.3D.42.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.5cm B.10cm C.20cm D.40cm3.如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A匀速运动.则CP的长度s与时间t之间的函数关系用图象描述大致是()A.B.C.D.4.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°5.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )A.2 B.3 C.5 D.76.已知二次函数y=ax2+bx+c,且a>b>c,a+b+c=0,有以下四个命题,则一定正确命题的序号是()①x=1是二次方程ax2+bx+c=0的一个实数根;②二次函数y=ax2+bx+c的开口向下;③二次函数y=ax2+bx+c的对称轴在y轴的左侧;④不等式4a+2b+c>0一定成立.A.①②B.①③C.①④D.③④7.不等式x+1≥2的解集在数轴上表示正确的是()A .B .C .D .8.不等式组213312xx+⎧⎨+≥-⎩<的解集在数轴上表示正确的是()A .B .C .D .9.下列几何体中,其侧面展开图为扇形的是( )A .B .C .D .10.如图,在平行四边形ABCD中,M、N是BD上两点,BM DN=,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是( )A.12OM AC=B.MB MO=C.BD AC⊥D.AMB CND∠=∠11.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折12.8×200=x+40解得:x=120答:商品进价为120元.故选:B.【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.二、填空题13.如图,在四边形ABCD 中,∠B=∠D=90°,AB =3, BC =2,tanA =43,则CD =_____.14.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是___________15.中国的陆地面积约为9 600 000km 2,把9 600 000用科学记数法表示为 .16.分解因式:x 3﹣4xy 2=_____.17.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.18.不等式组0125x a x x ->⎧⎨->-⎩有3个整数解,则a 的取值范围是_____. 19.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为_______.20.已知扇形AOB 的半径为4cm ,圆心角∠AOB 的度数为90°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为________cm三、解答题21.两个全等的直角三角形 ABC 和 DEF 重叠在一起,其中∠A=60°,AC=1.固定△ABC 不动,将△DEF 进行如下操作:(1)如图,△DEF 沿线段 AB 向右平移(即 D 点在线段 AB 内移动),连接 DC 、CF 、FB ,四边形 CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.(2)如图,当 D 点移到 AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.(3)如图,△DEF 的 D 点固定在 AB 的中点,然后绕 D 点按顺时针方向旋转△DEF,使 DF 落在 AB 边上,此时 F 点恰好与 B 点重合,连接 AE ,请你求出 sinα的值.22.甲、乙两公司为“见义勇为基金会”各捐款60000元.已知甲公司的人数比乙公司的人数多20℅,乙公司比甲公司人均多捐20元.甲、乙两公司各有多少人?23.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.24.已知:如图,点E,A,C在同一条直线上,AB∥CD,AB=CE,AC=CD.求证:BC=ED.25.已知抛物线y=ax2﹣13x+c经过A(﹣2,0),B(0,2)两点,动点P,Q同时从原点出发均以1个单位/秒的速度运动,动点P沿x轴正方向运动,动点Q沿y轴正方向运动,连接PQ,设运动时间为t秒(1)求抛物线的解析式;(2)当BQ=13AP时,求t的值;(3)随着点P,Q的运动,抛物线上是否存在点M,使△MPQ为等边三角形?若存在,请求出t的值及相应点M的坐标;若不存在,请说明理由.26.先化简(31a+-a+1)÷2441a aa-++,并从0,-1,2中选一个合适的数作为a的值代入求值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】6的大小,即可得到结果.【详解】46 6.25<<Q,26 2.5∴<<,6的点距离最近的整数点所表示的数是2,故选:B.【点睛】此题考查了实数与数轴,以及算术平方根,熟练掌握各自的性质是解本题的关键.2.D解析:D【解析】【分析】根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选D.【点睛】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.3.D解析:D【解析】试题分析:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P在边BC上时,s随t的增大而增大;③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s最小,但是不等于零.故C错误;④当点P在线段AD上时,s随t的增大而增大.故D正确.故答案选D.考点:等腰三角形的性质,函数的图象;分段函数.4.C解析:C【解析】【分析】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605=72°.故选C.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.解析:C【解析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,5,7,7,中位数为:5.故选C .考点:众数;中位数.6.C解析:C【解析】试题分析:当x=1时,a+b+c=0,因此可知二次方程ax 2+bx +c=0的一个实数根,故①正确;根据a >b >c ,且a+b+c =0,可知a >0,函数的开口向上,故②不正确; 根据二次函数的对称轴为x =-2b a,可知无法判断对称轴的位置,故③不正确; 根据其图像开口向上,且当x =2时,4a+2b+c >a+b+c=0,故不等式4a+2b+c>0一定成立,故④正确.故选:C.7.A解析:A【解析】试题解析:∵x+1≥2,∴x ≥1.故选A .考点:解一元一次不等式;在数轴上表示不等式的解集.8.A解析:A【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】213312x x +⎧⎨+≥-⎩<①② ∵解不等式①得:x <1,解不等式②得:x≥-1,∴不等式组的解集为-1≤x <1,在数轴上表示为:,【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.9.C解析:C【解析】【分析】根据特殊几何体的展开图逐一进行分析判断即可得答案.【详解】A 、圆柱的侧面展开图是矩形,故A 错误;B 、三棱柱的侧面展开图是矩形,故B 错误;C 、圆锥的侧面展开图是扇形,故C 正确;D 、三棱锥的侧面展开图是三个三角形拼成的图形,故D 错误,故选C .【点睛】本题考查了几何体的展开图,熟记特殊几何体的侧面展开图是解题关键.10.A解析:A【解析】【分析】由平行四边形的性质可知:OA OC =,OB OD =,再证明OM ON =即可证明四边形AMCN 是平行四边形.【详解】∵四边形ABCD 是平行四边形,∴OA OC =,OB OD =,∵对角线BD 上的两点M 、N 满足BM DN =,∴OB BM OD DN -=-,即OM ON =,∴四边形AMCN 是平行四边形, ∵12OM AC =, ∴MN AC =,∴四边形AMCN 是矩形.故选:A .【点睛】本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题.11.B【解析】【详解】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥7.即最多打7折.故选B .【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解. 12.无二、填空题13.【解析】【分析】延长AD 和BC 交于点E 在直角△ABE 中利用三角函数求得BE 的长则EC 的长即可求得然后在直角△CDE 中利用三角函数的定义求解【详解】如图延长ADBC 相交于点E ∵∠B=90°∴∴BE=∴解析:65【解析】【分析】延长AD 和BC 交于点E ,在直角△ABE 中利用三角函数求得BE 的长,则EC 的长即可求得,然后在直角△CDE 中利用三角函数的定义求解.【详解】如图,延长AD 、BC 相交于点E ,∵∠B=90°,∴4tan 3BE A AB ==, ∴BE=443AB ⋅=, ∴CE=BE-BC=2,225AB BE +=,∴3 sin5ABEAE==,又∵∠CDE=∠CDA=90°,∴在Rt△CDE中,sinCDECE =,∴CD=36sin255 CE E⋅=⨯=.14.<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0解得:a>−设f(x)=ax2-3x-1如图∵实数根都在-1解析:94-<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0,解得:a>−9 4设f(x)=ax2-3x-1,如图,∵实数根都在-1和0之间,∴-1<−32a-<0,∴a<−32,且有f(-1)<0,f(0)<0,即f(-1)=a×(-1)2-3×(-1)-1<0,f(0)=-1<0,解得:a<-2,∴−94<a<-2,故答案为−94<a<-2.15.6×106【解析】【分析】【详解】将9600000用科学记数法表示为96×106故答案为96×106解析:6×106.【解析】【分析】【详解】将9600000用科学记数法表示为9.6×106.故答案为9.6×106.16.x(x+2y)(x﹣2y)【解析】分析:原式提取x再利用平方差公式分解即可详解:原式=x(x2-4y2)=x(x+2y)(x-2y)故答案为x(x+2y)(x-2y)点睛:此题考查了提公因式法与公式解析:x(x+2y)(x﹣2y)【解析】分析:原式提取x,再利用平方差公式分解即可.详解:原式=x(x2-4y2)=x(x+2y)(x-2y),故答案为x(x+2y)(x-2y)点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.17.【解析】根据弧长公式可得:=故答案为解析:2π3【解析】根据弧长公式可得:602180π⨯⨯=23π,故答案为23π.18.﹣2≤a<﹣1【解析】【分析】先解不等式组确定不等式组的解集(利用含a 的式子表示)根据整数解的个数就可以确定有哪些整数解根据解的情况可以得到关于a的不等式从而求出a的范围【详解】解不等式x﹣a>0得解析:﹣2≤a<﹣1.【解析】【分析】先解不等式组确定不等式组的解集(利用含a的式子表示),根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解不等式x﹣a>0,得:x>a,解不等式1﹣x>2x﹣5,得:x<2,∵不等式组有3个整数解,∴不等式组的整数解为﹣1、 0、1,则﹣2≤a<﹣1,故答案为:﹣2≤a<﹣1.【点睛】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.2【解析】【分析】设这个圆锥的底面圆的半径为R根据扇形的弧长等于这个圆锥的底面圆的周长列出方程即可解决问题【详解】设这个圆锥的底面圆的半径为R由题意:2πR=解得R=2故答案为2解析:2【解析】【分析】设这个圆锥的底面圆的半径为R,根据扇形的弧长等于这个圆锥的底面圆的周长,列出方程即可解决问题.【详解】设这个圆锥的底面圆的半径为R,由题意:2πR=1804 180π⨯,解得R=2.故答案为2.20.1【解析】试题分析:根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长和弧长公式可设圆锥的底面圆的半径为rcm根据题意得2πr=解得r=1故答案为:1点睛:本题考查了圆锥的计算:圆锥的侧面解析:1【解析】试题分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式,可设圆锥的底面圆的半径为rcm,根据题意得2πr=904180π⨯,解得r=1.故答案为:1.点睛:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.三、解答题21.(1)过点C作CG⊥AB于G在Rt△ACG中∵∠A=60°∴sin60°=∴……………1分在Rt△ABC中∠ACB=90°∠ABC=30°∴AB=2 …………………………………………2分∴………3分(2)菱形………………………………………4分∵D是AB的中点∴AD=DB=CF=1在Rt△ABC中,CD是斜边中线∴CD=1……5分同理 BF=1 ∴CD=DB=BF=CF∴四边形CDBF是菱形…………………………6分(3)在Rt△ABE中∴……………………………7分过点D作DH⊥AE 垂足为H则△ADH∽△AEB ∴即∴ DH=……8分在Rt△DHE中sinα==…=…………………9分【解析】(1)根据平移的性质得到AD=BE,再结合两条平行线间的距离相等,则三角形ACD的面积等于三角形BEF的面积,所以要求的梯形的面积等于三角形ABC的面积.根据60度的直角三角形ABC中AC=1,即可求得BC的长,从而求得其面积;(2)根据直角三角形斜边上的中线等于斜边的一半和平移的性质,即可得到该四边形的四条边都相等,则它是一个菱形;(3)过D点作DH⊥AE于H,可以把要求的角构造到直角三角形中,根据三角形ADE的面积的不同计算方法,可以求得DH的长,进而求解.22.甲公司有600人,乙公司有500人.【解析】分析:根据题意,可以设乙公司人数有x人,则甲公司有(1+20%)x人;由乙公司比甲公司人均多捐20元列分式方程,解之即可得出答案.详解:设乙公司有x人,则甲公司就有(1+20%)x人,即1.2x人,根据题意,可列方程:60000x600001.2x=20解之得:x=500经检验:x=500是该方程的实数根.23.(1)600(2)见解析(3)3200(4)【解析】(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2分)(2)如图;…(5分)(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D粽的人有3200人.…(7分)(4)如图;(列表方法略,参照给分).…(8分)P(C粽)==.答:他第二个吃到的恰好是C粽的概率是.…(10分)24.见解析【解析】【分析】首先由AB∥CD,根据平行线的性质可得∠BAC=∠ECD,再由条件AB=CE,AC=CD可证出△BAC和△ECD全等,再根据全等三角形对应边相等证出CB=ED.【详解】证明:∵AB∥CD,∴∠BAC=∠ECD,∵在△BAC和△ECD中,AB=EC,∠BAC=∠ECD ,AC=CD,∴△BAC≌△ECD(SAS).∴CB=ED.【点睛】本题考查了平行线的性质,全等三角形的判定和性质.25.(1)y=-23x2-13x+2;(2)当BQ=13AP时,t=1或t=4;(3)存在.当t=1-+M(1,1),或当t=3+M(﹣3,﹣3),使得△MPQ为等边三角形.【解析】【分析】(1)把A(﹣2,0),B(0,2)代入y=ax2-13x+c,求出解析式即可;(2)BQ=13AP,要考虑P在OC上及P在OC的延长线上两种情况,有此易得BQ,AP 关于t的表示,代入BQ=13AP可求t值.(3)考虑等边三角形,我们通常只需明确一边的情况,进而即可描述出整个三角形.考虑△MPQ,发现PQ为一有规律的线段,易得OPQ为等腰直角三角形,但仅因此无法确定PQ运动至何种情形时△MPQ为等边三角形.若退一步考虑等腰,发现,MO应为PQ的垂直平分线,即使△MPQ为等边三角形的M点必属于PQ的垂直平分线与抛物线的交点,但要明确这些交点仅仅满足△MPQ为等腰三角形,不一定为等边三角形.确定是否为等边,我们可以直接由等边性质列出关于t的方程,考虑t的存在性.【详解】(1)∵抛物线经过A(﹣2,0),B(0,2)两点,∴240,32.a cc⎧++=⎪⎨⎪=⎩,解得2,32.ac⎧=-⎪⎨⎪=⎩∴抛物线的解析式为y=-23x2-13x+2.(2)由题意可知,OQ=OP=t,AP=2+t.①当t≤2时,点Q在点B下方,此时BQ=2-t.∵BQ=13AP,∴2﹣t=13(2+t),∴t=1.②当t>2时,点Q在点B上方,此时BQ=t﹣2.∵BQ=13AP,∴t﹣2=13(2+t),∴t=4.∴当BQ=13AP时,t=1或t=4.(3)存在.作MC⊥x轴于点C,连接OM.设点M 的横坐标为m ,则点M 的纵坐标为-23m 2-13m +2. 当△MPQ 为等边三角形时,MQ =MP ,又∵OP =OQ ,∴点M 点必在PQ 的垂直平分线上,∴∠POM =12∠POQ =45°, ∴△MCO 为等腰直角三角形,CM =CO ,∴m =-23m 2-13m +2, 解得m 1=1,m 2=﹣3. ∴M 点可能为(1,1)或(﹣3,﹣3).①如图,当M 的坐标为(1,1)时,则有PC =1﹣t ,MP 2=1+(1﹣t )2=t 2﹣2t +2,PQ 2=2t 2,∵△MPQ 为等边三角形,∴MP =PQ ,∴t 2﹣2t +2=2t 2,解得t 1=3-t 2=13-(负值舍去).②如图,当M 的坐标为(﹣3,﹣3)时,则有PC =3+t ,MC =3,∴MP 2=32+(3+t )2=t 2+6t +18,PQ 2=2t 2,∵△MPQ 为等边三角形,∴MP =PQ ,∴t 2+6t +18=2t 2,解得t 1=333+t 2=333-∴当t =3-M (1,1),或当t =333+M (﹣3,﹣3),使得△MPQ 为等边三角形.【点睛】本题是二次函数、一次函数及三角形相关知识的综合题目,其中涉及的知识点有待定系数法求抛物线,三角形全等,等腰、等边三角形性质及一次函数等基础知识,在讨论动点问题是一定要注意考虑全面分情形讨论分析.26.【解析】试题分析:首先把括号的分式通分化简,后面的分式的分子分解因式,然后约分化简,接着计算分式的乘法,最后代入数值计算即可求解.试题解析:原式=223111(2)a a a a -++⨯+-=2(2)(2)11(2)a a a a a -+-+⨯+-=22a a +--; 当a=0时,原式=1.考点:分式的化简求值.。
【必考题】九年级数学下期末一模试题及答案一、选择题1.如图,已知a ∥b ,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )A .120°B .110°C .100°D .70° 2.已知一个正多边形的内角是140°,则这个正多边形的边数是( )A .9B .8C .7D .6 3.若直线1l 经过点()0,4,直线2l 经过点()3,2,且1l 与2l 关于x 轴对称,则1l 与2l 的交点坐标为( )A .()6,0-B .()6,0C .()2,0-D .()2,04.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-5.下列命题中,其中正确命题的个数为( )个.①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件.A .1B .2C .3D .46.如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B 在反比例函数k y x=(0k >,0x >)的图象上,横坐标分别为1,4,对角线BD x ∥轴.若菱形ABCD 的面积为452,则k 的值为( )A .54B .154C .4D .57.如图,某小区规划在一个长16m ,宽9m 的矩形场地ABCD 上,修建同样宽的小路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草,如果使草坪部分的总面积为112m 2,设小路的宽为xm ,那么x 满足的方程是( )A .2x 2-25x+16=0B .x 2-25x+32=0C .x 2-17x+16=0D .x 2-17x-16=08.已知直线//m n ,将一块含30°角的直角三角板ABC 按如图方式放置(30ABC ∠=︒),其中A ,B 两点分别落在直线m ,n 上,若140∠=︒,则2∠的度数为( )A .10︒B .20︒C .30°D .40︒9.某排球队6名场上队员的身高(单位:cm )是:180,184,188,190,192,194.现用一名身高为186cm 的队员换下场上身高为192cm 的队员,与换人前相比,场上队员的身高( )A .平均数变小,方差变小B .平均数变小,方差变大C .平均数变大,方差变小D .平均数变大,方差变大 10.黄金分割数512是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请51的值( ) A .在1.1和1.2之间 B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间 11.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x 万元,那么下列方程符合题意的是( )A .1069605076020500x x -=+ B .5076010696020500x x -=+ C .1069605076050020x x -=+ D .5076010696050020x x -=+ 12.如图,在矩形ABCD 中,BC=6,CD=3,将△BCD 沿对角线BD 翻折,点C 落在点C 1处,BC 1交AD 于点E ,则线段DE 的长为( )A.3B.154C.5D.152二、填空题13.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为_____.14.如图:已知AB=10,点C、D在线段AB上且AC=DB=2; P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连结EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是________.15.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=kx的图象上,则k的值为________.16.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.17.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示)18.如图,是将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为 .19.已知一组数据6,x ,3,3,5,1的众数是3和5,则这组数据的中位数是_____.20.计算:21(1)211x x x x ÷-+++=________. 三、解答题21.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?22.如图1,已知二次函数y=ax 2+32x+c (a≠0)的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0),连接AB 、AC . (1)请直接写出二次函数y=ax 2+32x+c 的表达式; (2)判断△ABC 的形状,并说明理由; (3)若点N 在x 轴上运动,当以点A 、N 、C 为顶点的三角形是等腰三角形时,请写出此时点N 的坐标;(4)如图2,若点N 在线段BC 上运动(不与点B 、C 重合),过点N 作NM∥AC,交AB 于点M ,当△AMN 面积最大时,求此时点N 的坐标.23.将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D '处,折痕为EF .(1)求证:ABE AD F 'V V ≌;(2)连结CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.24.如图,BD 是△ABC 的角平分线,过点D 作DE∥BC 交AB 于点E ,DF∥AB 交BC 于点F .(1)求证:四边形BEDF 为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF 的面积.25.先化简(31a +-a +1)÷2441a a a -++,并从0,-1,2中选一个合适的数作为a 的值代入求值.26.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y (元)与绿化面积x (平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y 与x 的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.A解析:A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.3.D解析:D【解析】【分析】根据1l与2l关于x轴对称,可知2l必经过(0,-4),1l必经过点(3,-2),然后根据待定系数法分别求出1l、2l的解析式后,再联立解方程组即可求得1l与2l的交点坐标.【详解】∵直线1l经过点(0,4),2l经过点(3,2),且1l与2l关于x轴对称,∴直线1l经过点(3,﹣2),2l经过点(0,﹣4),设直线1l的解析式y=kx+b,把(0,4)和(3,﹣2)代入直线1l的解析式y=kx+b,则4342 bk=⎧⎨+=-⎩,解得:24kb=-⎧⎨=⎩,故直线1l的解析式为:y=﹣2x+4,设l2的解析式为y=mx+n,把(0,﹣4)和(3,2)代入直线2l的解析式y=mx+n,则324m nn+=⎧⎨=-⎩,解得m2n4=⎧⎨=-⎩,∴直线2l的解析式为:y=2x﹣4,联立2424y xy x=-+⎧⎨=-⎩,解得:2xy=⎧⎨=⎩即1l与2l的交点坐标为(2,0).故选D.【点睛】本题考查了关于x轴对称的点的坐标特征、待定系数法求一次函数的解析式即两直线的交点坐标问题,熟练应用相关知识解题是关键.4.A解析:A【解析】【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4,故选A.【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键.5.C解析:C【解析】【分析】利用方差的意义,众数的定义、折线图及随机事件分别判断后即可确定正确的选项.【详解】①方差是衡量一组数据波动大小的统计量,正确,是真命题;②影响超市进货决策的主要统计量是众数,正确,是真命题;③折线统计图反映一组数据的变化趋势,正确,是真命题;④水中捞月是随机事件,故错误,是假命题,真命题有3个,故选C.【点睛】本题考查了命题与定理的知识,解题的关键是了解方差的意义,众数的定义、折线图及随机事件等知识,难度不大.6.D解析:D【解析】【分析】设A(1,m),B(4,n),连接AC交BD于点M,BM=4-1=3,AM=m-n,由菱形的面积可推得m-n=154,再根据反比例函数系数的特性可知m=4n,从而可求出n的值,即可得到k的值.【详解】设A(1,m),B(4,n),连接AC交BD于点M,则有BM=4-1=3,AM=m-n,∴S菱形ABCD=4×12 BM•AM,∵S菱形ABCD=452,∴4×12×3(m-n)=452,∴m-n=154,又∵点A,B在反比例函数kyx ,∴k=m=4n,∴n=54,∴k=4n=5,故选D.【点睛】本题考查了反比例函数k的几何意义、菱形的性质、菱形的面积等,熟记菱形的对角线互相垂直平分是解题的关键.7.C解析:C【解析】解:设小路的宽度为xm ,那么草坪的总长度和总宽度应该为(16-2x )m ,(9-x )m ;根据题意即可得出方程为:(16-2x )(9-x )=112,整理得:x 2-17x +16=0.故选C .点睛:本题考查了一元二次方程的运用,弄清“草坪的总长度和总宽度”是解决本题的关键.8.B解析:B【解析】【分析】根据平行线的性质判断即可得出结论.【详解】解:Q 直线//m n ,21180ABC BAC ∴∠+∠∠+∠=+︒,30ABC =︒∠Q ,90BAC ∠=︒,140∠=︒,218030904020∴∠=---︒︒=︒︒︒,故选:B .【点睛】本题考查的是平行线的性质,熟练掌握平行线的性质是解题的关键.9.A解析:A【解析】分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.详解:换人前6名队员身高的平均数为x =1801841881901921946+++++=188, 方差为S 2=()()()()()()22222211801881841881881881901881921881941886⎡⎤-+-+-+-+-+-⎣⎦=683; 换人后6名队员身高的平均数为x =1801841881901861946+++++=187, 方差为S 2=()()()()()()22222211801871841871881871901871861871941876⎡⎤-+-+-+-+-+-⎣⎦=593∵188>187,683>593, ∴平均数变小,方差变小,故选:A.点睛:本题考查了平均数与方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 10.B解析:B【解析】【分析】根据4.84<5<5.29,可得答案.【详解】∵4.84<5<5.29,∴,∴,故选B .【点睛】是解题关键.11.A解析:A【解析】试题分析:∵今后项目的数量﹣今年的数量=20,∴1069605076020500x x-=+.故选A . 考点:由实际问题抽象出分式方程. 12.C解析:C【解析】【分析】【详解】解:根据题意易证BE=DE ,设ED=x ,则AE=8﹣x ,在△ABE 中根据勾股定理得到关于线段AB 、AE 、BE 的方程x 2=42+(8﹣x )2, 解方程得x=5,即ED=5故选C.【点睛】本题考查翻折变换(折叠问题);勾股定理;方程思想.二、填空题13.60°【解析】试题解析:∵∠ACB=90°∠ABC=30°∴∠A=90°-30°=60°∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上∴AC=A′C∴△A′AC是等边三角形∴∠ACA解析:60°【解析】试题解析:∵∠ACB=90°,∠ABC=30°,∴∠A=90°-30°=60°,∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,∴AC=A′C,∴△A′AC是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故答案为60°.14.3【解析】【分析】分别延长AEBF交于点H易证四边形EPFH为平行四边形得出G为PH中点则G的运行轨迹为三角形HCD的中位线MN再求出CD的长运用中位线的性质求出MN的长度即可【详解】如图分别延长A解析:3【解析】【分析】分别延长AE、BF交于点H,易证四边形EPFH为平行四边形,得出G为PH中点,则G 的运行轨迹为三角形HCD的中位线MN.再求出CD的长,运用中位线的性质求出MN的长度即可.【详解】如图,分别延长AE、BF交于点H.∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵G为EF的中点,∴G也正好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.∵CD=10-2-2=6,∴MN=3,即G 的移动路径长为3.故答案为:3.【点睛】本题考查了等腰三角形及中位线的性质,以及动点问题,是中考的热点.15.-6【解析】因为四边形OABC 是菱形所以对角线互相垂直平分则点A 和点C 关于y 轴对称点C 在反比例函数上设点C 的坐标为(x)则点A 的坐标为(-x)点B 的坐标为(0)因此AC=-2xOB=根据菱形的面积等解析:-6【解析】因为四边形OABC 是菱形,所以对角线互相垂直平分,则点A 和点C 关于y 轴对称,点C 在反比例函数上,设点C 的坐标为(x ,k x ),则点A 的坐标为(-x ,k x ),点B 的坐标为(0,2k x ),因此AC=-2x,OB=2K X,根据菱形的面积等于对角线乘积的一半得: ()OABC 122122k S x x=⨯-⨯=菱形,解得 6.k =- 16.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m 的方程通过解关于m 的方程求得m 的值即可【详解】∵关于x 的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=解析:2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m 的方程,通过解关于m 的方程求得m 的值即可.【详解】∵关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,∴m 2﹣2m=0且m≠0,解得,m=2,故答案是:2.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.17.【解析】【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分 解析:()43n -【解析】【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3; 图②中三角形的个数为5=4×2-3; 图③中三角形的个数为9=4×3-3; …可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.18.12﹣4【解析】【分析】【详解】试题分析:如图所示:连接ACBD 交于点E 连接DFFMMNDN∵将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°180°270°后形成的图形∠BAD=60°AB=2解析:12﹣【解析】【分析】【详解】试题分析:如图所示:连接AC ,BD 交于点E ,连接DF ,FM ,MN ,DN ,∵将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,∴AC ⊥BD ,四边形DNMF 是正方形,∠AOC=90°,BD=2,∴∠AOE=45°,ED=1,∴﹣1,∴S 正方形DNMF =21)×21)×12=8﹣, S △ADF =12×AD×AFsin30°=1,∴则图中阴影部分的面积为:4S △ADF +S 正方形DNMF =4+8﹣43=12﹣43.故答案为12﹣43.考点:1、旋转的性质;2、菱形的性质.19.4【解析】【分析】先根据众数的定义求出x=5再根据中位数的定义进行求解即可得【详解】∵数据6x3351的众数是3和5∴x=5则这组数据为133556∴这组数据的中位数为=4故答案为:4【点睛】本题主解析:4【解析】【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.【详解】∵数据6,x ,3,3,5,1的众数是3和5,∴x=5,则这组数据为1、3、3、5、5、6,∴这组数据的中位数为352+=4, 故答案为:4.【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键. 20.【解析】【分析】先对括号内分式的通分并将括号外的分式的分母利用完全平方公式变形得到÷;接下来利用分式的除法法则将除法运算转变为乘法运算然后约分即可得到化简后的结果【详解】原式=÷=·=故答案为【点睛解析:11x + 【解析】【分析】先对括号内分式的通分,并将括号外的分式的分母利用完全平方公式变形得到()21xx +÷111x x +-+;接下来利用分式的除法法则将除法运算转变为乘法运算,然后约分即可得到化简后的结果.【详解】原式=()21x x +÷111x x +-+=()21x x +·1x x+ =11x +. 故答案为11x +. 【点睛】 本题考查了公式的混合运算,解题的关键是熟练的掌握分式的混合运算法则.三、解答题21.银杏树的单价为120元,则玉兰树的单价为180元.【解析】试题分析:根据题意可以列出相应的分式方程,从而可以解答本题.试题解析:解:设银杏树的单价为x 元,则玉兰树的单价为1.5x 元,根据题意得:1200090001501.5x x+= 解得:x =120,经检验x =120是原分式方程的解,∴1.5x =180.答:银杏树的单价为120元,则玉兰树的单价为180元.22.(1)y=﹣14x 2+32x+4;(2)△ABC 是直角三角形.理由见解析;(3)点N 的坐标分别为(﹣8,0)、(8﹣45,0)、(3,0)、(8+45,0).(4)当△AMN 面积最大时,N 点坐标为(3,0).【解析】【分析】(1)由点A 、C 的坐标利用待定系数法即可求出二次函数的解析式;(2)令二次函数解析式中y=0,求出点B 的坐标,再由两点间的距离公式求出线段AB 、AC 、BC 的长度,由三者满足AB 2+AC 2=BC 2即可得出△ABC 为直角三角形;(3)分别以A 、C 两点为圆心,AC 长为半径画弧,与x 轴交于三个点,由AC 的垂直平分线与x 轴交于一点,即可求得点N 的坐标;(4)设点N 的坐标为(n ,0)(-2<n<8),通过分割图形法求面积,再根据相似三角形面积间的关系以及三角形的面积公式即可得出S △AMN 关于n 的二次函数关系式,根据二次函数的性质即可解决最值问题.【详解】(1)∵二次函数y=ax 2+x+c 的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,∴MD∥OA,∴△BMD∽△BAO,∴=,∵MN∥AC∴=,∴=,∵OA=4,BC=10,BN=n+2∴MD=(n+2),∵S △AMN =S △ABN ﹣S △BMN =BN•OA﹣BN•MD =(n+2)×4﹣×(n+2)2=﹣(n ﹣3)2+5,当n=3时,△AMN 面积最大是5,∴N 点坐标为(3,0).∴当△AMN 面积最大时,N 点坐标为(3,0).【点睛】本题考查了二次函数的综合问题,熟练掌握二次函数的知识点是本题解题的关键. 23.(1)证明见解析;(2)四边形AECF 是菱形.证明见解析.【解析】【分析】(1)根据平行四边形的性质及折叠的性质我们可以得到∠B=∠D′,AB =AD′,∠1=∠3,从而利用ASA 判定△ABE ≌△AD′F ;(2)四边形AECF 是菱形,我们可以运用菱形的判定,有一组邻边相等的平行四边形是菱形来进行验证.【详解】解:(1)由折叠可知:∠D=∠D′,CD=AD′,∠C=∠D′AE .∵四边形ABCD 是平行四边形,∴∠B=∠D ,AB=CD ,∠C=∠BAD .∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD ,即∠1+∠2=∠2+∠3.∴∠1=∠3.在△ABE 和△AD′F 中∵{13D BAB AD ∠'=∠='∠=∠∴△ABE ≌△AD′F (ASA ).(2)四边形AECF是菱形.证明:由折叠可知:AE=EC,∠4=∠5.∵四边形ABCD是平行四边形,∴AD∥BC.∴∠5=∠6.∴∠4=∠6.∴AF=AE.∵AE=EC,∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.又∵AF=AE,∴平行四边形AECF是菱形.考点:1.全等三角形的判定;2.菱形的判定.24.(1)见解析3【解析】【分析】(1)根据平行四边形的和菱形的判定证明即可;(2)根据含30°的直角三角形的性质和勾股定理以及菱形的面积解答即可.【详解】证明:(1)∵DE∥BC,DF∥AB,∴四边形BFDE是平行四边形,∵BD是△ABC的角平分线,∴∠EBD=∠DBF,∵DE∥BC,∴∠EDB=∠DBF,∴∠EBD=∠EDB,∴BE=ED,∴平行四边形BFDE是菱形;(2)连接EF,交BD于O,∵∠BAC=90°,∠C=30°,∴∠ABC=60°,∵BD 平分∠ABC ,∴∠DBC=30°,∴BD=DC=12,∵DF ∥AB ,∴∠FDC=∠A=90°,∴4333== 在Rt △DOF 中,()222243623DF OD -=-= ∴菱形BFDE 的面积=12×EF •BD =12×12×33 【点评】 此题考查了菱形的判定和性质,熟练掌握菱形的判定和性质是解题的关键. 25.【解析】 试题分析:首先把括号的分式通分化简,后面的分式的分子分解因式,然后约分化简,接着计算分式的乘法,最后代入数值计算即可求解.试题解析:原式=223111(2)a a a a -++⨯+-=2(2)(2)11(2)a a a a a -+-+⨯+-=22a a +--; 当a=0时,原式=1.考点:分式的化简求值.26.(1)y=5x+400.(2)乙.【解析】试题分析:(1)利用待定系数法即可解决问题;(2)绿化面积是1200平方米时,求出两家的费用即可判断;试题解析:(1)设y=kx+b ,则有400100900b k b =⎧⎨+=⎩ ,解得5400k b =⎧⎨=⎩ , ∴y=5x+400.(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元,∵6300<6400∴选择乙公司的服务,每月的绿化养护费用较少.。
初三数学下期末一模试题(附答案)一、选择题1.已知反比例函数 y=的图象如图所示,则二次函数 y =a x 2-2x和一次函数 y=bx+a 在同一平面直角坐标系中的图象可能是()A.B.C.D.2.若一个凸多边形的内角和为720°,则这个多边形的边数为()A.4B.5C.6D.73.如图是某个几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥4.通过如下尺规作图,能确定点D是BC边中点的是()A.B.C.D.5.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x表示时间,y表示林茂离家的距离.依据图中的信息,下列说法错误的是()A.体育场离林茂家2.5kmB.体育场离文具店1kmC.林茂从体育场出发到文具店的平均速度是50minmD.林茂从文具店回家的平均速度是60minm6.在△ABC中(2cosA-2)2+|1-tanB|=0,则△ABC一定是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形7.已知11(1)11Ax x÷+=-+,则A=( )A.21xx x-+B.21xx-C.211x-D.x2﹣18.二次函数y=ax2+bx+c的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac<b2,③2a+b=0,④a-b+c>2,其中正确的结论的个数是()A.1B.2C.3D.49.已知直线//m n,将一块含30角的直角三角板ABC按如图方式放置(30ABC∠=︒),其中A,B两点分别落在直线m,n上,若140∠=︒,则2∠的度数为()A.10︒B.20︒C.30D.40︒10.如果关于x的分式方程11222axx x-+=--有整数解,且关于x的不等式组322(1)x ax x-⎧>⎪⎨⎪+<-⎩的解集为x>4,那么符合条件的所有整数a的值之和是()A.7B.8C.4D.511.若一元二次方程x2﹣2kx+k2=0的一根为x=﹣1,则k的值为()A.﹣1B.0C.1或﹣1D.2或012.如图,正比例函数1y=k x 与反比例函数2k y=x的图象相交于点A 、B 两点,若点A 的坐标为(2,1),则点B 的坐标是( )A .(1,2)B .(-2,1)C .(-1,-2)D .(-2,-1)二、填空题13.如图,在菱形ABCD 中,AB=5,AC=8,则菱形的面积是 .14.如图,在四边形ABCD 中,∠B=∠D=90°,AB =3, BC =2,tanA =43,则CD =_____.15.在Rt△ABC 中,∠C=90°,AC=6,BC=8,点E 是BC 边上的动点,连接AE ,过点E 作AE 的垂线交AB 边于点F ,则AF 的最小值为_______16.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2, a a 次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________ 元.(按每吨运费20元计算)17.如图,反比例函数y=k x的图象经过▱ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD ⊥DC ,▱ABCD 的面积为6,则k=_____.18.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M ,绕中点M 转动上面的三角尺ABC ,使其直角顶点C 恰好落在三角尺A′B′C′的斜边A′B′上.当∠A =30°,AC =10时,两直角顶点C ,C′间的距离是_____.19.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠=_____度.20.计算:21(1)211x x x x ÷-+++=________. 三、解答题21.某种蔬菜的销售单价y 1与销售月份x 之间的关系如图1所示,成本y 2与销售月份x 之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?22.已知:如图,在ABC 中,AB AC =,AD BC ⊥,AN 为ABC 外角CAM ∠的平分线,CE AN ⊥.(1)求证:四边形ADCE 为矩形;(2)当AD 与BC 满足什么数量关系时,四边形ADCE 是正方形?并给予证明23.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D 粽的人数;(4)若有外型完全相同的A 、B 、C 、D 粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率.24.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x 取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生海选成绩分组表 组别海选成绩x A 组50≤x <60B 组 60≤x <70C组70≤x<80D组80≤x<90E组90≤x<100请根据所给信息,解答下列问题:(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为,表示C组扇形的圆心角θ的度数为度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?25.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF的面积.26.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A小区的概率是多少;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】先根据抛物线y=ax2-2x过原点排除A,再由反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【详解】∵当x=0时,y=ax2-2x=0,即抛物线y=ax2-2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2-2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误;C正确.故选C.【点睛】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.2.C解析:C【解析】【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键. 3.A解析:A【解析】试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A .考点:由三视图判定几何体.4.A解析:A【解析】【分析】作线段BC 的垂直平分线可得线段BC 的中点.【详解】作线段BC 的垂直平分线可得线段BC 的中点.由此可知:选项A 符合条件,故选A .【点睛】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图.5.C解析:C【解析】【分析】从图中可得信息:体育场离文具店1000m ,所用时间是(45﹣30)分钟,可算出速度.【详解】解:从图中可知:体育场离文具店的距离是:2.5 1.511000km m -==,所用时间是()453015-=分钟, ∴体育场出发到文具店的平均速度1000200min 153m ==/ 故选:C .【点睛】本题运用函数图象解决问题,看懂图象是解决问题的关键. 6.D解析:D【解析】【分析】根据非负数的和为零,可得每个非负数同时为零,根据特殊角三角函数值,可得∠A 、∠B 的度数,根据直角三角形的判定,可得答案.【详解】解:由()2+|1-tanB|=0,得,1-tanB=0.解得∠A=45°,∠B=45°,则△ABC 一定是等腰直角三角形,故选:D .【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.7.B解析:B【解析】【分析】由题意可知A=111)11x x++-(,再将括号中两项通分并利用同分母分式的减法法则计算,再用分式的乘法法则计算即可得到结果.【详解】解:A=11111x x++-=111xx x+-=21xx-故选B.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.8.C解析:C【解析】【详解】①∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x==﹣1,∴b=2a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以①正确;②∵抛物线与x轴有2个交点,∴△=b2-4ac>0,∴4ac <b2,所以②正确;③∵b=2a,∴2a﹣b=0,所以③错误;④∵x=﹣1时,y>0,∴a﹣b+c>2,所以④正确.故选C.9.B解析:B【解析】【分析】根据平行线的性质判断即可得出结论.【详解】解:直线//m n,21180ABC BAC∴∠+∠∠+∠=+︒,30ABC=︒∠,90BAC∠=︒,140∠=︒,218030904020∴∠=---︒︒=︒︒︒,故选:B.【点睛】本题考查的是平行线的性质,熟练掌握平行线的性质是解题的关键.10.C解析:C【解析】【分析】解关于x 的不等式组0322(1)x a x x -⎧>⎪⎨⎪+<-⎩,结合解集为x >4,确定a 的范围,再由分式方程11222ax x x-+=--有整数解,且a 为整数,即可确定符合条件的所有整数a 的值,最后求出所有符合条件的值之和即可.【详解】 由分式方程11222ax x x -+=--可得1﹣ax+2(x ﹣2)=﹣1 解得x =22a-, ∵关于x 的分式方程11222ax x x -+=--有整数解,且a 为整数 ∴a =0、3、4关于x 的不等式组0322(1)x a x x -⎧>⎪⎨⎪+<-⎩整理得4x a x >⎧⎨>⎩ ∵不等式组0322(1)x a x x -⎧>⎪⎨⎪+<-⎩的解集为x >4∴a≤4于是符合条件的所有整数a 的值之和为:0+3+4=7故选C .【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,然后在解集中求特殊解,了解求特殊解的方法是解决本题的关键.11.A解析:A【解析】【分析】把x =﹣1代入方程计算即可求出k 的值.【详解】解:把x =﹣1代入方程得:1+2k +k 2=0,解得:k =﹣1,故选:A .此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.12.D解析:D【解析】【分析】【详解】解:根据正比例函数与反比例函数关于原点对称的性质,正比例函数1y=k x 与反比例函数2k y=x的图象的两交点A 、B 关于原点对称; 由A 的坐标为(2,1),根据关于原点对称的点的坐标是横、纵坐标都互为相反数的坐标特征,得点B 的坐标是(-2,-1).故选:D二、填空题13.【解析】【分析】连接BD 交AC 于点O 由勾股定理可得BO=3根据菱形的性质求出BD 再计算面积【详解】连接BD 交AC 于点O 根据菱形的性质可得AC ⊥BDAO=C O=4由勾股定理可得BO=3所以BD=6即可解析:【解析】【分析】连接BD ,交AC 于点O ,由勾股定理可得BO=3,根据菱形的性质求出BD ,再计算面积.【详解】连接BD ,交AC 于点O ,根据菱形的性质可得AC ⊥BD ,AO=CO=4,由勾股定理可得BO=3,所以BD=6,即可得菱形的面积是12×6×8=24.考点:菱形的性质;勾股定理.14.【解析】【分析】延长AD 和BC 交于点E 在直角△ABE 中利用三角函数求得BE 的长则EC 的长即可求得然后在直角△CDE 中利用三角函数的定义求解【详解】如图延长ADBC 相交于点E ∵∠B=90°∴∴BE=∴解析:65【分析】延长AD和BC交于点E,在直角△ABE中利用三角函数求得BE的长,则EC的长即可求得,然后在直角△CDE中利用三角函数的定义求解.【详解】如图,延长AD、BC相交于点E,∵∠B=90°,∴4 tan3BEAAB==,∴BE=44 3AB⋅=,∴CE=BE-BC=2,AE=225AB BE+=,∴3 sin5ABEAE==,又∵∠CDE=∠CDA=90°,∴在Rt△CDE中,sinCDECE =,∴CD=36sin255 CE E⋅=⨯=.15.【解析】试题分析:如图设AF的中点为D那么DA=DE=DF所以AF的最小值取决于DE的最小值如图当DE⊥BC时DE最小设DA=DE=m此时DB=m由AB=DA+DB得m +m=10解得m=此时AF=2解析:15 2【解析】试题分析:如图,设AF的中点为D,那么DA=DE=DF.所以AF的最小值取决于DE的最小值.如图,当DE⊥BC时,DE最小,设DA=DE=m,此时DB=53m,由AB=DA+DB,得m+53m=10,解得m=154,此时AF=2m=152.故答案为15 2.16.【解析】【分析】根据甲乙两车单独运这批货物分别用2a次a次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合解析:2160【解析】【分析】根据“甲、乙两车单独运这批货物分别用2a次、a次能运完”甲的效率应该为1 2a ,乙的效率应该为1a,那么可知乙车每次货运量是甲车的2倍根据“若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.”这两个等量关系来列方程.【详解】设这批货物共有T吨,甲车每次运t甲吨,乙车每次运t乙吨,∵2a⋅t甲=T,a⋅t乙=T,∴t甲:t乙=1:2,由题意列方程:180270 180270T Tt t--=甲乙,t乙=2t甲,∴180270180135T T--=,解得T=540.∵甲车运180吨,丙车运540−180=360吨,∴丙车每次运货量也是甲车的2倍,∴甲车车主应得运费15402021605⨯⨯= (元),故答案为:2160.【点睛】考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键. 17.-3【解析】分析:由平行四边形面积转化为矩形BDOA面积在得到矩形PDOE面积应用反比例函数比例系数k的意义即可详解:过点P做PE⊥y轴于点E∵四边形ABC D为平行四边形∴AB=CD又∵BD⊥x轴∴解析:-3【解析】分析:由平行四边形面积转化为矩形BDOA面积,在得到矩形PDOE面积,应用反比例函数比例系数k的意义即可.详解:过点P做PE⊥y轴于点E,∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴ABDO为矩形∴AB=DO∴S矩形ABDO=S▱ABCD=6∵P为对角线交点,PE⊥y轴∴四边形PDOE为矩形面积为3即DO•EO=3∴设P点坐标为(x,y)k=xy=﹣3故答案为:﹣3点睛:本题考查了反比例函数比例系数k的几何意义以及平行四边形的性质.18.5【解析】【分析】连接CC1根据M是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MC C1为等边三角形从而证出CC1=CM解析:5【解析】【分析】连接CC1,根据M是AC、A1C1的中点,AC=A1C1,得出CM=A1M=C1M=12AC=5,再根据∠A1=∠A1CM=30°,得出∠CMC1=60°,△MCC1为等边三角形,从而证出CC1=CM,即可得出答案.【详解】解:如图,连接CC 1,∵两块三角板重叠在一起,较长直角边的中点为M ,∴M 是AC 、A 1C 1的中点,AC=A 1C 1,∴CM=A 1M=C 1M=12AC=5, ∴∠A 1=∠A 1CM=30°,∴∠CMC 1=60°,∴△CMC 1为等边三角形,∴CC 1=CM=5,∴CC 1长为5.故答案为5.考点:等边三角形的判定与性质.19.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多 解析:66【解析】【分析】首先根据正五边形的性质得到108EAB ∠=度,然后根据角平分线的定义得到54PAB ∠=度,再利用三角形内角和定理得到APB ∠的度数.【详解】解:∵五边形ABCDE 为正五边形,∴108EAB ∠=度,∵AP 是EAB ∠的角平分线,∴54PAB ∠=度,∵60ABP ∠=︒,∴180605466APB ∠=︒-︒-︒=︒.故答案为:66.【点睛】本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理.20.【解析】【分析】先对括号内分式的通分并将括号外的分式的分母利用完全平方公式变形得到÷;接下来利用分式的除法法则将除法运算转变为乘法运算然后约分即可得到化简后的结果【详解】原式=÷=·=故答案为【点睛 解析:11x + 【解析】【分析】先对括号内分式的通分,并将括号外的分式的分母利用完全平方公式变形得到()21xx +÷111x x +-+;接下来利用分式的除法法则将除法运算转变为乘法运算,然后约分即可得到化简后的结果.【详解】原式=()21x x +÷111x x +-+ =()21x x +·1x x+ =11x +. 故答案为11x +. 【点睛】 本题考查了公式的混合运算,解题的关键是熟练的掌握分式的混合运算法则.三、解答题21.(1)6月份出售这种蔬菜每千克的收益是2元.(2)5月份出售这种蔬菜,每千克的收益最大.(3)4月份的销售量为4万千克,5月份的销售量为6万千克.【解析】分析:(1)找出当x=6时,y 1、y 2的值,二者作差即可得出结论;(2)观察图象找出点的坐标,利用待定系数法即可求出y 1、y 2关于x 的函数关系式,二者作差后利用二次函数的性质即可解决最值问题;(3)求出当x=4时,y 1﹣y 2的值,设4月份的销售量为t 万千克,则5月份的销售量为(t+2)万千克,根据总利润=每千克利润×销售数量,即可得出关于t 的一元一次方程,解之即可得出结论.详解:(1)当x=6时,y 1=3,y 2=1,∵y 1﹣y 2=3﹣1=2,∴6月份出售这种蔬菜每千克的收益是2元.(2)设y 1=mx+n ,y 2=a (x ﹣6)2+1.将(3,5)、(6,3)代入y 1=mx+n ,3563m n m n +=⎧⎨+=⎩,解得:237m n ⎧=-⎪⎨⎪=⎩, ∴y 1=﹣23x+7; 将(3,4)代入y 2=a (x ﹣6)2+1,4=a (3﹣6)2+1,解得:a=13, ∴y 2=13(x ﹣6)2+1=13x 2﹣4x+13. ∴y 1﹣y 2=﹣23x+7﹣(13x 2﹣4x+13)=﹣13x 2+103x ﹣6=﹣13(x ﹣5)2+73. ∵﹣13<0, ∴当x=5时,y 1﹣y 2取最大值,最大值为73, 即5月份出售这种蔬菜,每千克的收益最大. (3)当t=4时,y 1﹣y 2=﹣13x 2+103x ﹣6=2. 设4月份的销售量为t 万千克,则5月份的销售量为(t+2)万千克,根据题意得:2t+73(t+2)=22, 解得:t=4,∴t+2=6.答:4月份的销售量为4万千克,5月份的销售量为6万千克.点睛:本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质以及一元一次方程的应用,解题的关键是:(1)观察函数图象,找出当x=6时y 1﹣y 2的值;(2)根据点的坐标,利用待定系数法求出y 1、y 2关于x 的函数关系式;(3)找准等量关系,正确列出一元一次方程.22.(1)见解析 (2) 12AD BC =,理由见解析. 【解析】【分析】(1)根据矩形的有三个角是直角的四边形是矩形,已知CE ⊥AN ,AD ⊥BC ,所以求证∠DAE=90°,可以证明四边形ADCE 为矩形.(2)由正方形ADCE 的性质逆推得AD DC =,结合等腰三角形的性质可以得到答案.【详解】(1)证明:在△ABC 中,AB=AC ,AD ⊥BC , ∴∠BAD=∠DAC ,∵AN 是△ABC 外角∠CAM 的平分线, ∴∠MAE=∠CAE ,∴∠DAE=∠DAC+∠CAE=12×180°=90°, 又∵AD ⊥BC ,CE ⊥AN , ∴∠ADC=∠CEA=90°,∴四边形ADCE 为矩形.(2)当12AD BC =时,四边形ADCE 是一个正方形. 理由:∵AB=AC , AD ⊥BC ,BD DC ∴=12AD BC =,AD BD DC ∴== , ∵四边形ADCE 为矩形, ∴矩形ADCE 是正方形. ∴当12AD BC =时,四边形ADCE 是一个正方形. 【点睛】本题考查矩形的判定以及正方形的性质的应用,同时考查了等腰三角形的性质,熟练掌握这些知识点是关键.23.(1)600(2)见解析(3)3200(4)【解析】(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2分)(2)如图;…(5分)(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D 粽的人有3200人.…(7分)(4)如图;(列表方法略,参照给分).…(8分)P (C 粽)==.答:他第二个吃到的恰好是C 粽的概率是.…(10分)24.(1)答案见解析;(2)a=15,72°;(3)700人.【解析】试题分析:(1)用随机抽取的总人数减去A、B、C、E组的人数,求出D组的人数,从而补全统计图;(2)用B组抽查的人数除以总人数,即可求出a;用360乘以C组所占的百分比,求出C组扇形的圆心角θ的度数;(3)用该校参加这次海选比赛的总人数乘以成绩在90分以上(包括90分)所占的百分比,即可得出答案.试题解析:(1)D的人数是:200﹣10﹣30﹣40﹣70=50(人),补图如下:(2)B组人数所占的百分比是×100%=15%;C组扇形的圆心角θ的度数为360×=72°(3)根据题意得:2000×=700(人),答:估计该校参加这次海选比赛的2000名学生中成绩“优等”的有700人.考点:(1)条形统计图;(2)用样本估计总体;(3)扇形统计图25.(1)见解析3【解析】【分析】(1)根据平行四边形的和菱形的判定证明即可;(2)根据含30°的直角三角形的性质和勾股定理以及菱形的面积解答即可.【详解】证明:(1)∵DE∥BC,DF∥AB,∴四边形BFDE是平行四边形,∵BD是△ABC的角平分线,∴∠EBD=∠DBF,∵DE∥BC,∴∠EDB=∠DBF,∴∠EBD=∠EDB,∴BE=ED,∴平行四边形BFDE是菱形;(2)连接EF,交BD于O,∵∠BAC=90°,∠C=30°,∴∠ABC=60°,∵BD 平分∠ABC ,∴∠DBC=30°,∴BD=DC=12,∵DF ∥AB ,∴∠FDC=∠A=90°,∴DF=4333==, 在Rt △DOF 中,OF=()222243623DF OD -=-=, ∴菱形BFDE 的面积=12×EF •BD =12×12×43=243. 【点评】 此题考查了菱形的判定和性质,熟练掌握菱形的判定和性质是解题的关键.26.(1)甲组抽到A 小区的概率是14;(2)甲组抽到A 小区,同时乙组抽到C 小区的概率为112. 【解析】【分析】 (1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,根据概率公式求解可得.【详解】(1)甲组抽到A 小区的概率是14, 故答案为:14. (2)画树状图为:共有12种等可能的结果数,其中甲组抽到A 小区,同时乙组抽到C 小区的结果数为1, ∴甲组抽到A 小区,同时乙组抽到C 小区的概率为112.【点睛】此题考查列表法与树状图法,解题关键在于根据题意画出树状图.。
一、选择题1.下列事件是必然事件的是( )A .有两边及一角对应相等的两个三角形全等B .若a 2=b 2则有a =bC .二次函数的图象是双曲线D .圆的切线垂直于过切点的半径 2.若一个圆锥的底面半径为3cm ,高为62cm ,则圆锥的侧面展开图中圆心角的度数为( )A .120︒B .100︒C .80︒D .150︒ 3.如图,O 是ABC 的外接圆,其半径为3cm ,若3BC cm =,则A ∠的度数是( )A .10︒B .15︒C .20︒D .30︒ 4.已知正六边形ABCDEF 内接于O ,若O 的直径为2,则该正六边形的周长是( )A .12B .3C .6D .335.已知关于x 的二次三项式()()2121m x m x m +--+的值恒为正,则m 的取值范围是( )A .18m >B .1m >-C .118m -<<D .1m 18<< 6.将进货价为35元的商品按单价40元售出时,能卖出200个,已知该商品单价每上涨1元,其销售量就减少5个,设这种商品的售价为x 元时,获得的利润为y 元,则下列关系式正确的是( )A .()()352005y x x =--B .()()354005y x x =--C .()()402005y x x =--D .()()403755y x x =--7.某商场经营一种小商品,已知进购时单价是20元.调查发现:当销售单价是30元时,月销售量为240件,而销售单价每上涨1元,月销售量就减少10件,但每件商品的售价不能高于40元.当月销售利润最大时,销售单价为( )A .35元B .36元C .37元D .36或37元 8.函数k y x=与()20y kx k k =-≠在同一直角坐标系中的图象大致是下图中的( )A .B .C .D . 9.如图,在ABC 中,AD 平分BAC ∠,//DE AC 交AB 于点E ,//DF AB 交AC 于点F ,且AD 交EF 于点O ,若8AF EF ==,则sin DAC ∠的值为( )A .13B .32C .12D .2210.如图,矩形ABCD 的四个顶点分别在直线3l ,4l ,2l ,1l 上,若直线1234//////l l l l 且间距相等,3AB =,2BC =,则tan α的值为( )A .38B .13C .52D .151511.如图,在Rt ABC △中,90C ∠=︒,4AC =,3BC =,则( )A .3sin 4A =B .4cos 5A =C .3cos 4B =D .3tan 5B =12.如图,△ABC 中,AB =AC =5,BC =8,则sin B 的值为( )A .58B .45C .35D .12二、填空题13.如图,一次函数323y x =-+的图象与x 轴交于点A ,与y 轴交于点B ,若向ABO 的外接圆C 内随机抛掷一枚小针,则针尖落在阴影部分的概率是_____________.14.如图,ABC 内接于O ,70B ∠=︒,50OCB ∠=︒,点P 是O 上一个动点(不与图中已知点重合),若ACP △时等腰三角形,则ACP ∠的度数为___.15.如图,二次函数2y ax bx c =++的图象与x 轴交于点()3,0A ,()1,0B -.若42P a b =+,Q a b =+,则P ,Q 的大小关系是__________(填“>”或“<”或“=”).16.如图,已知二次函数2(0)y ax bx c a =++<的图象与x 轴交于不同两点,与y 轴的交点在y 轴正半轴,它的对称轴为直线1x =.有以下结论:①0abc >,②0a c ->,③若点()11,y -和()22,y 在该图象上,则12y y <,④设1x ,2x 是方程20ax bx c ++=的两根,若2am bm c p ++=,则()()120p m x m x --≤.其中正确的结论是____________(填入正确结论的序号).17.已知抛物线为21()y a x m k =++与()22()0y a x m k m =---≠关于原点对称,我们称1y 为与2y 互为“和谐抛物线”,请写出抛物线2467y x x =-++的“和谐抛物线”________.18.已知α,β均为锐角,且满足cos 0.5tan 30αβ-+-=,则αβ+的度数为_______.19.如图,已知△ABC 的顶点A 、B 在反比例函数y =23x (x <0)的图象上,∠ABC =90°,∠ACB =30°,AC ⊥x 轴,点B 在点A 右下方,若AC =4,则点B 的坐标为_____.20.如图是高铁站自动检票口的双翼闸机,检票后双翼收起,通过闸机的物体的最大宽度为70cm ,检票前双翼展开呈扇形CAP 和扇形DBQ ,若AC =BD =55cm ,∠PCA =∠BDQ =30°,则A 、B 之间的距离为_____cm .21.如图,在菱形纸片ABCD 中,3AB =,60A ∠=︒,将菱形纸片翻折,使点A 落在CD 的中点E 处,折痕为FG ,点F ,G 分别在边AB ,AD 上,则tan EFG ∠的值为________.22.如图,在平面直角坐标系中,点O 为坐标原点,点B 的坐标为(4,0),AB ⊥x 轴,连接AO ,tan ∠AOB =54,动点C 在x 轴上,连接AC ,将△ABC 沿AC 所在直线翻折得到△ACB ',当点B '恰好落在y 轴上时,则点C 的坐标为_____.三、解答题23.如图,ABC 的外角BAD ∠的平分线与它的外接圆相交于点E ,连接BE ,CE .求证:(1)BE CE =;(2)若4BC =,6tan EAB ∠,求O 的半径. 24.如图,AB 为O 的直径,C ,D 为O 上不同于A ,B 的两点,且OC 平分ACD ∠,延长AC 与DB 交于点E ,过点C 作CF OC ⊥交DE 于点F .(1)求证:A E ∠=∠.(2)若5BF =,34BD OB =,求O 的半径.25.如图,抛物线2y x ax =+经过点()4,0A -,()1,B b ,点()P m n ,是抛物线上一点. (1)求a ,b 的值及抛物线的顶点坐标;(2)若5m <-,比较b ,n 的大小;(3)若1m x m ≤<+时,二次函数的最小值为4-,直接写出m 的取值范围.26.如图1,在矩形ABCD 中,8AB =,6AD =,沿对角线AC 剪开,再把ACD △沿AB 方向平移得到图2,其中A D '交AC 于E ,A C ''交BC 于F .(1)在图2中,除ABC 与C DA ''△外,指出图中全等三角形(不能添加辅助线和字母)并选择一对加以证明;(2)设AA x '=.①当x 为何值时,四边形A ECF '是菱形?②设四边形A ECF '的面积为y ,求y 与x 的关系式,并求出y 最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由三角形全等的判定方法可判断,A 由平方根的含义可判断,B 由二次函数的图像可判断,C 由圆的切线的性质可判断.D 再结合必然事件的概念可得答案.【详解】解:有两边及一角对应相等的两个三角形不一定全等,所以是随机事件,故A 不符合题意;若22a b =则有,a b =±所以是随机事件,故B 不符合题意;二次函数的图象是抛物线,所以是不可能事件,故C 不符合题意;圆的切线垂直于过切点的半径,是必然事件,故D 符合题意;故选:.D【点睛】本题考查的是确定事件与随机事件的概念,同时考查了二次函数的图像,圆的切线的性质,掌握以上知识是解题的关键.2.A解析:A【分析】根据勾股定理求出圆锥的母线长,根据弧长公式计算,得到答案.【详解】解:设圆锥的侧面展开图的圆心角为n °,9(cm ),∴圆锥的侧面展开图扇形的半径为9cm ,扇形弧长为2×3π=6π(cm),∴9180n π⨯=6π, 解得,n =120,故选:A .【点睛】 本题考查的是圆锥的计算,掌握圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长是解题的关键.3.D解析:D【分析】连接OB 、OC ,则判断△OBC 是等边三角形,则∠BOC=60°,再根据圆周角定理,即可得到答案.【详解】解:连接OB 、OC ,如图:∵3OB OC BC cm ===,∴△OBC 是等边三角形,∴∠BOC=60°,∴∠BAC=30°,故选:D .【点睛】本题考查了圆周角定理,等边三角形的判定和性质,解题的关键是熟练掌握圆周角定理进行解题.4.C解析:C【分析】如图,连接OA 、OB ,由正六边形ABCDEF 内接于O 可得∠AOB=60°,即可证明△AOB 是等边三角形,根据O 直径可得OA 的长,进而可得正六边形的周长. 【详解】如图,连接OA 、OB ,∵O 的直径为2,∴OA=1, ∵正六边形ABCDEF 内接于O , ∴∠AOB=60°,∵OA=OB ,∴△AOB 是等边三角形,∴AB=OA=1,∴该正六边形的周长是1×6=6,故选:C .【点睛】本题考查正多边形和圆,正确得出∠AOB=60°是解题关键.5.A解析:A【分析】根据二次三项式()()2121m x m x m +--+的值恒为正,可设()()2121m x x y m m +--+=,从而得到1m +>0且∆<0,进而即可求得m 的取值范围.【详解】解:设()()2121m x x y m m +--+=, ∵关于x 的二次三项式()()2121m x m x m +--+的值恒为正,∴()()2121m x m x m +--+>0,∴在函数()()2121m x x y m m +--+=中, 1m +>0,且()()22141m m m ∆=--⎡⎤-+⎣⎦<0,解得:m >18故选:A【点睛】本题考查二次函数的应用,解题的关键是明确题意,利用数形结合的思想,熟练掌握二次函数的性质. 6.B解析:B【分析】根据售价减去进价表示出实际的利润.【详解】解:设这种商品的售价为x 元时,获得的利润为y 元,根据题意可得:[](35)2005(40)y x x =--- 即y=(x-35)(400-5x ),故选:B .【点睛】本题考查了二次函数的应用,解题的关键是理解“商品每上涨1元,其销售量就减少5个”.7.C解析:C【分析】根据利润=数量×每件的利润就可以求出关系式,根据(1)的解析式,将其转化为顶点式,根据二次函数的顶点式的性质就可以求出结论.【详解】解:依题意得:y=(30-20+x )(240-10x )y=-10x 2+140x+2400.∵每件首饰售价不能高于40元.∴0≤x≤10.∴求y 与x 的函数关系式为:y=-10x 2+140x+2400,x 的取值范围为0≤x≤10;∴y=-10(x-7)2+2890.∴a=-10<0.∴当x=7时,y 最大=2890.∴每件首饰的售价定为:30+7=37元.∴每件首饰的售价定为37元时,可使月销售利润最大,最大的月利润是2890元. 故选C .【点睛】本题考查了二次函数的解析式的运用,根据解析式的函数值求自变量的值的运用,二次函数的顶点式的性质的运用,解答时求出二次函数的解析式是关键.8.B解析:B【分析】根据k>0,k<0,结合反比例函数及二次函数图象及其性质分类讨论.【详解】解:分两种情况讨论:①当k>0时,反比例函数k y x=在一、三象限,而二次函数()20y kx k k =-≠开口向上,与y 轴交点在原点下方,故C 选项错误,B 选项正确; ②当k<0时,反比例函数k y x=在二、四象限,而二次函数()20y kx k k =-≠开口向下,与y 轴交点在原点上方,故A 选项与D 选项错误.故选B .【点睛】 本题考查了反比例函数图象性质和二次函数图象性质.关键是根据k>0,k<0,结合反比例函数及二次函数图象及其性质分类讨论.9.C解析:C【分析】先证明四边形AEDF 是平行四边形,在根据题意得到四边形AEDF 是菱形,即可得到结果;【详解】由题意://DE AC ,//DF AB ,即//DE AF ,//DF EA ,∴四边形AEDF 是平行四边形,又∵AD 平分BAC ∠,∴BAD CAD ∠=∠,∵//AE DF ,∴BAD ADF ∠=∠,∴DAF FDA ∠=∠,∴FA FD =,∴四边形AEDF 是菱形,∴EF AD ⊥,且O 为EF 的中点,8EF =,∴4OF =,∴在Rt △OAF 中,41sin 82OF DAF AF ∠===; ∴1sin 2DAC ∠=; 故答案选C .【点睛】本题主要考查了菱形的判定与性质,结合三角函数计算是解题的关键. 10.B解析:B【分析】根据题意,可以得到BG 的长,再根据∠ABG=90°,AB=3,可以得到∠BAG 的正切值,再根据平行线的性质,可以得到∠BAG=∠α,从而可以得到tanα的值.【详解】解:作CF ⊥l 4于点F ,交l 3于点E ,设CB 交l 3于点G ,由已知可得,GE ∥BF ,CE=EF ,∴△CEG ∽△CFB ,∴CE CG CF CB =, ∵12CE CF =, ∴12CG CB =, ∵BC=2,∴GB=1,∵l 3∥l 4,∴∠α=∠GAB ,∵四边形ABCD 是矩形,AB=3,∴∠ABG=90°, ∴1tan 3BG BAG AB ∠==, ∴tanα的值为13, 故选:B .【点睛】本题考查矩形的性质,解直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答. 11.B解析:B【分析】首先由勾股定理求得斜边AB=5;然后由锐角三角函数的定义依次计算判断即可.【详解】解:∵在Rt △ABC 中,∠C=90°,AC=4,BC=3.∴5== A. 3sin =5BC A AB =,故此项错误; B. 4cos =5AC A AB =,故此项正确; C. os =35c BC B AB =,故此项错误; D. 4tan 3AC BC B ==,故此项错误; 故选B .【点睛】 本题考查了锐角三角函数定义,勾股定理.本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边. 12.C解析:C【分析】过A 点作AD BC ⊥交BC 于点D ,利用等腰三角形的三线合一求出BD ,利用勾股定理求出AD 即可解决问题.【详解】过A 点作AD BC ⊥交BC 于点D ,如图∵5AB AC ==,8BC =,∴4BD CD ==, ∴2222543AD AB BD =--=, ∴3sin 5AD B AB ==. 故选:C .【点睛】本题考查等腰三角形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.二、填空题13.【分析】利用一次函数解析式求出点AB 的坐标即可得由勾股定理求出求出则可得是等边三角形可得根据圆周角定理求出扇形圆心角的度数并由三角形中线将三角形可分为面积相等的两个三角形得可求出阴影部分的面积及圆的 解析:13【分析】利用一次函数解析式求出点A 、B 的坐标,即可得6OA =,3OB =2243AB OA OB +=,求出23BC OC AC ===OBC 是等边三角形,可得60OBA ∠=︒,根据圆周角定理求出扇形圆心角的度数,并由三角形中线将三角形可分为面积相等的两个三角形得OBC OAC SS =,可求出阴影部分的面积及圆的面积,利用面积比即可求出结论.【详解】解:∵一次函数3233y x =-+的图象与x 轴交于点A ,与y 轴交于点B , 令0y =,则6x =,∴()6,0A -,令0x =,则23y =∴()0,23B , ∴6OA =,23OB =,在Rt AOB 中,由勾股定理得:2243AB OA OB =+=,∴23BC OC AC ===,∴BC OC OB ==, ∴OBC 是等边三角形,∴60OBA ∠=︒, ∴120ACO ∠=︒,∵OC 是AB 边上的中线,∴OBC OAC S S =,∴()2120=234360ACO S S ππ==阴影扇形, ()22312C S ππ==, ∴针尖落在阴影部分的概率41123P ππ==. 故答案为:13. 【点睛】 此题考查了几何概率,掌握几何概率的计算方法及求出阴影部分的面积是解题的关键. 14.或或【分析】根据题意分三种情况讨论即可得∠ACP 的度数【详解】解:如图连接OAOB ∵∠OCB=50°∴∠OBC=50°∴∠BOC=180°-50°-50°=80°∵∠B=70°∴∠OBA=∠OAB=解析:35︒或40︒或55︒【分析】根据题意分三种情况讨论即可得∠ACP 的度数.【详解】解:如图,连接OA ,OB ,∵∠OCB=50°,∴∠OBC=50°,∴∠BOC=180°-50°-50°=80°.∵∠B=70°,∴∠OBA=∠OAB=20°,∴∠AOB=140°,∴∠AOC=360°-80°-140°=140°,∴∠OAC=∠OCA=20°,∴∠ACB=50°+20°=70°,∴AB=AC .当AP′=AC 时,此时点P′与点B 重合,不符合题意;当AP=PC 时,∵∠B=70°,∴∠APC=180°-70°=110°,∴∠ACP=∠CAP=12(180°-110°)=35°; 当AP′=P′C 时,∠P′AC=∠P′CA=12(180°-70)=55°; 当AC=P′C 时,∠ACP′=180°-70°-70°=40°.故答案为:35°或40°或55°.【点评】本题考查了三角形的外接圆与外心、圆周角定理、等腰三角形的性质,解决本题的关键是综合运用以上知识进行分类讨论. 15.【分析】把AB 坐标代入求出代入PQ 进行判断即可【详解】解:将代入∴∴∴∴∵二次函数的图象开口向下∴∴∴故答案为:【点睛】此题主要考查了二次函数的图象与性质求出是解答此题的关键解析:Q P >【分析】把A 、B 坐标代入2y ax bx c =++求出2b a =-,代入P ,Q 进行判断即可.【详解】解:将()3,0A ,()1,0B -代入2y ax bx c =++, ∴0930a b c a b c =++⎧⎨=-+⎩∴93a b a b +=-∴2b a =-∴42=440P a b a a =+-=,=2Q a b a a a =+-=-∵二次函数的图象开口向下∴0a <∴0a ->∴Q P >故答案为:Q P >【点睛】此题主要考查了二次函数的图象与性质,求出2b a =-是解答此题的关键.16.③④【分析】利用数形结合思想从抛物线的开口与坐标轴的交点对称轴等方面着手分析判断即可【详解】解:∵抛物线的开口向下对称轴在原点的右边与y 轴交于正半轴∴a <0b >0c >0∴abc <0∴结论①错误;∵抛解析:③④【分析】利用数形结合思想,从抛物线的开口,与坐标轴的交点,对称轴等方面着手分析判断即可.【详解】解:∵抛物线的开口向下,对称轴在原点的右边,与y 轴交于正半轴,∴a <0, b >0,c >0,∴abc <0,∴结论①错误;∵抛物线的对称轴为x=1, ∴12b a-=, ∴b=-2a ;∵ c+a+b >0,∴c-a >0,∴a-c <0, ∴结论②错误;∵抛物线的对称轴为直线x=1,抛物线的开口向下,∵点()11,y -和()22,y 在该图象上,∴()11,y -与x=1的距离比()22,y 与x=1的距离远;∴12y y <,∴结论③正确;∵2am bm c p ++=,1x ,2x 是方程20ax bx c ++=的两根,当0p a+b+c <≤时,12m ≤≤x x ;∴()()120<--p m x m x ;当p=0时,()()12=0--p m x m x当p <0时,()()120<--p m x m x∴()()120p m x m x --≤∴结论④正确;③④故答案为:【点睛】本题考查了二次函数的图像与系数之间的关系,对称轴的使用,代数式符号的判定,熟练运用数形结合的思想,二次函数的性质是解题的关键.17.【分析】先将抛物线进行配方后根据和谐抛物线定义写出已知函数的和谐抛物线并整理成一般式【详解】解:∵∴抛物线的和谐抛物线为:即故答案为:【点睛】本题考查了新定义函数问题配方法熟练配方并准确理解新定义是 解析:2467y x x =+-.【分析】先将抛物线进行配方,后根据 “和谐抛物线”定义写出已知函数的“和谐抛物线”,并整理成一般式.【详解】解:∵223374674()44y x x x =-++=--+, ∴抛物线2467y x x =-++的“和谐抛物线”为:23374()44y x =+- 即2467y x x =+-,故答案为:2467y x x =+-.【点睛】本题考查了新定义函数问题,配方法,熟练配方,并准确理解新定义是解题的关键. 18.【分析】根据非负数的性质列出算式根据特殊角的三角函数值计算即可【详解】解:由题意得cosα-05=0tanβ-=0∴cosα=05tanβ=解得α=60°β=60°则α+β的度数为120°故答案为:解析:120︒【分析】根据非负数的性质列出算式,根据特殊角的三角函数值计算即可.【详解】解:由题意得,cosα-0.5=0,tanβ,∴cosα=0.5,解得,α=60°,β=60°,则α+β的度数为120°,故答案为:120°.【点睛】本题考查的是非负数的性质和特殊角的三角函数值,掌握非负数之和等于0时,各项都等于0是解题的关键.19.(﹣﹣2)【分析】过点B作BD⊥AC于点D解直角三角形求出BCBDCD得出关于mn的方程组求出方程组的解即可【详解】解:过点B作BD⊥AC于点D∵在Rt△ACB中BC=AC•cos∠ACB=2∴在R解析:(﹣3,﹣2)【分析】过点B作BD⊥AC于点D,解直角三角形求出BC、BD、CD,得出关于m、n的方程组,求出方程组的解即可.【详解】解:过点B作BD⊥AC于点D,∵在Rt△ACB中,BC=AC•cos∠ACB=3∴在Rt△BCD中,CD=BC•cos∠ACB=333,BD=12BC3,∴AD=AC﹣CD=4﹣3=1,设A(m,3m),B(n,23n),依题意知0>n>m,故BD=n﹣m,AD=23m﹣23n,∴3 23231 n m⎧-==,解得:33 mn⎧=-⎪⎨=-⎪⎩∴点B32),故答案为:(﹣3,﹣2).【点睛】本题主要考查反比例函数与平面几何的综合以及解直角三角形,熟练掌握反比例函数图像上的点的坐标特征,是解题的关键.20.15【分析】如图连接ABCD过点A作AE⊥CD于E过点B作BF⊥CD于F求出CEDF即可解决问题【详解】解:如图连接ABCD过点A作AE⊥CD于E过点B作BF⊥CD于F∵AB∥EFAE∥BF∴四边形解析:15【分析】如图,连接AB,CD,过点A作AE⊥CD于E,过点B作BF⊥CD于F.求出CE, DF即可解决问题.【详解】解:如图,连接AB,CD,过点A作AE⊥CD于E,过点B作BF⊥CD于F.∵AB∥EF,AE∥BF,∴四边形ABFE是平行四边形,∵∠AEF=90°,∴四边形AEFB是矩形,∴EF=AB∵AE∥PC,∴∠PCA=∠CAE=30°,∴CE=AC•sin30°=27.5(cm),同法可得DF=27.5(cm),∴EF= CD-CE-DF=70-27.5-27.5=15(cm),∴AB=15(cm),故答案为15.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线面构造直角三角形解决问题.21.【分析】连接AE交GF于O连接BEBD则△BCD为等边三角形设AF=x=EF 则BF=3-x依据勾股定理可得Rt△BEF中BF2+BE2=EF2解方程(3-x)2+()2=x2即可得到EF=再根据Rt解析:233 【分析】 连接AE 交GF 于O ,连接BE ,BD ,则△BCD 为等边三角形,设AF=x=EF ,则BF=3-x ,依据勾股定理可得Rt △BEF 中,BF 2+BE 2=EF 2,解方程(3-x )2+(332)2=x 2,即可得到EF=218,再根据Rt △EOF 中,OF=223218AF AO -=,即可得出tan ∠EFG=233EO FO =. 【详解】解:如图,连接AE 交GF 于O ,连接BE ,BD ,则△BCD 为等边三角形,∵E 是CD 的中点,∴BE ⊥CD ,∴∠EBF=∠BEC=90°,Rt △BCE 中,CE=cos60°×3=1.5,BE=sin60°332 ∴Rt △ABE 中,372由折叠可得,AE ⊥GF ,EO=12374设AF=x=EF ,则BF=3-x , ∵Rt △BEF 中,BF 2+BE 2=EF 2,∴(3-x )2+3322=x 2, 解得x=218,即EF=218, ∴Rt △EOF 中,223218AF AO -= ∴tan ∠EFG=233EO FO = 233 【点睛】本题考查了菱形的性质、解直角三角形以及折叠的性质:折叠是一种对称变换,对应边和对应角相等.解题时,常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案. 22.【分析】根据题意先求出AB =5由折叠的性质得出AB =AB =5BC =BC 过点A 作AD ⊥y 轴于点D 由勾股定理求出OB =2得出x2+22=(4﹣x )2解得x =则可得出答案【详解】解:∵tan ∠AOB =B ( 解析:3,02⎛⎫ ⎪⎝⎭【分析】根据题意先求出AB =5,由折叠的性质得出AB =AB'=5,BC =B'C ,过点A 作AD ⊥y 轴于点D ,由勾股定理求出OB'=2,得出x 2+22=(4﹣x )2,解得x =32,则可得出答案. 【详解】解:∵tan ∠AOB =54,B (4,0), ∴54AB OB =, ∴AB =5, ∵将△ABC 沿AC 所在直线翻折得到△ACB′,∴AB =AB'=5,BC =B'C ,过点A 作AD ⊥y 轴于点D ,∴B'D ,22AB AD -2254-3,∴OB'=2,设OC =x ,则BC =B'C =4﹣x ,Rt △OB'C 中,∵OC 2+OB'2=B'C 2,∴x 2+22=(4﹣x )2,解得x =32, ∴C (32,0).故答案为:(32,0). 【点睛】 本题考查勾股定理以及翻折问题,熟练掌握勾股定理以及折叠的性质是解题的关键.三、解答题23.(1)见解析;(2)56r =【分析】(1)根据圆内接四边形的性质得到DAE EBC ∠=∠,根据角平分线的性质得到DAE EAB ∠=∠,再根据同弧所对的圆周角相等得到EAB ECB ∠=∠,则EBC ECB ∠=∠,即可得到BE CE =(2)连接EO ,并延长交BC 于H ,连接OB ,OC ,可知EH 垂直平分BC ,根据6tan EAB ∠=,EAB ECB ∠=∠,可求出EH 的长,再设圆O 的半径为r ,利用勾股定理即可求解【详解】(1)由题意可得DAE ∠为圆内接四边形AEBC 的外角∴DAE EBC ∠=∠AE 平分DAB ∠∴DAE EAB ∠=∠EAB ∠与ECB ∠是同弧所对的圆周角∴EAB ECB ∠=∠∴EBC ECB ∠=∠∴BE CE =(2)连接EO ,并延长交BC 于H ,连接OB ,OC,OB OC BE CE ==∴ EH 垂直平分BC ,4BC =122CH BC ∴==EAB ECB ∠=∠,tan EAB ∠∴在Rt EHC 中,tan 2EH ECB CH ∠==2EH ∴=EH ∴=设⊙O 的半径为r ,则OH r =∴在Rt OHC △中,由勾股定理可得:222OC OH CH =+)2222r r ∴=+解得:r =【点睛】 本题考查了圆的内接四边形的性质,角平分线的性质,勾股定理,三角函数等知识,解题关键是正确作出辅助线,构造直角三角形.24.(1)见解析;(2)8【分析】(1)根据角平分线和半径相等证//OC DE ,再用平行线的性质证明即可;(2)设3BD x =,4OB x =,根据(1)中的等角,得到AB=BE ,CE=CD ,列方程即可.【详解】(1)证明:∵OC=OA,∴ACO A ∠=∠.∵∠A=∠D ,∴∠D=∠ACO∵OC 平分ACD ∠,∴ACO OCD ∠=∠,∴OCD D ∠=∠.∴//OC DE ,∴E ACO ∠=∠,∴E A ∠=∠.(2)解:∵34BD OB =,∴设3BD x =,4OB x =, 由(1)得E D ∠=∠,∴CD=CE ,∵//OC DE .CF OC ⊥,∴CF DE ⊥,∴35EF DF x ==+.∴310BE x =+,∵E A ∠=∠,∴AB BE =,即3108x x +=,解得2x =∴半径48OB x ==.【点睛】本题考查了圆周角的性质、等腰三角形的性质、平行线的判定与性质,解题关键是准确把握已知,合理利用已知条件,设未知数列方程.25.(1)a=4,b=5,(-2,-4);(2)b <n ;(3)-3<m≤-2.【分析】(1)把()4,0A -代入2y x ax =+求出a 的值,把()1,B b 代入函数关系式得出b 的值,再把函数解析式配方即可得到顶点坐标;(2)求出当x=-5时y 的值,再根据函数的增减性求解即可;(3)根据顶点坐标结合1m x m ≤<+列出不等式组求解即可.【详解】解:(1)将点A (-4,0)代入2y x ax =+得,16-4a=0解得,a=4,∴24y x x =+把B (1,b )代入24y x x =+得,b=5;∵2224444(2)4y x x x x x =+=++-=+-∴顶点坐标为(-2,-4);(2)当x=-5时,y=25-20=5,∵当x <-5时,y 随x 的增大而减小,∴y >5,即n >5,而b=5∴b <n(3)∵抛物线的顶点为(-2,-4),而当1m x m ≤<+时,二次函数的最小值为4-,∴212m m ≤-⎧⎨+>-⎩ 解得,-3<m≤-2.【点睛】本题考查了待定系数法求二次函数的解析式,二次函数的性质,二次函数图象上点的坐标特征,数形结合是解题的关键.26.(1)AA E C CF ''△≌△,A BF CDE '△≌△;证明见解析 (2)①5 ②23(4)124y x =--+;12 【分析】(1)根据矩形的性质、全等三角形的判定定理证明;(2)①设A′E=a ,A′F=b ,根据相似三角形的性质用x 表示出a 、b ,根据菱形的判定定理列出方程,解方程即可;②根据三角形的面积公式求出y 关于x 的二次函数解析式,根据二次函数的性质计算即可.【详解】解:(1)△AA′E ≌△C′CF ,△A′BF ≌△CDE ,由题意得,四边形A′DCB 是矩形,∴A′B=DC ,∴AA′=CC′,∵AB ∥CD ,∴∠BA′F=∠C′,由题意得,∠BA′F=∠A ,∴∠A=∠C′,在△AA′E 和△C′CF 中,A C AA C CAA E C CF ∠∠'⎧⎪''⎨⎪∠'∠'⎩===, ∴△AA′E ≌△C′CF (ASA );由题意得,四边形A′DCB 是矩形,∴A′B=DC ,∠B=∠D=90゜,DA′=CB ,DA′//CB ,由△AA′E ≌△C′CF ,得,A′E=FC∵四边形A′DCF 是平行四边形,∴A′F=EC ,∴Rt △A′BF ≌△CDE ;(2)①设A′E=a ,A′F=b ,在Rt △ABC 中,8AB =,6AD =,∠B=90゜∴10AC ===∵A′F ∥AC , ∴A F BA AC BA ''=,即8108b x -=, 解得,4054x b -=, 同理68a x =, 解得,34a x =, 当A′E=A′F 时,四边形A′ECF 是菱形,∴4054x-=34 x,解得,x=5,∴当x=5时,四边形A′ECF是菱形;②3(8)4y A E A B x x''=⨯=-,即364y x x=-+.23(4)124y x=--+,y的最大值为12.【点睛】本题考查的是四边形的综合题,矩形的性质、相似三角形的判定和性质、全等三角形的判定和性质、二次函数的解析式的确定以及二次函数的最值的求法,掌握相关的判定定理和性质定理是解题的关键.。
一、选择题1.如图,已知E 是ABC 的外心,P ,Q 分别是AB ,AC 的中点,连接EP ,EQ ,分别交BC 于点F ,D .若10BF =,6DF =,8CD =,则ABC 的面积为( )A .72B .96C .120D .1442.如图一个扇形纸片的圆心角为90°,半径为6,将这张扇形纸片折叠,使点A 和点O 恰好重合,折痕为CD ,则阴影部分的面积为( )A .933π-B .693π-C .393π-D .936π-3.如图.PA ,PB 是⊙O 的两条切线,切点分别为A ,B ,连接OA ,OB ,OP ,AB .若 OA =1,∠APB =60°,则△PAB 的周长为( )A .23B .4C .33D .23+24.如图,O 的直径为10,弦AB 的长为6,P 为弦AB 上的动点,则线段OP 长的取值范围是( )A .35OP ≤≤B .45OP <<C .45OP ≤≤D .35OP <<5.已知二次函数y=ax 2+bx +c 与自变量x 的部分对应值如表所示,下列说法正确的是( ) x … 0 1 3 … y…131…A .a >0B .x >1时y 随x 的增大而减小C .y 的最大值是3D .关于x 的方程ax 2+bx +c=3的解是x 1=1,x 2=26.对于二次函数2y x bx c =++(b ,c 是常数)中自变量x 与函数y 的部分对应值如下表:x1- 0 1 2 34 y10 52 125A .函数图像开口向上B .当5x =时,10y =C .当2x >时,y 随x 的增大而增大.D .方程20x bx c ++=有两个不相等的实数根7.将二次函数y =2x +6x+2化成y =2-x h ()+k 的形式应为( ) A .y =23x +()﹣7 B .y =23x -()+11 C .y =23x +()﹣11 D .y =22x +()+4 8.二次函数2y ax bx c =++的图像如图,现有以下结论:①0abc >;②42a c b +<;③320b c +<;④()(1)m am b b a m ++<≠-,其中正确结论序号为( )A .①③④B .②③④C .①②③D .①②③④9.cos45°的值为( ) A .1B .12C .22D 310.如图,在国旗台DF 上有一根旗杆AF ,国庆节当天小明参加升旗仪式,在B 处测得旗杆顶端的仰角为37°,小明向前走4米到达点E ,经过坡度为1的坡面DE ,坡面的水平距离是1米,到达点D ,测得此时旗杆顶端的仰角为53°,则旗杆的高度约为( )米.(参考数据:sin370.6︒≈,cos370.8︒≈,tan370.75︒≈)A .6.29B .4.71C .4D .5.3311.tan60︒的值为( ) A .33B .23C .3D .212.如图,在Rt △ABC 中,∠ACB=90°,若5AC =,BC=2,则sin ∠A 的值为( )A .5 B .5 C .23D .25二、填空题13.刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积,设半径为1的圆的面积与其内接正n 边形的面积差为n ∆.如图①,图②,若用圆的内接正八边形和内接正十二边形逼近半径为1的圆,则182ΔΔ-=___________.14.如图,将半径为3cm 的圆形纸片沿AB 折叠后,圆弧恰好能经过圆心,O 用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为____________________cm .(结果用含根号的式子表示)15.将抛物线21:23C y x x =-+向左平移一个单位长度,得到抛物线2C ,抛物线2C 与抛物线3C 关于y 轴对称,则抛物线3C 的表达式为____.16.二次函数y=ax 2+c 的图象与y=3x 2的图象形状相同,开口方向相反,且经过点(1,1),则该二次函数的解析式为________________ .17.如图,已知点()6,0A ,O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点的二次函数1y 和过P 、A 两点的二次函数2y 的图像开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当5OD AD ==时,这两个二次函数的最大值之和等于________.18.如图,在△ABC 中,∠ACB =90º,点D 在边AC 上,AD =4CD ,若∠BAC =2∠CBD ,则tan A = ___.19.如图,在边长为1的小正方形网格中,点A ,B ,C ,D 都在这些小正方形的顶点上,AB ,CD 相交于点O ,则cos ∠BOD =_____.20.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,AF 平分∠CAB ,交CD 于点E ,交CB 于点F ,若AC =6,tanB =34,则CE =_____.21.如图,ABC ∆的顶点都是正方形网格中的格点,则cos CAB ∠=__________.22.如图,一艘轮船在小岛A 的北偏东60°方向且距小岛80海里的B 处,沿正西方向航行一定时间后到达小岛的北偏西45°的C 处,则该船航行的路程为_____海里.三、解答题23.已知:在O 中,四边形ABCD 的边AD 与O 相切于点A ,点B ,C 在O 上,//AD BC .(1)如图1,求证:AB AC =; (2)如图2,延长DC 交O 于点E ,连接AE 交BC 于点F ,若AD BC =,求证:AF BF =;(3)如图3,在(2)的条件下,连接BO 并延长交O 于点G ,交CD 于点H ,若724GH AD =,求tan ABG ∠的值.24.如图,AB 是O 的直径,AC 是弦,OD AC ⊥于点D ,过点A 作O 的切线AP ,AP 与OD 的延长线交于点P ,连接PC 、BC .(1)猜想:线段OD 与BC 有何数量和位置关系,并证明你的结论. (2)求证:PC 是O 的切线.25.如图,在平面直角坐标系中,已知AOB ,90AOB ∠=︒,AO BO =,点A 的坐标为()3,1-.(1)求点B 的坐标.(2)求过点A ,O ,B 的二次函数的表达式.(3)设点B 关于二次函数的对称轴l 的对称点为1B ,求1AB B 的面积.26.如图1,在矩形ABCD 中,8AB =,6AD =,沿对角线AC 剪开,再把ACD △沿AB 方向平移得到图2,其中A D '交AC 于E ,A C ''交BC 于F .(1)在图2中,除ABC 与C DA ''△外,指出图中全等三角形(不能添加辅助线和字母)并选择一对加以证明; (2)设AA x '=.①当x 为何值时,四边形A ECF '是菱形?②设四边形A ECF '的面积为y ,求y 与x 的关系式,并求出y 最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】连接AF ,AD ,AE ,BE ,CE ,根据三角形外心的定义,可得PE 垂直平分AB ,QE 垂直平分AC ,进而求得AF ,DF ,AD 的长度,可知△ADF 是直角三角形,即可求出△ABC 的面积. 【详解】如图,连接AF ,AD ,AE ,BE ,CE ,∵点E 是△ABC 的外心, ∴AE=BE=CE ,∴△ABE ,△ACE 是等腰三角形, ∵点P 、Q 分别是AB 、AC 的中点, ∴PE ⊥AB ,QE ⊥AC ,∴PE 垂直平分AB ,QE 垂直平分AC , ∴AF=BF=10, AD=CD=8,在△ADF 中,∵2222286=100=AD DF AF +=+, ∴△ADF 是直角三角形,∠ADF=90°, ∴S △ABC =()()1122=1068896BF DF CD AD ⨯++⨯++=, 故选:B . 【点睛】本题考查三角形外心的定义,勾股定理逆定理等知识点,解题的关键是得到△ADF 是直角三角形.2.A解析:A 【分析】连接OD ,AD ,由题意得1122AC CO AO OD ===,30CDO ∠=︒,60COD ∠=︒,进而可得=AODOAD AOD S S S S +-空白扇形扇形,然后可得=AOB S S S -阴影空白扇形,进而问题可求解.【详解】解:连接OD ,AD , ∴1122AC CO AO OD ===, ∵DC ⊥AO ,∴30CDO ∠=︒,60COD ∠=︒, ∴=AODOAD AOD S S S S+-空白扇形扇形,22260603=666360360ππ⨯+⨯,1293π=-,∴=AOB S S S -阴影空白扇形,()290=61293360ππ⨯--, 933π=-;故选A . 【点睛】本题主要考查扇形面积,熟练掌握求不规则面积的方法及扇形面积计算公式是解题的关键.3.C解析:C 【分析】根据切线的性质和切线长定理证明△PAB 是等边三角形,PA ⊥AO ,根据直角三角形性质求出PA ,问题得解. 【详解】解:∵PA ,PB 是⊙O 的两条切线,∠APB =60°, ∴PA =PB ,∠APO =12∠APB =30°,PA ⊥AO , ∴△PAB 是等边三角形, ∵PA ⊥AO ,∠APO ==30°, ∴OP =2OA =2, ∴223PA PO AO =-∴△PAB 的周长为33故选:C 【点睛】本题考查了切线长定理,切线的性质,等边三角形的判定,含30°角直角三角形性质,勾股定理等知识,考查知识点较多,熟知相关定理并能熟练运用是解题关键.4.C解析:C 【分析】由垂线段最短可知当OP ⊥AB 时最短,当OP 是半径时最长.根据垂径定理求最短长度. 【详解】解:如图,连接OA ,作OP ⊥AB 于P , ∵⊙O 的直径为10, ∴半径为5, ∴OP 的最大值为5, ∵OP ⊥AB 于P , ∴AP=BP , ∵AB=6, ∴AP=3,在Rt △AOP 中,OP=222594OA AP -=-=; 此时OP 最短,所以OP 长的取值范围是4≤OP≤5. 故选:C .【点睛】本题考查了垂径定理、勾股定理,解题的关键是确定OP 的最小值,所以求OP 的范围问题又被转化为求弦的弦心距问题,而解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r ,弦长为a ,这条弦的弦心距为d ,则有等式r 2=d 2+(2a )2成立,知道这三个量中的任意两个,就可以求出另外一个. 5.D解析:D 【分析】利用表中函数值的变换情况可判断抛物线的开口方向,则可对A 进行判断;利用x=0和x=3时函数值相等可得到抛物线的对称轴,则可对B 、C 进行判断;利用抛物线的对称性可得x=1和x=2的函数值相等,则可对D 进行判断. 【详解】解:∵二次函数值先由小变大,再由大变小, ∴抛物线的开口向下,a <0,故A 错误; ∵抛物线过点(0,1)和(3,1), ∴抛物线的对称轴为直线x=32, ∴x=32对应的y 的值最大,故C 错误;∵抛物线开口向下,∴x >32时y 随x 的增大而减小,故B 错误; ∵抛物线的对称轴为直线x=32,且抛物线经过点(1,3), ∴点(1,3)关于对称轴的对称点为(2,3), ∴关于x 的方程ax 2+bx +c=3的解是x 1=1,x 2=2,故D 正确;故选:D .【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,二次函数的对称性.熟练掌握二次函数的性质和抛物线的对称性是解决此题的关键.6.D解析:D【分析】根据表格中的数据和二次函数图象具有对称性即可判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:由表格可得,当x <2时,y 随x 的值增大而减小;当x >2时,y 随x 的值增大而增大,该函数开口向上,故选项A 、C 不符合题意;∴点(−1,10)的对称点是(5,10),∴点(5,10)在该函数的图象上,故选项B 不符合题意;由表格可得,该抛物线开口向上,且最小值是1,则该抛物线与x 轴没有交点, ∴方程20x bx c ++=无实数根,故选项D 符合题意.故选:D .【点睛】本题考查二次函数的性质、二次函数的最值、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.7.A解析:A【分析】根据配方法的基本步骤,规范配方,后对照选项作出判断.【详解】∵y =2x +6x+2=2x +6x+226()32-+2=()23x +﹣7,故选A .本题考查了将一般形式的二次函数进行配方化成配方式,熟练掌握配方的基本步骤,规范配方是解题的关键.8.A解析:A【分析】由函数图像与对称轴的方程结合可判断①,由抛物线的对称性结合点()2,42a b c --+的位置可判断②,由抛物线的图像结合点()1,a b c ++的位置,对称轴方程,可判断③,由函数的最大值可判断④,从而可得答案.【详解】 解: 图像开口向下,a ∴<0,12b x a=-=-<0, b ∴<0, 函数图像与y 轴交于正半轴,c ∴>0,abc ∴>0,故①符合题意; 抛物线与x 轴的一个交点在0~1之间,由抛物线的对称性可得:抛物线与x 轴的另一个交点在3~2--之间,∴ 当2x =-时,42y a b c =-+>0,4a c ∴+>2,b 故②不符合题意;12b x a=-=-, 2,b a ∴= 即1,2a b = 当1x =时,y a b c =++<0,12b bc ∴++<0, 32b c ∴+<0,故③符合题意; 当1x =-时,函数有最大值,y a b c =-+当1x m =≠-,2,y am bm c =++2am bm c ∴++<,a b c -+()m am b b ∴++<,a 故④符合题意.故选:.A【点睛】本题考查的是抛物线的图像与系数之间的关系,二次函数的性质,掌握以上知识是解题的9.C解析:C【分析】直接根据特殊角的三角函数值即可得出结论;【详解】 ∵2cos 452=° , 故选:C .【点睛】本题考查了特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键. 10.A解析:A【分析】过点D 作DG ⊥BC ,根据题意可得DG=FC=1,再根据题意可证ADF ~BAC ,最后相似三角形的性质即可求解.【详解】解:过点D 作DG ⊥BC∵坡度为1的坡面DE ,∴∠DEG =45°∵EG =1∴DG=FC=1∵∠ADF=53°∴∠DAF=∠B=37°∴ADF ~BAC令AF=x ,则DF=GC=0.75x0.75410.751x x x x =+++ 解得:x 6.29≈故选:A .【点睛】此题主要考查锐角的三角函数、相似三角形的判定与性质,熟练进行逻辑推理是解题关键.11.C解析:C【分析】根据特殊角的三角函数值解答即可.【详解】tan60°,故选C.【点睛】本题考查了特殊角三角函数值,熟记特殊角的三角函数值是解题关键.12.C解析:C【分析】先利用勾股定理求出AB 的长,然后再求sin ∠A 的大小.【详解】解:∵在Rt △ABC 中,AC =BC=2∴3=∴sin ∠A=23BC AB = 故选:C .【点睛】 本题考查锐角三角形的三角函数和勾股定理,需要注意求三角函数时,一定要是在直角三角形当中.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.【分析】由题意△8-△12=(S 圆-S 八边形)-(S 圆-S 十二边形)=S 十二边形-S 八边形由此计算即可【详解】解:如图由题意△8-△12=(S 圆-S 八边形)-(S 圆-S 十二边形)=S 十二边形-S 八边解析:3-【分析】由题意△8-△12=(S 圆-S 八边形)-(S 圆-S 十二边形)=S 十二边形-S 八边形,由此计算即可.【详解】解:如图,由题意,△8-△12=(S 圆-S 八边形)-(S 圆-S 十二边形)=S 十二边形-S 八边形 =12×12×1×1×sin30°-8×12×1×1×sin45°=3-22.故答案为:3-22.【点睛】本题考查正多边形和圆,解题的关键是理解题意,灵活运用所学知识解决问题. 14.【分析】作OC ⊥AB 根据折叠的性质得OD 等于半径的一半即OA =2OD 再根据含30°的直角三角形三边的关系得∠OAD =30°同理∠OBD =30°所以∠AOB =120°则利用弧长公式算出弧AB 的长利用圆解析:2【分析】作OC ⊥AB ,根据折叠的性质得OD 等于半径的一半,即OA =2OD ,再根据含30°的直角三角形三边的关系得∠OAD =30°,同理∠OBD =30°,所以∠AOB =120°,则利用弧长公式算出弧AB 的长,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,得到圆锥的底面圆的半径,从而结合勾股定理求高即可.【详解】如图,过O 点作OC ⊥AB ,垂足为D ,交⊙O 于点C ,由折叠的性质可知,1122OD OC OA ==, 由此可得,在Rt AOD △中,30OAD ∠=︒,同理可得30OBD ∠=︒,在AOB 中,由三角形内角和定理,得180120AOB OAD OBD ∠=︒-∠-∠=︒. ∴弧AB 的长为()12032180cm ππ⨯=. 设围成的圆锥的底面半径为r cm ,则22ππ=r ,∴1r cm =.∴)223122cm -=.故答案为:2【点睛】本题考查了折叠的性质,弧长公式的计算,直角三角形的性质等,掌握弧长公式的计算以及圆锥相关基本结论是解题的关键.15.【分析】根据抛物线的解析式得到顶点坐标根据顶点式及平移前后二次项的系数不变可得抛物线的顶点坐标而根据关于y 轴对称的两条抛物线的顶点的纵坐标相等横坐标互为相反数由此可得到抛物线所对应的函数表达式【详解 解析:22y x =+【分析】根据抛物线1C 的解析式得到顶点坐标,根据顶点式及平移前后二次项的系数不变可得抛物线 2C 的顶点坐标,而根据关于y 轴对称的两条抛物线的顶点的纵坐标相等,横坐标互为相反数,由此可得到抛物线3C 所对应的函数表达式.【详解】抛物线1C :2223=(1)2y x x x =-+-+, ∴抛物线1C 的顶点为(1,2),向左平移一个单位长度,得到抛物线2C ,∴抛物线2C 的顶点为(0,2),抛物线2C 与抛物线3C 关于y 轴对称,∴抛物线3C 的开口方向相同,顶点为(0,2),∴抛物线3C 的解析式为22y x =+.故答案为22y x =+.【点睛】本题主要考查了二次函数的图像的平移问题,只需看顶点坐标是如何平移得到的即可,关于y 轴对称的两条抛物线的顶点的纵坐标相等,横坐标互为相反数,难度适中. 16.y=-3x2+4【分析】根据二次函数的性质利用待定系数法求解【详解】解:由题意可设所求函数为:∵所求函数经过点(11)∴∴c=4∴所求函数为:故答案为【点睛】本题考查二次函数的应用熟练掌握利用待定系解析:y=-3x 2+4【分析】根据二次函数的性质,利用待定系数法求解.【详解】解:由题意可设所求函数为:23y x c =-+,∵所求函数经过点(1,1),∴2131c =-⨯+,∴c=4,∴所求函数为:234y x =-+,故答案为234y x =-+.【点睛】本题考查二次函数的应用,熟练掌握利用待定系数法求二次函数解析式是解题关键. 17.4【分析】过B 作BF ⊥OA 于F 过D 作DE ⊥OA 于E 过C 作CM ⊥OA 于M 则BF+CM 是这两个二次函数的最大值之和BF ∥DE ∥CM 求出AE=OE=3DE=4设P (2x0)根据二次函数的对称性得出OF=P解析:4【分析】过B 作BF ⊥OA 于F ,过D 作DE ⊥OA 于E ,过C 作CM ⊥OA 于M ,则BF+CM 是这两个二次函数的最大值之和,BF ∥DE ∥CM ,求出AE=OE=3,DE=4.设P (2x ,0),根据二次函数的对称性得出OF=PF=x ,推出△OBF ∽△ODE ,△ACM ∽△ADE ,得出BF OF DE OE =,CM AM DE AE=,代入求出BF 和CM ,相加即可求出答案. 【详解】解:过B 作BF ⊥OA 于F ,过D 作DE ⊥OA 于E ,过C 作CM ⊥OA 于M ,∵BF ⊥OA ,DE ⊥OA ,CM ⊥OA ,∴BF ∥DE ∥CM ,∵OD=AD=5,DE ⊥OA ,∴OE=EA=12OA=3, 由勾股定理得:DE=4.设P (2x ,0),根据二次函数的对称性得出OF=PF=x ,∵BF ∥DE ∥CM ,∴△OBF ∽△ODE ,△ACM ∽△ADE ,∴BF OF DE OE =,CM AM DE AE =, ∵AM=PM=12(OA-OP )=12(6-2x )=3-x , 即43BF x =,343CM x -=, 解得:BF=43x ,CM=4-43x , ∴BF+CM=4.故答案为4.【点睛】 此题考查了二次函数的最值,勾股定理,等腰三角形的性质,以及相似三角形的性质和判定的应用,题目比较好,但是有一定的难度,属于综合性试题.18.【分析】将沿BC 翻折180°得到然后通过轴对称的性质及等量代换得出从而得出然后利用勾股定理求出BC 的长度最后利用即可求解【详解】将沿BC 翻折180°得到根据轴对称的性质有∴点DCE 在同一条直线上故答解析:115 【分析】将BCD △沿BC 翻折180°得到BCE ,然后通过轴对称的性质及等量代换得出ABE AEB ∠=∠,从而得出AB AE =,然后利用勾股定理求出BC 的长度,最后利用即可求解.【详解】将BCD △沿BC 翻折180°得到BCE ,根据轴对称的性质有,BCD CBE BDC BEC ∠=∠∠=∠,90ACB ∠=︒,∴点D 、C 、E 在同一条直线上,90ABD CBD BAC ∠=︒-∠-∠.2BAC CBD ∠=∠,903ABD CBD ∴∠=︒-∠,290ABE ABD CBD CBD ∴∠=∠+∠=︒-∠.90BEC BDC CBD ∠=∠=︒-∠,ABE AEB ∴∠=∠,AB AE =∴.4AD CD =,6AB AE CD ∴==, 2211BC AB AC CD ∴=-=,1111tan 55BC CD A AC CD ∴===, 故答案为:115. 【点睛】本题主要考查了三角函数,勾股定理和轴对称,关键是利用角之间的关系构造出等腰三角形.19.【分析】设左下角顶点为点F 取BF 的中点E 连接CEDE 由点C 为AF 的中点点E 为BF 的中点可得出进而可得出∠BOD =∠DCE 在△DCE 中由DC2=CE2+DE2可得出∠DEC =90°再利用余弦的定义即可解析:5 【分析】设左下角顶点为点F ,取BF 的中点E ,连接CE ,DE ,由点C 为AF 的中点、点E 为BF 的中点可得出//CE AB ,进而可得出∠BOD =∠DCE ,在△DCE 中,由DC 2=CE 2+DE 2可得出∠DEC =90°,再利用余弦的定义即可求出cos ∠BOD 的值,此题得解.【详解】解:设左下角顶点为点F ,取BF 的中点E ,连接CE ,DE ,如图所示.∵点C 为AF 的中点,点E 为BF 的中点,∴//CE AB ,∴∠BOD =∠DCE ,在△DCE 中,DC ,DE =,CE ,∵DC 2=CE 2+DE 2,∴∠DEC =90°,∴cos ∠DCE =CECD =∴cos ∠BOD =5【点睛】 本题考查了解直角三角形、勾股定理逆定理、余弦的定义、中位线以及平行线的性质,构造出含有一个锐角等于∠AOD 的直角三角形是解题的关键.20.3【分析】证明∠CEF=∠CFE 得到CE=CF 过点F 作FH ⊥AB 于H 根据角平分线的性质得到FC=FH 设FH=x 根据tanB =求出BC=8根据勾股定理求出FB=得到解之即可得到答案【详解】证明:∵在R解析:3【分析】证明∠CEF=∠CFE 得到CE=CF ,过点F 作FH ⊥AB 于H ,根据角平分线的性质得到FC=FH ,设FH=x ,根据tanB =34求出BC=8,43BH x =,根据勾股定理求出53x =, 得到583x x =-,解之即可得到答案. 【详解】证明:∵在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,∴∠CDB=∠ACB=90°,∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,∴∠ACD=∠B ,∵AF 平分∠CAB ,∴∠CAE=∠BAF ,∴∠ACD+∠CAE=∠B+∠BAF ,∵∠CEF=∠ACD+∠CAE ,∠CFE=∠B+∠BAF ,∴∠CEF=∠CFE∴CE=CF ,过点F 作FH ⊥AB 于H ,∵AF 平分∠CAB ,FC ⊥AC ,FH ⊥AB ,∴FC=FH ,设FH=x ,在Rt △ABC 中,∠ACB =90°,AC =6,tanB =34, ∴BC=8,∴FC=x ,FB=8-x ,∵3tan 4FH B BH ==, ∴43BH x =, ∴FB=2253FH BH x +=, ∴583x x =-, 解得x=3,∴CE=FC=FH=3,故答案为:3. .【点睛】此题考查角平分线的性质,等角对等边的判定,勾股定理,利用锐角三角函数求边长,题中证得CE=FC 并引出辅助线解决问题是解题的关键.21.【分析】根据题意和图形可以得到ACBC 和AB 的长然后根据等面积法可以求得CD 的长再利用勾股定理求得AD 的长从而可以得到cos ∠CAB 的值【详解】解:作CD ⊥AB 交AB 于点D 由图可得∵解得∴∴故答案为25 【分析】根据题意和图形,可以得到AC 、BC 和AB 的长,然后根据等面积法可以求得CD 的长,再利用勾股定理求得AD 的长,从而可以得到cos ∠CAB 的值.【详解】解:作CD ⊥AB ,交AB 于点D ,由图可得,22221310,2,3332AC BC AB =+===+= ∵322ABC AB CD BC S ∆⋅⨯==, 解得,2CD =, ∴2222(10)(2)22AD AC CD =-=-= ∴2225cos 10CAB A A C D ∠===, 25. 【点睛】 本题考查解直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答. 22.(40+40)【分析】过A 作AQ ⊥BC 于Q ∠BAQ =60°∠CAQ =45°AB =80海里在直角三角形ABQ 中求出AQBQ 再在直角三角形AQC 中求出CQ 再根据BC =CQ+BQ 即可得出答案;【详解】解:解析:(3【分析】过A 作AQ ⊥BC 于Q ,∠BAQ =60°,∠CAQ =45°,AB =80海里,在直角三角形ABQ 中求出AQ 、BQ ,再在直角三角形AQC 中求出CQ ,再根据BC =CQ+BQ 即可得出答案;【详解】解:过A 作AQ ⊥BC 于Q ,由题意得:AB =80,在直角三角形ABQ 中,∠BAQ =60°,∴∠B =90°﹣60°=30°,∴AQ =12AB =40,BQ 3=3 在直角三角形AQC 中,∠CAQ =45°,∴CQ =AQ =40,∴BC =BQ+CQ =(3故答案为:(3【点睛】本题考查了解直角三角形的应用中的方向角问题、等腰直角三角形的性质、含30°角的直角三角形的性质等知识;通过解直角三角形得出CQ 和BQ 是解决问题的关键.三、解答题23.(1)见解析;(2)见解析;(3)3tan 4ABG ∠=【分析】(1)在O 中,连接AO 并延长交BC 于T ,由AD 与O 相切,可知AO AD ⊥,又因为//AD BC ,即可判断AT BC ⊥,故而即可证明;(2)由题意可知四边形ABCD 是平行四边形,再由=BE BE ,可推出BAE B ∠=∠,即可求证BF AF =;(3)令BH 与AE 的交点为M ,连接CG ,OA ,OC ,OE ,由题意可知AOC BOE ∠=∠,又因为=AB AC ,即可证得AOB BOE ∠=∠,再根据直径所对圆周角为直角可证90GCH BCE ∠+∠=︒,继而再利用锐角三角函数可令24BM m =,则7FM m =,根据22BF BM FM =+25718AM m m m =-=,即可求解;【详解】(1)证明:如图1 在O 中,连接AO 并延长交BC 于T , ∵AD 与O 相切于点A , ∴AO AD ⊥,∵//AD BC ,∴90OAD ATB ∠=∠=︒,∴AT BC ⊥,∴=AB AC ;(2)∵AD BC =,//AD BC ,∴四边形ABCD 是平行四边形,∴ABC D ∠=∠ ,∵//AD BC ,∴D BCE ∠=∠ ,∴ABC BCE ∠=∠,∵=BE BE ,∴BAE BCE ∠=∠,∴BAE B ∠=∠,∴BF AF =,(3)解:如图3 令BH 与AE 的交点为M ,连接CG ,OA ,OC ,OE∵2AOC ABC =∠∠ ,2BOE BAF ∠=∠, ABC BAF ∠=∠ ,∴AOC BOE ∠=∠,∵=AB AC ,∴AOB AOC ∠=∠ ,∴AOB BOE ∠=∠,∵180AOB AOH ∠+∠=︒ , 180BOE EOH ∠+∠=︒,∴AOH EOH ∠=∠,∵AO OE = ,∴OM AE ⊥,∴90EMH ∠=︒ ,∴90EHM MEH ∠+∠=︒,∵BG 为O 的直径,∴90BCG ∠=︒,∴90GCH BCE ∠+∠=︒,∵MEH ABC BCE ∠=∠=∠,∴EHM GCH ∠=∠,∴CG GH =, ∵724GH AD = ,AD BC =, ∴724CG GH BC ==, 在Rt BCG 中,7tan 24CG CBG BC ∠==, 在Rt BFM 中,7tan 24FM FBM BM ∠==, 令24BM m = , 则7FM m =,25BF m ===, ∴25AF BF ==m , ∴25718AM m m m =-=,在Rt ABM 中,183tan 244AM m ABG BM m ∠===;【点睛】本题考查了圆周角定理、切线的性质、锐角三角函数、勾股定理、平行四边形的性质,,正确掌握知识点是解题的关键;24.(1)//OD BC ,12CD BC =,证明见解析;(2)见解析 【分析】(1)根据垂径定理可得点D 是AC 的中点,则OD 是△ABC 的中位线,根据三角形中位线定理即可求证结论;(2)连接OC ,设OP 与O 交于点E ,根据全等三角形的判定证得OAP △≌OCP △,利用全等三角形对应角相等可得OCP OAP ∠=∠,继而根据切线的性质和判定定理即可求证结论.【详解】(1)猜想://OD BC ,12CD BC =证明:∵OD AC ⊥,∴AD =DC ,∵AB 是O 的直径,∴OA OB =,∴OD 是△ABC 的中位线,∴//OD BC ,12CD BC =. (2)证明:连接OC ,设OP 与O 交于点E .∵OD AC ⊥,OD 经过圆心O ,∴AE CE =,即∠AOE =∠COE ,在OAP △和OCP △中,∵OA OC =,OP OP =,∠AOE =∠COE ,∴OAP △≌OCP △,∴OCP OAP ∠=∠,∵PA 是O 的切线,∴90OAP ∠=︒.∴90OCP ∠=︒,即OC PC ⊥,∴PC 是O 的切线. 【点睛】本题考查切线的性质定理和判定定理,三角形中位线定理,涉及到全等三角形的判定和性质,解题的关键是熟练掌握切线的有关知识.25.(1)点B 的坐标是()1,3;(2)251366y x x=+;(3)1 235=AB B S △. 【分析】(1)过点A 作AD x ⊥轴于点D .过点B 作BE x ⊥轴于点E .证明()OEB AAS ADO ≌△△,利用三角形全等的性质可得1OE AD ==,3==BE OD ,从而可得答案;(2) 设过点A ,O ,B 的抛物线的函数表达式为2y ax bx c =++,把()()()3,1,0,0,1,3,A O B -代入解析式,利用待定系数法列方程组解方程组可得答案; (3)如图,延长DA 交1BB 于,M 由1,B B 关于l 对称,则1,DA BB ⊥ 先求解抛物线的对称轴1313651026x =-=-⨯,1,B B 关于l 对称,再求解1,,BB AM 利用三角形的面积公式可得答案.【详解】解(1)过点A 作AD x ⊥轴于点D .过点B 作BE x ⊥轴于点E .∴ 90,ADO BEO ∠=∠=︒90AOD DAO ∠+∠=︒,()3,1,A -3,1,OD AD ∴==∵90AOB ∠=︒,∴90AOD BOE ∠+∠=︒.∴DAO BOE ∠=∠.在Rt AOD 和Rt OBE 中,90ADO BEO DAO BOEAO BO ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴()OEB AAS ADO ≌△△.∴1OE AD ==,3==BE OD∴ 点B 的坐标是()1,3.(2)()()()3,1,0,0,1,3,A O B -设过点A ,O ,B 的抛物线的函数表达式为2y ax bx c =++,∴ 39310a b c a b c c ++=⎧⎪-+=⎨⎪=⎩. ∴561360a b c ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩. 过点A ,O ,B 的抛物线的函数表达式为251366y x x =+. (3)如图,延长DA 交1BB 于,M 由1,B B 关于l 对称,则1,DA BB ⊥251366y x x=+的对称轴1313651026x=-=-⨯.1,B B关于l对称,()()1,3,3,1,B A-1132321,105BB⎛⎫∴=⨯+=⎪⎝⎭()33M-,,312,AM∴=-=∴1123232255AB BS=⨯⨯=.【点睛】本题考查的是图形与坐标,三角形全等的判定与性质,利用待定系数法求解二次函数的解析式,二次函数的性质,掌握以上知识是解题的关键.26.(1)AA E C CF''△≌△,A BF CDE'△≌△;证明见解析(2)①5②23(4)124y x=--+;12【分析】(1)根据矩形的性质、全等三角形的判定定理证明;(2)①设A′E=a,A′F=b,根据相似三角形的性质用x表示出a、b,根据菱形的判定定理列出方程,解方程即可;②根据三角形的面积公式求出y关于x的二次函数解析式,根据二次函数的性质计算即可.【详解】解:(1)△AA′E≌△C′CF,△A′BF≌△CDE,由题意得,四边形A′DCB是矩形,∴A′B=DC,∴AA′=CC′,∵AB ∥CD ,∴∠BA′F=∠C′,由题意得,∠BA′F=∠A ,∴∠A=∠C′,在△AA′E 和△C′CF 中,A C AA C CAA E C CF ∠∠'⎧⎪''⎨⎪∠'∠'⎩===, ∴△AA′E ≌△C′CF (ASA );由题意得,四边形A′DCB 是矩形,∴A′B=DC ,∠B=∠D=90゜,DA′=CB ,DA′//CB ,由△AA′E ≌△C′CF ,得,A′E=FC∵四边形A′DCF 是平行四边形,∴A′F=EC ,∴Rt △A′BF ≌△CDE ;(2)①设A′E=a ,A′F=b ,在Rt △ABC 中,8AB =,6AD =,∠B=90゜∴10AC ===∵A′F ∥AC , ∴A F BA AC BA ''=,即8108b x -=, 解得,4054x b -=, 同理68a x =, 解得,34a x =, 当A′E=A′F 时,四边形A′ECF 是菱形, ∴4054x -=34x , 解得,x=5,∴当x=5时,四边形A′ECF 是菱形; ②3(8)4y A E A B x x ''=⨯=-,即364y x x =-+. 23(4)124y x =--+,y 的最大值为12. 【点睛】本题考查的是四边形的综合题,矩形的性质、相似三角形的判定和性质、全等三角形的判定和性质、二次函数的解析式的确定以及二次函数的最值的求法,掌握相关的判定定理和性质定理是解题的关键.。
一、选择题1.如图,EM 经过圆心O ,EM ⊥CD 于M ,若CD=4,EM=6,则弧CED 所在圆的半径为( )A .3B .4C .83D .1032.如图,已知E 是ABC 的外心,P ,Q 分别是AB ,AC 的中点,连接EP ,EQ ,分别交BC 于点F ,D .若10BF =,6DF =,8CD =,则ABC 的面积为( )A .72B .96C .120D .1443.如图,ABC 内接于O ,A 40∠=︒,ABC 70∠=︒,BD 是O 的直径,BD 交AC 于点E ,连接CD ,则AEB ∠等于( )A .70︒B .90°C .110°D .120°4.如图,AB 、CD 是O 的两条弦,且AB CD =.OM AB ⊥,ON CD ⊥,垂足分别为点M 、N ,BA 、DC 的延长线交于点P ,连接OP .下列结论正确的个数是( ) ①AB CD =;②OM ON =;③PA PC =;④BPO DPO ∠=∠A .1个B .2个C .3个D .4个5.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列结论:①240b ac ->;②0abc >;③420a b c -+>;④30a c +<.其中,正确结论的个数是( )A .1B .2C .3D .46.抛物线y =ax 2+bx +c 的顶点坐标(﹣2,3),抛物线与x 轴的一个交点在点(﹣4,0)和点(﹣3,0)之间,其部分图象如图所示,有下列说法:①4a ﹣b =0;②a ﹣b +c =0; ③若(﹣4,y 1),(1,y 2)是抛物线上的两点,则y 1>y 2; ④b 2+3b =4ac .其中正确的个数有( )A .4B .3C .2D .17.已知二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,则下列结论:①abc >0;②a ﹣b +c >0;③4a ﹣2b +c <0,其中结论正确的个数为( )A .0个B .1个C .2个D .3个8.如图,抛物线2y ax bx c =++的顶点位于第二象限,对称轴是直线1x =-,且抛物线经过点(1,0).下面给出了五个结论:①0abc >;②240a b c -+>;③40a c +<;④13a b c -=;⑤326320a b c --<.其中结论正确的有( )A .5个B .4个C .3个D .2个9.如图,在ABC ∆中,AC BC ⊥,30ABC ︒∠=,点D 是CB 延长线上的一点,且AB BD =,则tan DAC ∠的值为( )A .33B .23C .23+D .23- 10.如图,Rt ABC △中,90ACB ∠=︒,CD AB ⊥,4tan 3B =,若10BC =,则AD 的长为( )A .6B .323C .7.5D .1011.如图,在等腰Rt △ABC 中,∠ACB=90°,AC=14,点E 在边CB 上,CE=2EB ,点D 在边AB 上,CD 垂直AE ,垂足为F ,则AD 的长为( )A .92B .4225C .35D .1512.如图,在边长相同的小正方形组成的网格中,点A B C D 、、、都在这些小正方形的顶点上,AB CD 、相交于点P ,则tan APD ∠=( ).A .5B .3C .10D .2二、填空题13.如图,在O 中,点P 为弧AB 的中点,弦AD ,PC 互相垂直,垂足为M ,BC 分别与 AD ,PD 相于点E ,N ,连结BD ,MN .若O 的半径为2,AB 的度数为90︒,则线段MN 的长是______.14.如图,在平面直角坐标系中,过点()11,0A 作x 轴的垂线交直线y x =于点B ,以О为圆心,1OB 为半径作弧,交x 轴于点2A ;过点2A 作x 轴的垂线交直线y x =于点2B ,以O 为圆心,2OB 为半径作弧,交x 轴于点3A ;过点3A 作x 轴的垂线交直线y x =于点3B ,以О为圆心,3OB 为半径作弧,交x 轴于点4A ,……,按此做法进行下去,设由11A B ,12A A ,弧21A B 围成的图形面积记为1S ,由22A B ,23A A ,弧32A B 围成的图形面积记为2S ,由33A B ,34A A ,弧43A B 围成的图形面积记为3S ,……,那么2020S 为_______:15.如图,在△ABC 中,∠C =90°,AB =10cm ,BC =8cm ,点P 从点A 沿AC 向点C 以1cm/s 的速度运动,同时点Q 从点C 沿CB 向点B 以2cm/s 的速度运动(点Q 运动到点B 停止),在运动过程中,四边形PABQ 的面积最小值为_____cm 216.如图,已知在边长为6的正方形FCDE 中,A 为EF 的中点,点B 在边FC 上,且2BF =,连接AB ,P 是AB 上的一动点,过点P 作PM DE ⊥,PN DC ⊥,垂足分别为M ,N ,则矩形PNDM 面积的最大值是______.17.抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如表所示,下列说法: x ···3- 2- 1- 0 1 ··· y ··· 6- 0 4 66 ··· ①抛物线与轴的交点为0,6;②抛物线的对称轴是在轴右侧;③在对称轴左侧,y 随x 增大而减小;④抛物线一定过点()3,0.上述说法正确的是____(填序号). 18.如图,在平面直角坐标系中,Rt ABC 的顶点A C 、的坐标分别是()0,3、3,0.90ACB ∠=︒,2AC BC =,反比例函数()0k y x x=>的图象经过点B ,则k 的值为________.19.如图,在△ABC 中,∠ACB =90º,点D 在边AC 上,AD =4CD ,若∠BAC =2∠CBD ,则tan A = ___.20.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D ,AB =9,AC =6,则cos ∠DCB =________________ .21.如图,在菱形ABCD 中, 3AB AC ==点E 、F 分别在边AB 、AD 上,且 AE DF =,则EF 的最小值为________.22.已知:等边△ABC ,点P 是直线BC 上一点,且PC:BC=1:4,则tan ∠APB=_______,三、解答题23.如图,以△PMN 的边MN 为直径作⊙O ,点P 在⊙O 上,点Q 在线段MN 的延长线上,PM =PQ ,∠Q =30°.(1)求证:直线PQ 是⊙O 的切线;(2)若直径MN =8,求图中阴影部分的面积.24.如图,O 的直径4AB cm =,AM 和BN 是它的两条切线,DE 与O 相切于点E ,并与AM ,BN 分别相交于D ,C 两点,设AD x =,BC y =,求y 关于x 的函数表达式,并在坐标系中画出它的图像.25.如图,在平面直角坐标系中,已知抛物线252y ax bx =++与x 轴交于()5,0A ,()1,0B -两点,与y 轴交于点C .(1)求抛物线的解析式;(2)若点M 是抛物线的顶点,连接AM ,CM ,求AMC 的面积;(3)若点Р是抛物线上的一个动点,过点Р作PE 垂直y 轴于点E ,交直线AC 于点D ,过点D 作x 轴的垂线,垂足为点F ,连接EF ,当线段EF 的长度最短时,求出点P 的坐标.26.已知直线y =x +3分别交x 轴和y 轴于点A 和B ,抛物线y =ax 2+bx +c 经过点A 和B ,且抛物线的对称轴为直线x =﹣2.(1)抛物线与x 轴的另一个交点C 的坐标为 ;(2)试确定抛物线的解析式;(3)在同一平面直角坐标系中分别画出两个函数的图象(请用2B 铅笔或黑色水笔加黑加粗),观察图象,写出二次函数值小于一次函数值的自变量x 的取值范围 .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】连接OC,设弧CED所在圆的半径为R,则OC=R,OM=6−R,根据垂径定理求出CM,根据勾股定理得出方程,求出即可.【详解】解:连接OC,设弧CED所在圆的半径为R,则OC=R,OM=6−R,∵EM经过圆心O,EM⊥CD于M,CD=4,∴CM=DM=2,在Rt△OMC中,由勾股定理得:OC2=OM2+CM2,R2=(6−R)2+22,R=103,故选:D.【点睛】本题考查了勾股定理,垂径定理的应用,用了方程思想,题目比较典型,难度适中.2.B解析:B【分析】连接AF,AD,AE,BE,CE,根据三角形外心的定义,可得PE垂直平分AB,QE垂直平分AC,进而求得AF,DF,AD的长度,可知△ADF是直角三角形,即可求出△ABC的面积.【详解】如图,连接AF,AD,AE,BE,CE,∵点E是△ABC的外心,∴AE=BE=CE,∴△ABE ,△ACE 是等腰三角形,∵点P 、Q 分别是AB 、AC 的中点,∴PE ⊥AB ,QE ⊥AC ,∴PE 垂直平分AB ,QE 垂直平分AC ,∴AF=BF=10, AD=CD=8,在△ADF 中,∵2222286=100=AD DF AF +=+,∴△ADF 是直角三角形,∠ADF=90°,∴S △ABC = ()()1122=1068896BF DF CD AD ⨯++⨯++=, 故选:B .【点睛】本题考查三角形外心的定义,勾股定理逆定理等知识点,解题的关键是得到△ADF 是直角三角形.3.D解析:D【分析】根据三角形内角和定理和圆周角定理求解即可;【详解】∵A 40∠=︒,ABC 70∠=︒,∴180407070ACB ∠=︒-︒-︒=︒, ∵BD 是圆O 的直径,∴90BCD ∠=︒,∴20ACD ∠=︒,∴20ABD ACD ∠=∠=︒,∴()1801804020120AEB BAE ABE∠=︒-∠+∠=︒-︒-︒=︒;故答案选D .【点睛】本题主要考查了圆周角定理、三角形内角和,准确计算是解题的关键. 4.D解析:D【分析】如图连接OB 、OD ,只要证明Rt △OMB ≌Rt △OND ,Rt △OPM ≌Rt △OPN 即可解决问题.【详解】解:如图连接OB 、OD ;∵AB=CD ,∴AB CD =,故①正确∵OM ⊥AB ,ON ⊥CD ,∴AM=MB ,CN=ND ,∴BM=DN ,∵OB=OD ,∴Rt △OMB ≌Rt △OND ,∴OM=ON ,故②正确,∵OP=OP ,∴Rt △OPM ≌Rt △OPN ,∴PM=PN ,∠OPB=∠OPD ,故④正确,∵AM=CN ,∴PA=PC ,故③正确,故选:D .【点睛】本题考查垂径定理、圆心角、弧、弦的关系、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线构造全等三角形解决问题,属于中考常考题型.5.D解析:D【分析】根据二次函数图象的开口方向、对称轴位置、与x 轴的交点坐标等知识,逐个判断即可.【详解】解:抛物线与x 轴有两个不同的交点,因此b 2-4ac >0,故①正确;抛物线开口向上,因此a >0,对称轴为x=1>0,a 、b 异号,因此b <0,抛物线与y 轴交在负半轴,因此c <0,所以abc >0,故②正确;由图象可知,当x=-2时,y=4a-2b+c >0,故③正确;∵对称轴x=-2b a =1 ∴-b=2a当x=-1时,y=a-b+c <0,∴a+2a+c <0,即30a c +<,故④正确;综上所述,正确结论有:①②③④故选:D .【点睛】考查二次函数的图象和性质,掌握a 、b 、c 的值决定抛物线的位置以及二次函数的图象与性质,是正确判断的前提.解析:B【分析】根据抛物线的对称轴可判断①;由抛物线与x 轴的交点及抛物线的对称性以及由x =﹣1时y >0可判断②,由抛物线对称性和增减性,即可判断③;利用抛物线的顶点的纵坐标为3得到244ac b a-=3,即可判断④. 【详解】解:∵抛物线的对称轴为直线x 2b a =-=-2, ∴4a ﹣b =0,所以①正确;∵与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,∴由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间,∴x =﹣1时y >0,即a ﹣b +c >0,∴所以②错误;由抛物线的对称性知(﹣4,y 1)与(0,y 1)关于对称轴对称,∵抛物线开口向下,对称轴为直线x 2b a=-=-2 ∴当x >-2时,y 随x 的增大而减小,∵-2<0<1∴y 1>y 2∴所以③正确;∵抛物线的顶点坐标为(﹣2,3), ∴244ac b a-=3, ∴b 2+12a =4ac ,∵4a ﹣b =0,∴b =4a ,∴b 2+3b =4ac ,所以④正确;故选:B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ):抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.解析:D【分析】由抛物线开口向下,得到a <0,再由对称轴在y 轴左侧,得到a 与b 同号,可得出b <0,又抛物线与y 轴交于正半轴,得到c >0,可得出abc >0,得到①正确;根据图象知,当x =﹣1时,y >0,即a ﹣b +c >0,得到②正确;根据图象知,当x =﹣2时,y <0,即4a ﹣2b +c <0,得到③正确,从而得出结论.【详解】解:∵抛物线的开口向下,∴a <0. ∵02b a-<, ∴b <0. ∵抛物线与y 轴交于正半轴,∴c >0,∴abc >0,故①正确;根据图象知,当x =﹣1时,y >0,即a ﹣b +c >0,故②正确;根据图象知,当x =﹣2时,y <0,即4a ﹣2b +c <0,故③正确.则其中正确的有3个,为①②③.故选:D .【点睛】本题考查了二次函数图象与系数的关系,对于二次函数y =ax 2+bx +c (a ≠0)来说,a 的符号由抛物线开口方向决定;b 的符号由对称轴的位置及a 的符号决定;c 的符号由抛物线与y 轴交点的位置决定;此外还要注意利用抛物线的对称性及x =﹣1,﹣2时对应函数值的正负.8.A解析:A【分析】由二次函数的图象即可判断a 、b 、c 的符号,即可判断①;由对称轴和与x 轴交点坐标即可求出c=-3a 和b=2a ,即可判断②③④;把()()()2232332632632236126=61a b c a a a a a a a a --=-⨯-⨯-=-+-变形之后即可判断⑤;【详解】∵由图象可知开口向下,∴a <0,∵对称轴为x=-1,∴ b <0,抛物线与y 轴的交点在原点上方,∴ c >0,∴ abc >0,故①正确;∵ 抛物线经过点(1,0),对称轴为x=-1,∴ 抛物线与x 轴的另一交点时是(-3,0),∴ a+b+c=0,∵对称轴为x=-1,∴ b=2a ,∴ a+2a+c=0,即c=-3a ,()24443150a b c a a a a -+=-+⨯-=-> ,故②正确;4430a c a a a +=-=< ,故③正确;123a b a a a c -=-=-= ,故④正确; ()()()2232332632632236126=61a b c a a a a a a a a --=-⨯-⨯-=-+- ,∵ ()21a -≥0,由图象得:1a ≠ , ∴32632a b c --<0,故⑤正确;故选:A .【点睛】本题考查了二次函数图象的性质、对称轴以及函数值的求法,正确掌握二次函数的性质是解题的关键.9.C解析:C【分析】设AC=x ,根据三角函数可得,,AB=2x ,求出DC 即可.【详解】解:设AC=x ,∵AC BC ⊥,30ABC ︒∠=,tan ∠ABC=AC BC,3AC BC =,,sin ∠ABC=AC AB, 12AC AB =, AB=2x ,BD=2x ,=(2x +,tan ∠DAC=(22DC x AC x+==,故选:C .【点睛】本题考查了特殊角的三角函数和求三角函数值,解题关键是根据三角函数的定义,利用特殊角,表示出相关线段长.10.B解析:B【分析】设DC=4x ,BD=3x ,根据勾股定理求CD ,再根据∠ACD=∠B ,用三角函数求AD .【详解】解:∵CD AB ⊥,4tan 3DB B DC ==,设DC=4x ,BD=3x , (3x )2+(4x )2=102,∵x>0,解得x=2,∴BD=6,CD=8∵∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B ,∴4tan 3ACD ∠=, ∴43AD CD =,CD=8, ∴323AD =, 故选:B .【点睛】 本题考查了三角函数,勾股定理等知识,解题关键是根据已知的正切值求出线段长. 11.B解析:B【分析】过D 作DH ⊥AC 于H ,根据等腰三角形的性质得到AC=BC=14,∠CAD=45°,求得AH=DH ,得到14CH DH =-,再证明△ACE ∽△DHC ,可得AC CE DH CH=,再列方程,解方程即可得到答案.【详解】解:过D 作DH ⊥AC 于H ,∵在等腰Rt △ABC 中,∠C=90°,AC=14,∴AC=BC=14, ∠CAD=45°,∴AH=DH ,∴14CH DH =-,∵CF ⊥AE ,∴∠DHA=∠DFA=90°,90,DCH HDC DCH CAF ∴∠+∠=︒=∠+∠∴∠HAF=∠HDF ,∴△ACE ∽△DHC ,∴AC CE DH CH=, ∵CE=2EB , ∴283CE =, ∴ 28143,14DH DH=- ∴425DH = 经检验:425DH =符合题意,∴42sin 4555DH AD ===︒, 故选.B【点睛】本题考查了相似三角形的判定和性质,等腰直角三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键. 12.B解析:B【分析】设小正方形的边长为1,根据勾股定理可得AD 、AC 的值,进而可得△ADC 是等腰直角三角形,进而可得AD ⊥CD ,根据相似三角形的判定和性质可得PC =2DP ,根据等量代换和线段和差可得AD =CD =3DP ,继而即可求解.【详解】解析 设小正方形的边长为1,由图形可知,2AD DC AC ===,ADC ∴是等腰直角三角形,AD DC ∴⊥.//AC BD ,2AC CP BD DP ∴==, 2PC DP ∴=,3AD DC DP ∴==,tan 3AD APD DP∴∠==. 故选B .【点睛】本题考查了正方形的性质、等腰直角三角形的判定、勾股定理、相似三角形的判定及其性质以及锐角三角函数.此题难度适中,注意转化思想与数形结合思想的应用. 二、填空题13.【分析】连接OAOBABAC 先根据勾股定理得AB =2再证明MN 是△AEB 的中位线可得MN 的长【详解】连接OAOBABAC ∵的度数为90°∴∠AOB =90°∵OA =OB =2∴AB =2∵AD ⊥PC ∴∠E解析:2【分析】连接OA ,OB ,AB ,AC ,先根据勾股定理得AB =22,再证明MN 是△AEB 的中位线,可得MN 的长.【详解】连接OA ,OB ,AB ,AC ,∵AB 的度数为90°,∴∠AOB =90°,∵OA =OB =2,∴AB =2,∵AD ⊥PC ,∴∠EMC =90°,∵点P 为AB 的中点,∴PA PB =,∴∠ADP =∠BCP ,∵∠CEM =∠DEN ,∴∠DNE =∠EMC =90°=∠DNB ,∵PA PB =,∴∠BDP =∠ADP ,∴∠DEN =∠DBN ,∴DE =DB ,∴EN =BN ,∴N 为BE 的中点;同理得:AM =EM ,∵EN =BN ,∴MN 是△AEB 的中位线,∴MN 12=AB .【点睛】本题考查了圆周角定理,勾股定理,等腰三角形的判定和性质,三角形中位线定理等知识,解题的关键是学会添加常用辅助线构造等腰直角三角形解决问题.14.【分析】根据点A 的取法罗列出部分点A 的横坐标由此可发现规律即的横坐标为:再结合已知即可得到答案【详解】观察发现规律:的横坐标为:的横坐标为:的横坐标为:的横坐标为:的横坐标为:故答案为:【点睛】本题 解析:2017201822π-【分析】根据点A 的取法,罗列出部分点A 的横坐标,由此可发现规律,即n A 的横坐标为:1n -,再结合已知即可得到答案.【详解】观察,发现规律:1A 的横坐标为:1,2A 3A 的横坐标为:2,⋯,∴n A 的横坐标为:1n -n B ∴的横坐标为:1n -404020192019201720182020451223602S ππ⨯⨯∴=-⨯⨯=⋅-故答案为:2017201822π⋅-.【点睛】本题考查了一次函数图像上点的坐标特征以及规律型中的点的变换,解题关键是找出n A 的横坐标为:1n -这一规律.15.15【分析】在Rt △ABC 中利用勾股定理可得出AC=6cm 设运动时间为t (0≤t≤4)则PC=(6-t )cmCQ=2tcm 利用分割图形求面积法可得出S 四边形PABQ=S △ABC-S △CPQS 四边形P解析:15【分析】在Rt △ABC 中,利用勾股定理可得出AC=6cm ,设运动时间为t (0≤t≤4),则PC=(6-t )cm ,CQ=2tcm ,利用分割图形求面积法可得出S 四边形PABQ =S △ABC -S △CPQ ,S 四边形PABQ =(t-3)2+15,则可求出四边形PABQ 的面积最小值,此题得解.【详解】解:在Rt △ABC 中,∠C=90°,AB=10cm ,BC=8cm ,∴=6cm .设运动时间为t (0≤t≤4),则PC=(6-t )cm ,CQ=2tcm ,∴S 四边形PABQ =S △ABC -S △CPQ ,代入得:S 四边形PABQ =12×6×8-12(6-t )×2t 变形得:S 四边形PABQ =(t-3)2+15,∴当t=3时,四边形PABQ 的面积取最小值,最小值为15.故答案为:15.【点睛】本题考查了二次函数的最值以及勾股定理,利用分割图形求面积法,列出二次函数并进行变形求极值是解题的关键.16.24【分析】以FE 为x 轴以FC 为y 轴先建立平面直角坐标系求出AB 的解析式为设P (a )用含a 的式子表示出PMPN 根据矩形面积公式列式根据二次函数的性质即可求解【详解】解:以FE 为x 轴以FC 为y 轴建立平解析:24【分析】以FE 为x 轴,以FC 为y 轴,先建立平面直角坐标系,求出A B 的解析式为223AB y x =--,设P (a ,223a --),用含a 的式子表示出PM ,PN ,根据矩形面积公式列式,根据二次函数的性质即可求解.【详解】解:以FE 为x 轴,以FC 为y 轴,建立平面直角坐标系,∵边长为6的正方形FCDE 中,A 为EF 的中点,2BF =,∴A (-3,0),B (0,-2),C (0,-6),E (-6,0),设A B 的解析式为AB y kx b =+,则032k b b =-+⎧⎨=-⎩,解得232k b ⎧=-⎪⎨⎪=-⎩, ∴223AB y x =--(30x -≤≤), 设P (a ,223a --)(30a -≤≤),则PM=6+a ,PN=()2226433a a ----=-, ∴()2PNDM 22=642433S a a a ⎛⎫+-=-+ ⎪⎝⎭矩形, ∴当a =0时,矩形PNDM 面积的最大值是24.故答案为:24.【点睛】本题考查了二次函数的应用问题,用待定系数法求一次函数的解析式,矩形的面积,正方形的性质等知识点,能灵活运用知识点是解此题的关键.17.①②④【分析】由表格中数据x=0时y=6x=1时y=6;可判断抛物线的对称轴是x=05根据函数值的变化判断抛物线开口向下再由抛物线的性质逐一判断【详解】解:由表格中数据可知x=0时y=6x=1时y=解析:①②④.【分析】由表格中数据x=0时,y=6,x=1时,y=6;可判断抛物线的对称轴是x=0.5,根据函数值的变化,判断抛物线开口向下,再由抛物线的性质,逐一判断.【详解】解:由表格中数据可知,x=0时,y=6,x=1时,y=6,①抛物线与y 轴的交点为(0,6),正确;②抛物线的对称轴是x=0.5,对称轴在y 轴的右侧,正确;③由表中数据可知在对称轴左侧,y 随x 增大而增大,错误.④根据对称性可知,抛物线的对称轴是x=0.5,点(-2,0)的对称点为(3,0),即抛物线一定经过点(3,0),正确;正确的有①②④.故答案为①②④.【点睛】主要考查了二次函数的性质.要熟练掌握函数的特殊值对应的特殊点.解题关键是根据表格中数据找到对称性以及数据的特点求出对称轴,图象与x ,y 轴的交点坐标等. 18.【分析】过作于求解再求解证明由可得再求解从而可得答案【详解】解:过作于由故答案为:【点睛】本题考查的是勾股定理的应用等腰直角三角形的判定与性质锐角三角函数的应用利用待定系数法求解反比例函数的解析式掌 解析:27.4 【分析】 过B 作BH OC ⊥于,H 求解2232,AC OA OC =+= 再求解32,2BC =证明,CH BH = 由cos ,CH BCH BC ∠= 可得2,2322= 再求解3,2CH = 339,3,222BH OH ==+= 从而可得答案. 【详解】解:过B 作BH OC ⊥于,H90,BHC AOC ∴∠=︒=∠()()0,3,3,0,A B3,OA OC ∴==2232,AC OA OC ∴=+=2,AC BC =322BC ∴= 90,45,ACB ACO ∴∠=︒∠=︒45,BCH CBH ∠=︒=∠,CH BH ∴=由cos ,CH BCH BC∠=22=3,2CH ∴= 339,3,222BH OH ∴==+= 93,,22B ⎛⎫∴ ⎪⎝⎭3927.224k xy ∴==⨯= 故答案为:27.4【点睛】本题考查的是勾股定理的应用,等腰直角三角形的判定与性质,锐角三角函数的应用,利用待定系数法求解反比例函数的解析式,掌握以上知识是解题的关键. 19.【分析】将沿BC 翻折180°得到然后通过轴对称的性质及等量代换得出从而得出然后利用勾股定理求出BC 的长度最后利用即可求解【详解】将沿BC 翻折180°得到根据轴对称的性质有∴点DCE 在同一条直线上故答【分析】将BCD △沿BC 翻折180°得到BCE ,然后通过轴对称的性质及等量代换得出ABE AEB ∠=∠,从而得出AB AE =,然后利用勾股定理求出BC 的长度,最后利用即可求解.【详解】将BCD △沿BC 翻折180°得到BCE ,根据轴对称的性质有,BCD CBE BDC BEC ∠=∠∠=∠,90ACB ∠=︒,∴点D 、C 、E 在同一条直线上,90ABD CBD BAC ∠=︒-∠-∠.2BAC CBD ∠=∠,903ABD CBD ∴∠=︒-∠,290ABE ABD CBD CBD ∴∠=∠+∠=︒-∠.90BEC BDC CBD ∠=∠=︒-∠,ABE AEB ∴∠=∠,AB AE =∴.4AD CD =,6AB AE CD ∴==,2211BC AB AC CD ∴=-=,1111tan BC CD A AC ∴===, 11. 【点睛】本题主要考查了三角函数,勾股定理和轴对称,关键是利用角之间的关系构造出等腰三角形.20.【分析】首先利用等角的余角得到∠A=∠DCB 然后根据余弦的定义求出cosA 即可【详解】解:在Rt △ABC 中∵CD ⊥AB ∴∠DCB+∠B=90°∵∠ACB =90°∴∠A+∠B=90°∴∠A=∠DCB 而 解析:23【分析】首先利用等角的余角得到∠A=∠DCB ,然后根据余弦的定义求出cosA 即可.【详解】解:在Rt △ABC 中,∵CD ⊥AB ,∴∠DCB+∠B=90°,∵∠ACB =90°,∴∠A+∠B=90°,∴∠A=∠DCB ,而cosA=AC AB =69=23, ∴cos ∠DCB=23. 故答案为:23. 【点睛】 本题考查了锐角三角函数的定义:在Rt △ABC 中,∠C=90°,我们把锐角A 的邻边a 与斜边c 的比叫做∠A 的余弦,记作cosA .21.【分析】根据菱形的性质可得=3从而得出都是等边三角形利用SAS 即可证出从而得出根据等边三角形的判定可得是等边三角形从而得出即CE 最小时EF 最小根据垂线段最短可得时线段最小利用锐角三角函数即可求出结论解析:2【分析】根据菱形的性质可得AB BC CD AD AC =====3,从而得出ABC ,ACD △都是等边三角形,利用SAS 即可证出EAC FDC ≌,从而得出,EC FC ACE DCF =∠=∠,根据等边三角形的判定可得ECF △是等边三角形,从而得出CE EF CF ==,即CE 最小时,EF 最小,根据垂线段最短可得CE AB ⊥时,线段CE 最小,利用锐角三角函数即可求出结论.【详解】解:∵四边形ABCD 是菱形,且AB AC ==3,∴AB BC CD AD AC =====3,∴ABC ,ACD △都是等边三角形,∴60EAC D ∠=∠=︒,在EAC 和FDC △中EA FD EAC D AC DC =⎧⎪∠=∠⎨⎪=⎩∴EAC FDC ≌,∴,EC FC ACE DCF =∠=∠,∴60ECF ACD ∠=∠=︒,∴ECF △是等边三角形,∴CE EF CF ==,∵CE AB ⊥时,线段CE 最小,最小值为BC·sin ∠B=3333⨯=, ∴EF 的最小值为33 故答案为:33. 【点睛】此题考查的是菱形的性质、等边三角形的判定及性质、全等三角形的判定及性质和解直角三角形,掌握菱形的性质、等边三角形的判定及性质、全等三角形的判定及性质和利用锐角三角函数解直角三角形是解题关键. 22.或【分析】过A 作AD ⊥BC 于D 设等边△ABC 的边长为4a 则DC=2aAD=2aPC=a 分类讨论:当P 在BC 的延长线上时DP=DC+CP=2a+a=3a ;当P 点在线段BC 上即在P′的位置则DP′=DC解析:23或23. 【分析】过A 作AD ⊥BC 于D ,设等边△ABC 的边长为4a ,则DC=2a ,AD=23a ,PC=a ,分类讨论:当P 在BC 的延长线上时,DP=DC+CP=2a+a=3a ;当P 点在线段BC 上,即在P′的位置,则DP′=DC -CP′=a ,然后分别利用正切的定义求解即可.【详解】解:如图,过A 作AD ⊥BC 于D ,设等边△ABC 的边长为4a ,则DC=2a ,3a ,PC=a ,当P 在BC 的延长线上时,DP=DC+CP=2a+a=3a ,在Rt △ADP 中,tan ∠APD=2323AD a DP ==; 当P 点在线段BC 上,即在P′的位置,则DP′=DC -CP′=a ,在Rt△ADP′中,tan∠AP′D=2323 AD aDP a=='.故答案为:233或23.【点睛】本题考查解直角三角形;等边三角形的性质.三、解答题23.(1)見解析;(2)83﹣8 3π【分析】(1)连接OP,由题意易得∠M=∠Q,进而可得∠MPO=∠M=30°,然后可得∠POQ+∠Q=90°,然后问题可求证;(2)由题意得OM=ON=OP=4,由(1)得:∠PON=60°,则有PQ=3OP=43,进而根据扇形面积及割补法可求解.【详解】(1)证明:连接OP,如图所示:∵PM=PQ,∠Q=30°,∴∠M=∠Q,又∵OM=OP,∴∠MPO=∠M=30°,∴∠PON=∠M+∠MPO=30°+30°=60°,∴∠POQ+∠Q=90°,∴∠OPQ=90°,∴PQ⊥OP,∵OP是⊙O的半径,∴PQ与⊙O相切;(2)解:∵MN=8,∴OM=ON=OP=4,由(1)得:∠PON=60°,∵∠Q=30°,∴OQ=2OP,∴根据勾股定理可得PQ =3OP =43,∴图中阴影部分的面积=△OPQ 的面积﹣扇形PON 的面积=2160484438323603ππ⨯⨯⨯-=-. 【点睛】本题主要考查切线的判定及扇形面积,熟练掌握切线的判定及扇形的面积计算公式是解题的关键.24.4y x=(x >0);作图见解析; 【分析】 做辅助线构造直角三角形,运用勾股定理及切线的性质定理可求出y 关于x 的函数解析式,再运用描点法做出函数图像即可;【详解】如图,过点D 作DF BC ⊥,∵AD 、BC 分别是圆O 的切线,∴90OAD OBF ∠=∠=︒,又∵DF BC ⊥, ∴四边形ABFD 是矩形,∴4DF AB cm ==,BF AD =, ∵AD 、BC 、DC 分别是圆O 的切线, ∴DE DA x ==,CE CB y ==,CF y x =-,∴DC x y =+, 由勾股定理得:222DC DF CF =+,即()()2224x y y x +=-+,整理得:4xy =, ∴4y x =, ∴y 关于x 的函数解析式为4y x=(x >0); 如图,做图像:当1x =时,4y =;2x =时,2y =;4x =时,1y =; 过点()1,4,()2,2,()4,1,在平面直角坐标系内连线可得函数图像,【点睛】本题主要考查了切线的性质和反比例函数的解析式求解和作图,准确分析判断是解题的关键.25.(1)y=−12x2+2x+52;(2)152;(3)(25,2)或(25-,2)【分析】(1)利用二次函数的交点式,结合待定系数法即可求解;(2)△AMC的面积=S△MHC+S△MHA=12×MH×OA,即可求解;(3)点D在直线AC上,设点D(m,−12m+52),由题意得,四边形OEDF为矩形,故EF=OD,即当线段EF的长度最短时,只需要OD最短即可,进而求解.【详解】解:(1)令x=0,则y=52,即C(0,52),设抛物线的表达式为y=a(x−5)(x+1),将点C的坐标代入上式得:52=a(0−5)(0+1),解得a=−12,∴抛物线的表达式为:y=−12(x−5)(x+1)=−12x2+2x+52;(2)由抛物线的表达式得:顶点M(2,92),过点M作MH∥y轴交AC于点H,设直线AC的表达式为y=kx+t,则5205tk t ⎧⎪⎨⎪⎩==+,解得:1252kt⎧-⎪⎪⎨⎪⎪⎩==,∴直线AC的表达式为:y=−12x+52,当x=2时,y=32,则MH=92−32=3,则△AMC的面积=S△MHC+S△MHA=12×MH×OA=12×3×5=152;(3)点D在直线AC上,设点D(m,−12m+52),由题意得,四边形OEDF为矩形,故EF=OD,即当线段EF的长度最短时,只需要OD最短即可,∴EF2=OD2=m2+(−12m+52)2=54m2−52m+254,∵54>0,故EF2存在最小值(即EF最小),此时m=1,∴点D(1,2),∵点P、D的纵坐标相同,∴2=−12x 2+2x +52,解得x =25± 故点P 的坐标为(25+,2)或(25-,2).【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,是解题的关键.26.(1)(﹣1,0);(2)y =x 2+4x +3;(3)﹣3<x <0.【分析】(1)先求出点B ,点A 坐标,由对称性可求点C 坐标;(2)利用待定系数法可求解析式;(3)由图象可求解.【详解】解:(1)∵直线y =x +3分别交x 轴和y 轴于点A 和B ,∴点A (﹣3,0),点B (0,3),∵抛物线的对称轴为直线x =﹣2.抛物线与x 轴的另一个交点为C ,∴点C (﹣1,0),故答案为(﹣1,0);(2)∵抛物线y =ax 2+bx +c 经过点A (﹣3,0),B (0,3),点C (﹣1,0),∴30930c a b c a b c =⎧⎪=-+⎨⎪=-+⎩,解得:143a b c =⎧⎪=⎨⎪=⎩,∴二次函数的解析式为:y =x 2+4x +3;(3)如图所示:当﹣3<x <0时,二次函数值小于一次函数值,故答案为:﹣3<x <0.【点睛】本题考查了二次函数与不等式,待定系数法求解析式,求出抛物线的解析式是本题的关键.。
一、选择题1.如图,已知⊙O 的半径为5,弦,AB CD ⊥垂足为E ,且8AB CD ==,则OE 的长为( )A .3B .32C .4D .422.如图,ABC ∆是O 的内接三角形,AB BC =,30BAC ∠=︒,AD 是直径,8AD =,则AC 的长为( )A .4B .43C .83D .23.如图,AB 是⊙O 的直径,C ,D 是⊙O 上的点,且OC ∥BD ,AD 分别与BC ,OC 相交于点E ,F ,则下列结论: ①AD ⊥BD ;②BC 平分∠ABD ;③BD=2OF=CF ;④△AOF ≌△BED ,其中一定成立的是( )A .①②B .①③④C .①②④D .③④4.如图,△ABC 中,AB=AC ,∠ABC=70°,点O 是△ABC 的内心,则∠BOC 的度数为( )A .120°B .110°C .115°D .130°5.已知二次函数2(21)1y mx m x m =+++-的图象与x 轴有两个交点,则m 的取值范围是( ) A .18m >B .18mC .18m >-且0m ≠ D .18m 且0m ≠6.如图,一边靠墙(墙有足够长),其它三边用12m 长的篱笆围成一个矩形(ABCD )花园,这个花园的最大面积是( )A .18m 2B .12 m 2C .16 m 2D .22 m 27.若二次函数22y x x c =-+的图象与x 轴有两个交点,与y 轴交于正半轴,则下列说法中正确的是( )A .该函数图象的对称轴是直线2x =B .该函数图象与y 轴有可能交于点()0,2C .若点()11,A c y -,()2,B c y 是该函数图象上的两点,则12y y <D .该函数图象与x 轴的交点一定位于y 轴的右侧8.如图,抛物线2y ax bx c =++的顶点坐标为(1,4)a -,点()14,A y 是该抛物线上一点,若点()22,B x y 是该抛物线上任意一点.有下列结论:①420a b c -+>;②抛物线2y ax bx c =++与x 轴交于点(1,0)-,(3,0); ③若21y y >,则24x >;④若204x ≤≤,则235a y a -≤≤. 其中,正确结论的个数是( )A .0B .1C .2D .39.近日,重庆观音桥步行街惊现震撼的裸眼3D 未来城市,超清LED 巨幕,成功吸引了广大市民络绎不绝的前来打卡,一时间刷爆朋友圈.萱萱想了解该LED 屏GH 的高度,进行了实地测量,她从大楼底部E 点沿水平直线步行30米到达自动扶梯底端D 点,在D 点用仪器测得屏幕下端点H 的仰角为36°.然后她再沿着i=4:3长度为40米的自动扶梯到达扶梯顶端C 点,又沿水平直线行走了40米到达B 点,在B 点测得屏幕上端点G 的仰角为50°(A ,B ,C ,D ,E ,H ,G 在同一个平面内,且B ,C 和A ,D ,E 分别在同一水平线上),则该LED 屏GH 的高度约为( )(结果精确到 0.1,参考数据sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin50°≈0 .77,tan50°≈1.19)A .122.0 米B .122.9米C .111.0米D .111.9米10.在Rt ABC △中,90C ∠=︒,1cos 3B =,则tan A 的值为( ) A 3 B 3C 2D .10311.在Rt △ABC 中,若∠C=90°,BC=2AC ,则cosA 的值为( ) A .12B .32C 25D 5 12.北碚区政府计划在缙云山半山腰建立一个基站AB ,其设计图如图所示,BF ,ED 与地面平行,CD 的坡度为1:0.75i =,EF 的坡角为45︒,小王想利用所学知识测量基站顶部A 到地面的距离,若BF ED =,15CD =米,32EF =米,小王在山脚C 点处测得基站底部B 的仰角为37︒,在F 点处测得基站顶部A 的仰角为60︒,则基站顶部A 到地面的距离为( )(精确到0.13 1.73≈,sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)A.21.5米B.21.9米C.22.0米D.23.9米二、填空题13.已知扇形的弧长为4π,半径为9,则此扇形的圆心角为_______度.14.如图,在边长为4cm的正六边形ABCDEF中,点P在BC上,则PEF的面积为________2cm.15.已知:二次函数y=ax2+bx+c(a≠0)中的x和y满足如表:x…012345…y…30-10m8…(2)求出这个二次函数的解析式_____;(3)当0<x<3时,则y的取值范围为_____.16.若点A(﹣12021,y1)、B(40412021,y2)都在二次函数y=﹣x2+2x+m的图像上,则y1_____y2.17.如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端A点安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为2m处达到最高,高度为5m,水柱落地处离池中心距离为6m,则水管的长度OA是________m.18.如图,ABC 中,90A ∠=︒,点D 在AC 上,ABD ACB ∠=∠,15AD AC =,则sin ABD ∠=________.19.如图,矩形ABCD 中,AE =13AD ,将△ABE 沿BE 折叠后得到△GBE ,延长BG 交CD 于F 点,若CF =FD =3,则BC 的长为_____.20.如图,已知△ABC 的顶点A 、B 在反比例函数y =23(x <0)的图象上,∠ABC =90°,∠ACB =30°,AC ⊥x 轴,点B 在点A 右下方,若AC =4,则点B 的坐标为_____.21.如图1,动点P 从菱形ABCD 的顶点A 出发,沿A C D →→以1/cm s 的速度运动到点D 停止.设点P 的运动时间为(),x s PAB 的面积为()2y cm.表示y 与x 的函数关系的图象如图2所示,则a 的值为________________________.22.在AOB 中,90AOB ∠=︒,30ABO ∠=︒,将AOB 绕顶点O 顺时针旋转,旋转角为()0180θθ︒<<︒,得到11AOB .(1)如图1,连接1AA 、1BB ,设1AOA 和1BOB 的面积分别为1S 、2S .则12:S S =__________.(2)如图2,设OB 中点为Q ,11A B 中点为P ,连接QP ,若1AO =,当θ=_______︒时,线段QP 长度最小,最小值为_____________.三、解答题23.如图1,AB 为O 的直径,AB CD ⊥于点M ,点E 为CM 上一点,AE 的延长线交O 于点F ,AE DE =.点N 为AF 的中点,连接ON .(1)判断ADF 的形状,并说明理由; (2)求证:OM ON =;(3)如图2,连接FB 并延长,过点D 做DG FB ⊥,交FB 的延长线于点G ,求证:DG 是O 的切线.24.如图,AB 为O 的直径,点C 为AB 上方的圆上一动点,过点C 作O 的切线l ,过点A 作直线l 的垂线AD ,交O 于点D ,连接OC ,CD ,BC ,BD ,且BD 与OC 交于点E .(1)求证:CDE CBE ≅△△;(2)若6AB =,填空:①当CD 的长是________时,OBE △是等腰三角形;②当BC =________时,四边形OADC 为菱形.25.天气寒冷,某百货商场准备销售一种围巾,围巾的进货价格为每条50元,并且每条的售价不低于进货价,经过市场调查,每月的销售量y (条)与每条的售价x (元)之间满足人体所示的函数关系.(1)求每月销售y (条)与售价x (元)的函数关系式;(2)物价部门规定,该围巾的每条利润不允许高于进货价的30%,设这种围巾每月的总利润为w (元),那么售价定为多少元可获得最大利润?最大利润是多少?26.跳绳时,绳甩到最高处时的形状是抛物线,正在甩绳的甲、乙两名同学拿绳的手间距AB 为6米,到地面的距离AO 和BD 均为0.9米,身高为1.4米的小丽站在距点O 的水平距离为1米的点F 处,绳子甩到最高处时刚好通过她的头顶点E .以点O 为原点建立如图所示的平面直角坐标系,设此抛物线的解析式为20.9y ax bx =++. (1)求该抛物线的表达式;(2)如果小明站在OD 之间,且离点O 的距离为3米,当绳子甩到最高处时刚好通过他的头顶上方0.4米处,求小明的身高是多少?此时小明若向点O 方向走多少米,就能让绳子甩到最高处时,绳子刚好通过他的头顶;(3)如果有若干个与小明同身高的同学一起站在OD 之间玩跳绳,现知只要绳子甩到最高处时超过她们的头顶且每个同学同方向站立时的脚跟之间距离不小于0.55米就可以一起玩,问最多可以几个同学一起玩.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】连接OB ,作OP ⊥AB 于E ,OF ⊥CD 于F ,根据弦、弧、圆心角、弦心距的关系定理得到OP=OF ,得到矩形PEFO 为正方形,根据正方形的性质得到OP=PC ,根据垂径定理和勾股定理求出OP ,根据勾股定理计算即可. 【详解】解:连接OB ,作OP ⊥AB 于E ,OF ⊥CD 于F ,则BP=12AB=4,四边形PEFO 为矩形, ∵AB=CD ,OP ⊥AB ,OF ⊥CD , ∴OP=OF ,∴矩形PEFO 为正方形, ∴OP=PC ,在Rt △OPB 中,222254OB BP --, ∴22OP PC +2, 故选:B . 【点睛】本题考查了垂径定理以及勾股定理、矩形的判定与性质等知识,正确得出O 到AB ,CD 的距离是解题关键.2.B解析:B 【分析】连接CD ,根据圆周角定理,可以得到30CAD ∠=︒,在Rt ACD △中,利用锐角三角函数求出AC 的长即可. 【详解】解:如图,连接CD ,∵AB BC =,30BAC ∠=︒, ∴AB 和BC 所对的圆心角都是60︒, ∵AD 是直径,∴CD 所对的圆心角也是60︒, ∴30CAD ∠=︒,在Rt ACD △中,3cos308432AC AD =⋅︒=⨯=. 故选:B . 【点睛】本题考查圆周角定理和锐角三角函数,解题的关键是掌握圆周角定理,以及利用锐角三角函数解直角三角形的方法.3.A解析:A 【分析】根据直径的性质,垂径定理等知识一一判断即可; 【详解】 解:∵AB 是直径, ∴∠ADB =90°, ∴AD ⊥BD ,故①正确, ∵OC ∥BD ,BD ⊥AD , ∴OC ⊥AD , ∴AC CD =, ∴∠ABC =∠CBD ,∴BC 平分∠ABD ,故②正确, ∵AF =DF ,AO =OB , ∴BD =2OF≠CF ,故③错误,△AOF 和△BED 中,没有对应边相等,故④错误, 故选:A . 【点睛】本题考查直径的性质、垂径定理、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4.B【分析】根据内心的定义即可求得∠OBC+∠OCB ,然后根据三角形内角和定理即可求解.【详解】解:∵AB=AC ,∠ABC=70°,∴∠ACB=70°,∵点O 是△ABC 的内心,∴∠OBC=12∠ABC=35°,∠OCB=12∠ACB=35°, ∴∠OBC+∠OCB=70°,∴∠BOC=180°-(∠OBC+∠OCB )=110°.故选:B .【点睛】此题主要考查了三角形的内切圆与内心,正确理解∠OBC=12∠ABC=35°,∠OCB=12∠ACB=35°是关键. 5.C解析:C【分析】根据二次函数2(21)1y mx m x m =+++-的图象与x 轴有两个交点,可得△=221410m m m -⨯->(+)()且0m ≠求解后即可得出结论.【详解】解:∵原函数是二次函数,∴0m ≠,∵二次函数2(21)1y mx m x m =+++-的图象与x 轴有两个交点,则△=240b ac ->,即221410m m m -⨯->(+)(), 解得18m >-. ∴m 的取值范围是18m >-且0m ≠. 故选:C .【点睛】本题考查了抛物线与x 轴的交点问题,掌握抛物线与x 轴的交点问题与一元二次方程根之间的关系是解题的关键.6.A解析:A根据题意可以列出相应的函数关系式,然后化为顶点式即可解答本题.【详解】解:设与墙垂直的矩形的边长为xm ,则这个花园的面积是:S=x (12-2x )=()222122318x x x -+=--+,∴当x=3时,S 取得最大值,此时S=18,故选:A .【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用二次函数的性质解答. 7.D解析:D【分析】根据二次函数的对称轴公式可判断A ,根据函数图像与x 轴的交点求出c 的取值范围,可判断B ,根据c 的取值范围,结合函数的增减性可判断C ,根据函数的开口方向,对称轴,以及与y 轴交于正半轴可判断D .【详解】解:在二次函数22y x x c =-+中,对称轴为直线x =221--⨯=1,开口向上, ∵二次函数22y x x c =-+的图象与x 轴有两个交点,则对应方程220x x c -+=中,△=()224c -->0, ∴c <1,∵与y 轴交于正半轴,∴c >0,即0<c <1,∴该函数图象与y 轴不可能交于点()0,2,∴-1<c -1<0, ∵函数开口向上,∴当x <1时,y 随x 的增大而减小,∴点()11,A c y -,()2,B c y 都在对称轴左侧,∴12y y >,∵对称轴为直线x =221--⨯=1,与y 轴交于正半轴,开口向上, ∴该函数图象与x 轴的交点一定位于y 轴的右侧,故选D .【点睛】 本题考查了二次函数的对称轴,增减性,图像性质,解题的关键是掌握二次函数的性质,结合图像回答问题.8.C解析:C【分析】利用对称轴公式和顶点坐标得出4a a b c -=++,2b a =-,3c a =-,则可对①进行判断;抛物线解析式为223y ax ax a =--,配成交点式得()()31y a x x =-+,可对②进行判断;根据二次函数对称性和二次函数的性质可对③进行判断;计算4x =时5y a =,根据二次函数的性质可对④进行判断【详解】①根据抛物线()20y ax bx c a =++≠的图像可知 抛物线的对称轴12b x a=-= 2b a ∴=-顶点坐标为(1、4a -)4a a b c ∴-=++3c a ∴=-424435a b c a a a a ∴-+=+-=抛物线开口向上,则0a >420a b c ∴-+>故结论①正确②2b a =-,3c a =-()()22331y ax ax a a x x ∴=--=-+∴抛物线()20y ax bx c a =++≠与x 轴交于(1-、0),(3、0)故结论②正确③A (4、1y )关于直线1x =的对称点为(2-、1y )∴当21y y >时,则24x >或22x <-故结论③错误④当4x =时,116416835y a b c a a a a =++=--=∴当204x ≤≤时,245a y a -≤≤故结论④错误故选:C .【点睛】本题考查了抛物线与x 轴的交点,也考查了二次函数的性质,解题关键是把求二次函数与x 轴交点问题转化为解关于x 一元二次方程,并熟练掌握二次函数的性质.9.A解析:A【分析】作CM ⊥AE 于M ,设射线BC 交GE 于N ,则CN=ME=DM+DE ,CM=NE=NH+EH ,由三角函数定义求出EH=21.9米,由坡度求出DM=24米,NE=CM=32米,得出CN=54米,BN=94米,再由三角函数定义求出GN≈111.86米,得出GE=143.86米,即可得出答案.【详解】解:作CM ⊥AE 于M ,设射线BC 交GE 于N ,如图所示:则CN=ME=DM+DE ,CM=NE=NH+EH ,由题意得:∠GBN=50°,BC=DC=40米,DE=30米,∠EDH=36°,∵tan ∠EDH EH DE=, ∴EH=DE×tan ∠EDH≈30×0.73=21.9(米),∵DC 的坡度为4:3CM DM =, ∴4325NE CM DC ===米,3245MD DC ==米, ∴CN=ME=DM+DE=24+30=54(米),∴BN=BC+CN=40+54=94(米),∵tan ∠GBN GN BN=, ∴GN=BN×tan ∠GBN≈94×1.19≈111.86(米),∴GE=GN+NE=111.86+32=143.86(米),∴GH=GE-EH=143.86-21.9≈121.96≈122.0 (米);故选:A .【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,能借助仰角构造直角三角形,利用三角函数解直角三角形是解题的关键.10.C解析:C【分析】根据1cos 3B =,设AB=3x ,BC=x ,勾股定理求出AC ,根据三角函数的定义求tan A 即可. 【详解】 解:在Rt ABC △中,90C ∠=︒,1cos 3B =, 设AB=3x ,BC=x ,2222(3)22AC AB BC x x x =-=-=,2tan 22BC A AC x ===, 故选:C .【点睛】本题考查了三角函数,解题关键是根据三角函数值确定直角三角形三边关系,再根据三角函数的意义计算.11.D解析:D【分析】设AC=k ,则BC=2k ,AB=5k ,根据三角函数的定义计算即可.【详解】如图,设AC=k ,则BC=2k ,根据勾股定理,得AB=22AC BC +=5k , ∴cosA=5AC AB k ==5, 故选D.【点睛】本题考查了锐角三角函数,熟记三角函数的定义,并灵活运用勾股定理是解题的关键. 12.B解析:B【分析】根据直角三角形的边角关系及坡度、坡角的定义求解.【详解】解:如图,分别过D 、B 作DM 、BO 垂直于地面于M 、O 两点,过F 作FN 垂直于直线ED 于点F ,设DM=x ,则有:143,0.7534DM MC x MC ==∴=由勾股定理可得: 22222291516DM CM DC x x +=∴+=,, 解之得:x=12,∴DM=12,MC=9, ∵32EF =,EF 的坡角为45°,∴FN=NE=3,∴BO=FN+DM=3+12=15,OC=BO÷tan37°≈15÷0.75=20,∵BF=ED ,∴BF=(OC-MC-NE )÷2=4,∴AB=BF×tan60°≈4×1.73=6.92,∴AO=AB+BO=6.92+15=21.92≈21.9(米),故选B .【点睛】本题考查解直角三角形,熟练掌握直角三角形的边角关系、锐角三角函数的应用及坡度、坡角的定义是解题关键. 二、填空题13.80【分析】设此扇形的圆心角为x°代入弧长公式计算得到答案【详解】解:设此扇形的圆心角为x°由题意得解得x=80故答案为:80【点睛】本题考查的是弧长的计算掌握弧长的公式是解题的关键解析:80【分析】设此扇形的圆心角为x°,代入弧长公式计算,得到答案.【详解】解:设此扇形的圆心角为x°,由题意得,94180x ππ=, 解得,x=80,故答案为:80.【点睛】 本题考查的是弧长的计算,掌握弧长的公式180n r l π=是解题的关键. 14.【分析】连接BFBE 过点A 作AT ⊥BF 于T 证明S △PEF =S △BEF 求出△BEF 的面积即可【详解】解:连接BFBE 过点A 作AT ⊥BF 于T ∵ABCDEF 是正六边形∴CB ∥EFAB =AF ∠BAF =120解析:83【分析】连接BF ,BE ,过点A 作AT ⊥BF 于T ,证明S △PEF =S △BEF ,求出△BEF 的面积即可.【详解】解:连接BF ,BE ,过点A 作AT ⊥BF 于T ,∵ABCDEF 是正六边形,∴CB ∥EF ,AB =AF ,∠BAF =120°,∴S △PEF =S △BEF ,∵AT ⊥BF ,AB =AF ,∴BT =FT ,∠BAT =∠FAT =60°,∴BT =FT =AB•sin60°=23∴BF =2BT =3∵∠AFE =120°,∠AFB =∠ABF =30°,∴∠BFE =90°,∴S △PEF =S △BEF =12•EF•BF =12×4×4383 故答案为:3【点睛】本题考查正多边形与圆,解直角三角形等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.15.【分析】(1)先求得对称轴然后根据抛物线的对称性即可求得;(2)把点(03)(10)(30)代入设抛物线解析式利用待定系数法求函数解析式;(3)利用图表和抛物线的性质即可得出答案【详解】解:(1)∵解析:243y xx =-+13y -≤< 【分析】(1)先求得对称轴,然后根据抛物线的对称性即可求得;(2)把点(0,3)、(1,0)、(3,0)代入设抛物线解析式,利用待定系数法求函数解析式;(3)利用图表和抛物线的性质即可得出答案.【详解】解:(1)∵抛物线y =ax 2+bx +c (a ≠0)过点(1,0),(3,0),∴抛物线对称轴为直线x 132+==2, ∴点(0,3)关于对称轴的对称点是(4,3),∴m =3,故答案为3;(2)把点(0,3)、(1,0)、(3,0)代入设抛物线解析式y =ax 2+bx +c 得30930c a b c a b c =⎧⎪++=⎨⎪++=⎩,解得413a c b =⎧==-⎪⎨⎪⎩,∴抛物线的解析式为y =x 2﹣4x +3,故答案为y =x 2﹣4x +3;(3)由抛物线的性质得当x=2时,y 有最小值-1,由图表可知抛物线y =ax 2+bx +c 过点(0,3),(3,0),因此当0<x <3时,则y 的取值范围为是﹣1≤y <3.【点睛】此题考查待定系数法求函数解析式,二次函数的性质,掌握待定系数法求函数解析式的方法与步骤是解决问题的关键.16.<【分析】把AB 两点坐标代入函数关系式再根据已知条件求出的值最后求出答案即可【详解】解:∵点A (﹣y1)B (y2)都在二次函数y =﹣x2+2x+m 的图像上∴====∴故答案为:<【点睛】本题考查了二解析:<【分析】把A ,B 两点坐标代入函数关系式,再根据已知条件求出21y y -的值,最后求出答案即可.【详解】解:∵点A (﹣12021,y 1)、B (40412021,y 2)都在二次函数y =﹣x 2+2x +m 的图像上, ∴21y y -=224041404111()2[()2()]2021202120212021m m -+⨯+---+⨯-+ =2111(2)2(2)()202120212021--+⨯-+-222021+ =22412124()4()20212021202120212021-+-+-++ =402021> ∴12y y <故答案为:<.【点睛】本题考查了二次函数图象上点的坐标特征,能选择适当的方法求解是解答此题的关键. 17.【分析】设抛物线解析式为y=a (x-h )2+k 将(25)与(60)代入解析式求得a 的值再令x=0求得y 的值即可得出答案【详解】解:设抛物线解析式为y=a (x-h )2+k 由题意可知抛物线的顶点为(25 解析:154【分析】设抛物线解析式为y=a (x-h )2+k ,将(2,5)与(6,0)代入解析式,求得a 的值,再令x=0,求得y 的值,即可得出答案.【详解】解:设抛物线解析式为y=a (x-h )2+k ,由题意可知抛物线的顶点为(2,5),与x 轴的一个交点为(6,0),∴0=a (6-2)2+5,解得:516a, ∴抛物线解析式为:25(2)516y x =--+ 当x=0时,2515(02)5164y ==--+ ∴水管的长度OA 是154m . 故答案为:154. 【点睛】本题考查了二次函数在实际问题中的应用,数形结合并熟练掌握待定系数法是解题的关键.18.【分析】由为公共角证明可得由设则求解再利用从而可得答案【详解】解:为公共角设(负根舍去)故答案为:【点睛】本题考查的是相似三角形的判定与性质求解锐角三角函数值掌握以上知识是解题的关键【分析】由A ∠为公共角,ABD ACB ∠=∠,证明,ABD ACB ∽ 可得2,AB AD AC =由15AD AC =,设,AD m = 则5,AC m = 求解,AB = ,BD == 再利用 sin ,AD ABD BD∠=从而可得答案. 【详解】 解: A ∠为公共角,ABD ACB ∠=∠,,ABD ACB ∴∽ ,AB AD AC AB∴= 2,AB AD AC ∴= 15AD AC =,设,AD m = 5,AC m ∴= 2255,AB m m m ∴==,AB ∴= (负根舍去)90,A ∠=︒,BD ∴===sinAD ABD BD ∴∠===故答案为:6【点睛】 本题考查的是相似三角形的判定与性质,求解锐角三角函数值,掌握以上知识是解题的关键.19.6【分析】延长BF 交AD 的延长线于点H 证明△BCF ≌△HDF (AAS )由全等三角形的性质得出BC =DH 由折叠的性质得出∠A =∠BGE =90°AE =EG 设AE =EG =x 则AD =BC =DH =3x 得出EH解析:【分析】延长BF 交AD 的延长线于点H ,证明△BCF ≌△HDF (AAS ),由全等三角形的性质得出BC =DH ,由折叠的性质得出∠A =∠BGE =90°,AE =EG ,设AE =EG =x ,则AD =BC =DH =3x ,得出EH =5x ,由锐角三角函数的定义及勾股定理可得出答案.【详解】解:延长BF 交AD 的延长线于点H ,∵四边形ABCD 是矩形,∴AD =BC ,AD ∥BC ,∠A =∠BCF =90°,∴∠H =∠CBF ,在△BCF 和△HDF 中,CBF H BCF FDH CF DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCF ≌△HDF (AAS ),∴BC =DH ,∵将△ABE 沿BE 折叠后得到△GBE ,∴∠A =∠BGE =90°,AE =EG ,∴∠EGH =90°,∵AE =13AD , ∴设AE =EG =x ,则AD =BC =DH =3x ,∴ED =2x ,∴EH =ED +DH =5x ,在Rt △EGH 中,sin ∠H =155EG x EH x ==, ∴sin ∠CBF =15CF BF =, ∴315BF =, ∴BF =15,∴BC 222215366BF CF --= 故答案为:66【点睛】本题考查了折叠的性质,矩形的性质,全等三角形的判定及性质,要注意折叠的图形中的相等的角和相等的线段,解题关键是利用倍长中线法正确作出辅助线证△BCF ≌△HDF .20.(﹣﹣2)【分析】过点B作BD⊥AC于点D解直角三角形求出BCBDCD得出关于mn的方程组求出方程组的解即可【详解】解:过点B作BD⊥AC于点D∵在Rt△ACB中BC=AC•cos∠ACB=2∴在R解析:(﹣3,﹣2)【分析】过点B作BD⊥AC于点D,解直角三角形求出BC、BD、CD,得出关于m、n的方程组,求出方程组的解即可.【详解】解:过点B作BD⊥AC于点D,∵在Rt△ACB中,BC=AC•cos∠ACB=3∴在Rt△BCD中,CD=BC•cos∠ACB=333,BD=12BC3,∴AD=AC﹣CD=4﹣3=1,设A(m,3m),B(n23),依题意知0>n>m,故BD=n﹣m,AD 2323,∴3 23231 n m⎧-==,解得:33 mn⎧=-⎪⎨=-⎪⎩∴点B32),32).【点睛】本题主要考查反比例函数与平面几何的综合以及解直角三角形,熟练掌握反比例函数图像上的点的坐标特征,是解题的关键.21.【分析】由函数图像可得:当时此时面积最大可得当时重合可得如图过作于求解再求解再利用列方程解方程可得答案【详解】解:由函数图像可得:当时重合此时面积最大当时重合如图过作于菱形经检验:符合题意故答案为: 解析:43 【分析】由函数图像可得:当4x s =时,=PAB S a ,此时面积最大,可得=4AC , 当4x a =+时,,P D 重合,可得,AB CD a == 如图,过C 作CK AB ⊥于,K 求解2,CK = 再求解30CAK ∠=︒,30BCK ∠=︒, 再利用cos ,CK BCK BC ∠= 列方程,解方程可得答案. 【详解】解:由函数图像可得:当4x s =时,,P C 重合,=PAB S a ,此时面积最大,14=4AC ∴=⨯,当4x a =+时,,P D 重合, ()144,AB CD a a ∴==⨯+-=如图,过C 作CK AB ⊥于,K1,2a CK a ∴= 2,CK ∴=1sin ,2CK CAK CA ∴∠== 30CAK ∴∠=︒,60ACK ∴∠=︒,菱形ABCD ,,30,AB BC a BCA BAC ∴==∠=∠=︒603030BCK ∴∠=︒-︒=︒,cos ,CK BCK BC ∠=23cos30,2a ∴=︒=4,=3a ∴=经检验:a =【点睛】 本题考查的是从函数图像中获取信息,菱形的性质,锐角三角函数的运用,掌握以上知识是解题的关键.22.1∶330【分析】(1)由旋转的性质解得继而证明结合30°的正切值再根据相似三角形的面积比等于相似比的平方解题即可;(2)连接根据三角形三边关系得到当在同一直线上时线段长度最小由直角三角形斜边中线的解析:1∶3 30 1. 【分析】(1)由旋转的性质,解得1111,,OA OA OB OB AOA BOB θ==∠=∠=,继而证明11()AOA BOB SAS ,结合30°的正切值,再根据相似三角形的面积比等于相似比的平方解题即可;(2)连接OP ,根据三角形三边关系得到当O Q P 、、在同一直线上时,线段QP 长度最小,由直角三角形斜边中线的性质结合含30°角的直角三角形性质,可证1OA P 是等边三角形,继而解得OP 、OQ 的长,最后由=PQ OP OQ -解题即可.【详解】解:(1)旋转1111,,OA OA OB OB AOA BOB θ∴==∠=∠=11AOA BOB ∴、均是等腰三角形11tan 303OA OA OB OB ==︒= 11AOA BOB ∴ 相似比3k = 2213k ∴== 12:13S S ∴=:故答案为:1∶3;(2)连接OP ,在OQP 中,OQ QP OP +>当O Q P 、、在同一直线上时,OP 有最小值,即=PQ OP OQ -有最小值,当O Q P 、、在同一直线上时, P 是11A B 的中点,1111=2=O B P P A A ∴ 1130A B O ABO ∠=∠=︒ 1112OA A B ∴=11==P OP A OA ∴1OA P ∴是等边三角形,160OP A ∴∠=︒1906030AOA ∴∠=︒-︒=︒30θ∴=︒1OA =∴1OP =,3tan 30OA OB ==︒Q 为OB 中点, 1322OQ OB ∴== 312PQ ∴=-.【点睛】本题考查旋转的性质、直角三角形斜边的中线、含30°角的直角三角形、正切、三角形三边关系、等边三角形的判定与性质等知识,在重要考点,难度一般,掌握相关知识是解题关键.三、解答题23.(1)等腰三角形,见解析;(2)见解析;(3)见解析【分析】(1)根据垂径定理定理和圆周角定理可得C ADC ∠=∠,F C ∠=∠,然后根据已知AE DE =可以得到 EAD ADC ∠=∠,得到F EAD ∠=∠,得到结果(2)连接OE ,OD ,可证AOE DOE ≌△△.可得AEO DEO ∠=∠.利用角平分线的性质求出OM ON =(3)由题意可得AOE DOE ∠=∠,NOE MOE ∠=∠根据180AOE MOE ∠+∠=︒得到180DOE NOE ∠+∠=︒, 证出N 、O 、D 三点共线,证出矩形DNFG ,可证DG OD ⊥,结论得证.【详解】(1)等腰三角形证明:如图1 连接AC∵AB 为O 的直径,AB CD ⊥于点M∴C ADC ∠=∠∵F C ∠=∠(同弧所对圆周角相等)∵AE DE =,∴EAD ADC ∠=∠∴F EAD ∠=∠,∴AD DF =.∴ADF 是等腰三角形(2)如图2 连接OE ,OD , 在AOE △与DOE △中AE DE EO EO OA OD =⎧⎪=⎨⎪=⎩∴AOE △≌DOE △∴AEO DEO ∠=∠∵OM DE ⊥ 点N 为AF 的中点∴ 90ONE OME ∠=∠=︒利用角平分线的性质得OM ON =.(3)∵AOE △≌DOE △∴AOE DOE ∠=∠∵90ONE OME ∠=∠=︒,AEO DEO ∠=∠∴NOE MOE ∠=∠又∵180AOE MOE ∠+∠=∴180DOE NOE ∠+∠=∴N 、O 、D 三点共线∵DG FB ⊥,90ONE ∠=,90AFG ∠=∴四边形DNFG 为矩形∴90GDN ∠=∴DG 是O 的切 【点睛】本题主要考查了等腰三角形的性质,垂径定理,圆周角定理,切线的判定等概念,熟练掌握知识点是解题的关键.24.(1)见解析;(2)①34π;②3【分析】(1)根据题意可证//OC AD ,OC BD ⊥,再结合垂径定理即可证明(2)①根据等腰三角形的性质,结合(1)得CD CB =根据等弦对等弧得CD BC =,再根据弧长公式求解即可;②根据菱形的性质即可求解【详解】解:(1)∵过点C 作O 的切线l ,∴OC l ⊥,∵AD l ⊥,∴//OC AD ,∵AB 为O 的直径,点D 为AB 上方的圆上一点, ∴AD BD ⊥,∴BD OC ⊥90CED CEB ∴∠=∠=︒,∴点E 为BD 中点,∴BE DE =,∴在CDE △和CEB △中DB BE CED CEB CE CE =⎧⎪∠=∠⎨⎪=⎩∴()CDE CBE SAS ≅;(2)①若OBE △为等腰三角形,OC BD ⊥ ∴OBE △为等腰直角三角形∴45EOB EBO ∠=∠=︒CDE CBE ≅△△CD CB ∴=CD BC ∴=6345331801804AB OB n r BC πππ=∴=⨯∴=== 34CD π∴= ∴当34CD π=时OBE △为等腰三角形 ②若四边形OADC 为菱形132AO OC CD DA AB ∴===== CD BC =3BC ∴=∴当3BC =时OADC 为菱形【点睛】本题考查了切线的性质定理,平行线的判定,全等三角形的判定,等腰三角形的性质,菱形的性质,熟练掌握以上性质和定理是解题关键.25.(1)y 101200x =-+(x≥50);(2)售价定为65元可获得最大利润,最大利润8250元.【分析】(1)设一次函数解析式y kx b =+ (x≥50),利用待定系数法将(60,600),(80,400)代入即得解得解析式;(2)根据题意列出函数关系式,再利用二次函数的性质求最大利润即可,注意考虑自变量的范围,围巾的每条利润不允许高于进货价的30%.【详解】解:(1)设一次函数解析式y kx b =+ (x≥50).由函数图像可知(60,600),(80,400)在函数图像上,代入即得:6006040080k b k b =+⎧⎨=+⎩解得:101200k b =-⎧⎨=⎩. 所以,每月销售y (条)与售价x (元)的函数关系式:y 101200x =-+(x≥50). (2)由题意得:()()=10120050w x x -+-化简得:2=10170060000w x x -+-由函数解析式可知对称轴是x=85时,x≤85时,w 随x 的增加而增大.因为,围巾的每条利润不允许高于进货价的30%,那么 x≤50×(1+30%),即x≤65. 所以,当x=65时,w 取到最大值:2=106517006560000=8250w -⨯+⨯-. 所以,售价定为65元可获得最大利润,最大利润8250元.【点睛】本题考查了一次函数与二次函数在销售问题中的应用,理清题中的数量关系并熟练掌握二次函数的性质是解题的关键.26.(1)20.10.60.9y x x =-++;(2)1.4米;(3)8个【分析】(1)已知抛物线解析式,求其中的待定系数,选定抛物线上两点E (1,1.4),B (6,0.9)坐标代入即可;(2)小明站在OD 之间,且离点O 的距离为3米,即OF=3,求当x=3时的函数值即可得出小明身高;将y=1.4代入解析式求出x 的值,再减去1即可得出答案;(3)求出y=1.4时x 的值,再用两者之间的差除以0.55,取整得出答案.【详解】解:(1)由题意得把点E (1,1.4),B (6,0.9),代入y=ax 2+bx+0.9得,0.9 1.43660.90.9a b a b ++=⎧⎨++=⎩, 解得0.10.6a b =-⎧⎨=⎩, ∴所求的抛物线的解析式是y=-0.1x 2+0.6x+0.9;(2)把x=3代入y=-0.1x 2+0.6x+0.9得:y=-0.1×32+0.6×3+0.9=1.8;1.8-0.4=1.4(米),∴小明的身高是1.4米;把y=1.4代入y=-0.1x 2+0.6x+0.9得-0.1x2+0.6x+0.9=1.4,解得:x1=1,x2=5(舍),则3-1=2(米),此时小明向点O方向走2米就能让绳子甩到最高处时绳子刚好通过他的头顶.(3)当y=1.4时,-0.1x2+0.6x+0.9=1.4,解得x1=1,x2=5,∴5-1=4,∴4÷0.55≈7.27,∴最多可以8个同学一起玩.【点睛】本题考查了二次函数的应用及坐标的求法,此题为数学建模题,解题的关键是注意审题,将实际问题转化为求函数最值问题,培养自己利用数学知识解答实际问题的能力.。
初三数学下期末一模试卷带答案一、选择题1.如图所示,已知A (12,y 1),B(2,y 2)为反比例函数1y x =图像上的两点,动点P(x ,0)在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( )A .(12,0) B .(1,0) C .(32,0) D .(52,0) 2.在数轴上,与表示6的点距离最近的整数点所表示的数是( ) A .1B .2C .3D .43.如图,若一次函数y =﹣2x +b 的图象与两坐标轴分别交于A ,B 两点,点A 的坐标为(0,3),则不等式﹣2x +b >0的解集为( )A .x >32B .x <32C .x >3D .x <34.下列运算正确的是( ) A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =5.如图,在菱形ABCD 中,E 是AC 的中点,EF ∥CB ,交AB 于点F ,如果EF=3,那么菱形ABCD 的周长为( )A .24B .18C .12D .96.如图的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A 点到B 点,甲虫沿大半圆弧ACB 路线爬行,乙虫沿小半圆弧ADA 1、A 1EA 2、A 2FA 3、A 3GB 路线爬行,则下列结论正确的是 ( )A.甲先到B点B.乙先到B点C.甲、乙同时到B点 D.无法确定7.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.3D.38.若点P1(x1,y1),P2(x2,y2)在反比例函数kyx=(k>0)的图象上,且x1=﹣x2,则()A.y1<y2B.y1=y2C.y1>y2D.y1=﹣y29.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.1201508x x=-B.1201508x x=+C.1201508x x=-D.1201508x x=+10.为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()捐款数额10203050100人数24531A.众数是100B.中位数是30C.极差是20D.平均数是30 11.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C1处,BC1交AD于点E,则线段DE的长为()A .3B .154C .5D .15212.下列分解因式正确的是( ) A .24(4)x x x x -+=-+ B .2()x xy x x x y ++=+ C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-二、填空题13.色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表: 抽取的体检表数n 501002004005008001000120015002000色盲患者的频数m 3 7 13 29 37 55 69 85 105 138色盲患者的频率m/n0.060 0.070 0.065 0.073 0.074 0.069 0.069 0.071 0.070 0.069根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01). 14.如图,在四边形ABCD 中,∠B=∠D=90°,AB =3, BC =2,tanA =43,则CD =_____.15.如图,添加一个条件: ,使△ADE ∽△ACB ,(写出一个即可)16.如图,反比例函数y=kx的图象经过▱ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD ⊥DC ,▱ABCD 的面积为6,则k=_____.17.对于有理数a 、b ,定义一种新运算,规定a ☆b =a 2﹣|b|,则2☆(﹣3)=_____. 18.计算:21(1)211x x x x ÷-+++=________.19.已知M 、N 两点关于y 轴对称,且点M 在双曲线12y x=上,点N 在直线y=﹣x+3上,设点M 坐标为(a ,b ),则y=﹣abx 2+(a+b )x 的顶点坐标为 .20.若关于x 的一元二次方程kx 2+2(k+1)x+k -1=0有两个实数根,则k 的取值范围是三、解答题21.如图,点B 、C 、D 都在⊙O 上,过点C 作AC ∥BD 交OB 延长线于点A ,连接CD ,且∠CDB=∠OBD=30°,DB=63cm . (1)求证:AC 是⊙O 的切线;(2)求由弦CD 、BD 与弧BC 所围成的阴影部分的面积.(结果保留π)22.如图,抛物线y =ax 2+bx ﹣2与x 轴交于两点A (﹣1,0)和B (4,0),与Y 轴交于点C ,连接AC 、BC 、AB ,(1)求抛物线的解析式;(2)点D 是抛物线上一点,连接BD 、CD ,满足ABC 35DBC S S ∆=V ,求点D 的坐标; (3)点E 在线段AB 上(与A 、B 不重合),点F 在线段BC 上(与B 、C 不重合),是否存在以C 、E 、F 为顶点的三角形与△ABC 相似,若存在,请直接写出点F 的坐标,若不存在,请说明理由. 23.解分式方程:23211x x x +=+- 24.4月18日,一年一度的“风筝节”活动在市政广场举行,如图,广场上有一风筝A ,小江抓着风筝线的一端站在D 处,他从牵引端E 测得风筝A 的仰角为67°,同一时刻小芸在附近一座距地面30米高(BC =30米)的居民楼顶B 处测得风筝A 的仰角是45°,已知小江与居民楼的距离CD =40米,牵引端距地面高度DE =1.5米,根据以上条件计算风筝距地面的高度(结果精确到0.1米,参考数据:sin67°≈1213,cos67°≈513,tan67°≈125,2≈1.414).25.如图是某市一座人行天桥的示意图,天桥离地面的高BC 是10米,坡面AC 的倾斜角45CAB ∠=︒,在距A 点10米处有一建筑物HQ .为了方便行人推车过天桥,市政府部门决定降低坡度,使新坡面DC 的倾斜角30BDC ∠=︒,若新坡面下D 处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).(参考数据:2 1.414≈,3 1.732≈)26.如图,在Rt △ABC 中,∠C=90°,∠BAC 的角平分线AD 交BC 边于D .以AB 上某一点O 为圆心作⊙O ,使⊙O 经过点A 和点D . (1)判断直线BC 与⊙O 的位置关系,并说明理由; (2)若AC=3,∠B=30°. ①求⊙O 的半径;②设⊙O 与AB 边的另一个交点为E ,求线段BD 、BE 与劣弧DE 所围成的阴影部分的图形面积.(结果保留根号和π)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【详解】∵把A(12,y1),B(2,y2)代入反比例函数y=1x得:y1=2,y2=12,∴A(12,2),B(2,12),∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=kx+b,把A、B的坐标代入得:122122k bk b⎧+⎪⎪⎨⎪+⎪⎩==,解得:k=-1,b=52,∴直线AB的解析式是y=-x+52,当y=0时,x=52,即P(52,0),故选D.【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.2.B解析:B【解析】【分析】的大小,即可得到结果.【详解】46 6.25<<Q,2 2.5∴<<,的点距离最近的整数点所表示的数是2,故选:B.【点睛】此题考查了实数与数轴,以及算术平方根,熟练掌握各自的性质是解本题的关键.3.B解析:B【解析】【分析】根据点A的坐标找出b值,令一次函数解析式中y=0求出x值,从而找出点B的坐标,观察函数图象,找出在x轴上方的函数图象,由此即可得出结论.【详解】解:∵一次函数y=﹣2x+b的图象交y轴于点A(0,3),∴b=3,令y=﹣2x+3中y=0,则﹣2x+3=0,解得:x=32,∴点B(32,0).观察函数图象,发现:当x <32时,一次函数图象在x 轴上方, ∴不等式﹣2x+b >0的解集为x <32. 故选:B . 【点睛】本题考查了一次函数与一元一次不等式,解题的关键是找出交点B 的坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.4.C解析:C 【解析】 【分析】分别计算出各项的结果,再进行判断即可. 【详解】A.2222a a a +=,故原选项错误;B. 322223x x y xy x y xy y ++---,故原选项错误;C. 3412()a a =,计算正确;D. 222()ab a b =,故原选项错误. 故选C 【点睛】本题主要考查了合并同类项,同底数幂的乘法,幂的乘方以及积的乘方,熟练掌握运算法则是解题的关键.5.A解析:A 【解析】【分析】易得BC 长为EF 长的2倍,那么菱形ABCD 的周长=4BC 问题得解. 【详解】∵E 是AC 中点, ∵EF ∥BC ,交AB 于点F , ∴EF 是△ABC 的中位线, ∴BC=2EF=2×3=6, ∴菱形ABCD 的周长是4×6=24, 故选A .【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.6.C解析:C 【解析】12π(AA 1+A 1A 2+A 2A 3+A 3B)= 12π×AB ,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B 点。
一、选择题1.下列事件是必然事件的是( )A .有两边及一角对应相等的两个三角形全等B .若a 2=b 2则有a =bC .二次函数的图象是双曲线D .圆的切线垂直于过切点的半径 2.如图,PA PB 、分别与О相切于A B 、两点,点C 为О上一点,连接AC 、,BC 若50P ∠=,则ACB ∠的度数为( )A .115B .130C .65D .753.我国古代数学名著《九章算术》中有“勾股定理”问题:“今有勾八步,股十五步,问勾中容圆径几何?”其意思是“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少步?”此问题的答案是 ( ).A .3步B .4步C .6步D .8步4.如图,AB 为⊙0的直径,点C 在⊙0上,且CO ⊥AB 于点O ,弦CD 与AB 相交于点E ,若∠BEC= 68°,则∠ABD 的度数为( )A .20°B .23°C .25°D .34°5.在同一坐标系中,函数y ax b =+与2(0)y ax bx a =+≠的图象可能是( ) A . B . C . D . 6.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图象可能是( )A .B .C .D .7.已知抛物线24y x bx =++的顶点在x 轴上,则b 的值为( )A .2B .4C .-4D .8.抛物线23y x =向左平移5个单位,再向下平移1个单位,所得到的抛物线是( ) A .23(5)1y x =-+B .23(-5)1y x =-C .23(5)1y x =+-D .23(5)1y x =++9.如图,在Rt ABC ∆中,90,3,2C BC AB ∠=︒==,则B 等于( )A .15︒B .20︒C .30D .60︒10.一人乘雪橇沿坡比1:3的斜坡笔直滑下,滑下的距离s (m )与时间t (s )之间的关系为s =8t +2t 2,若滑到坡底的时间为5s ,则此人下降的高度为( )A .3B .45mC .3D .90m11.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC 和CD 上,下列结论:①CE CF =;②75AEB ∠=︒;③BE DF EF +=;④正方形对角线:13AC =,其中正确的序号是( )A .①②④B .①②C .②③④D .①③④ 12.如图,△ABC 、△FED 区域为驾驶员的盲区,驾驶员视线PB 与地面BE 的央角∠PBE =43°,视线PE 与地面BE 的夹角∠PEB =20°,点A ,F 为视线与车窗底端的交点,AF //BE ,AC ⊥BE ,FD ⊥BE .若A 点到B 点的距离AB =1.6m ,则盲区中DE 的长度是( )(参考数据:sin43°≈0.7,tan43°≈0.9,sin20°≈0.3,tan20°≈0.4)A .2.6mB .2.8mC .3.4mD .4.5m二、填空题13.如图,已知矩形ABCD 中3AB =,4BC =,将三角板的直角顶点P 放在矩形内,移动三角板保持两直角边分别经过点B 、C ,则PD 的最小值为________.14.如图,在边长为2的正六边形ABCDEF 中,P 是ED 的中点,则AP =_______.15.如图,矩形OABC 中,3OA =,5AB =,抛物线2y x bx c =++的顶点为P ,且经过点(),M m n 和()4,N m n +,其中点M ,N 位于矩形OABC 的内部(不含边界),则MNP ∆的面积是___________,b c +的取值范围是___________.16.已知二次函数2221y x mx m =-++(m 为常数),当自变量x 的值满足31x -≤≤-时,与其对应的函数值y 的最小值为5,则m 的值为__________.17.在平面直角坐标系中,已知()1,A m -和()5,B m 是抛物线21y x bx =++上的两点,则抛物线21y x bx =++的顶点坐标为_________.18.正方形ABCD 、正方形FECG 如图放置,点E 在BC 上,点G 在CD 上,且BC =3EC ,则tan ∠FAG =_____.19.正三角形的边长为2,则它的边心距为_____.20.在ABC 中,90C ∠=︒,若5sin 13B =,则cos A =________. 21.如图,将矩形纸片ABCD 沿过点C 的直线折叠,使得点B 落在矩形内点B '处,折痕为CE .(1)点B '恰好为AC 中点时,AE BE的值为______. (2)点B '在AC 上且D 、B '、E 在同一条直线上时,AE BE 的值为______.22.如图,一艘轮船在小岛A 的北偏东60°方向且距小岛80海里的B 处,沿正西方向航行一定时间后到达小岛的北偏西45°的C 处,则该船航行的路程为_____海里.三、解答题23.如图,一组等距的平行线上有一个半圆,点O 为圆心,AB 为直径,点A ,B ,C ,D 是半圆弧与平行线的交点.只用无刻度的直尺作图.(保留作图痕迹)(1)在图1中作出BD 边上的中线CE .(2)在图2中作BCD ∠的角平分线CF .24.已知:在O 中,四边形ABCD 的边AD 与O 相切于点A ,点B ,C 在O 上,//AD BC .(1)如图1,求证:AB AC =;(2)如图2,延长DC 交O 于点E ,连接AE 交BC 于点F ,若AD BC =,求证:AF BF =; (3)如图3,在(2)的条件下,连接BO 并延长交O 于点G ,交CD 于点H ,若724GH AD =,求tan ABG ∠的值.25.如图,在矩形ABCD 中,AB =6cm ,BC =12cm ,点P 从点A 出发沿着AB 以每秒1cm 的速度向点B 移动;同时点Q 从点B 出发沿着BC 以每秒2cm 的速度向点C 运动.设△DPQ 的面积为S ,运动时间为t 秒.(1)用含t 的代数式表示出BP 的长为 cm ,CQ 的长为 cm ;(2)写出S与t之问的函数关系式;(3)当△DPQ的面积最小时,请判断线段PQ与对角线AC的关系,并说明理由.26.某公司在市场销售“国耀2020”品牌手机,第一年售价定为4500元时,销售量为14百万台,根据以往市场调查经验,从第二年开始,手机每降低500元,销售量就增加2百万台,设该手机在市场销售的年份为x年(x为整数).(1)根据题意,填写下表:第x年123 (x)售价(元)45004000…销售量(百万台)1416…(百万元),试问该公司销售“国耀2020”手机在第几年的年销售额可以达到最大?最大值为多少百万元?(3)若生产一台“国耀2020”手机的成本为3000元,如果你是该公司的决策者,要使公司的累计总利润最大,那么“国耀2020”手机销售年就应该停产,去创新新的手机.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由三角形全等的判定方法可判断,A由平方根的含义可判断,B由二次函数的图像可判断,C由圆的切线的性质可判断.D再结合必然事件的概念可得答案.【详解】解:有两边及一角对应相等的两个三角形不一定全等,所以是随机事件,故A不符合题意;若22a b =则有,a b =±所以是随机事件,故B 不符合题意;二次函数的图象是抛物线,所以是不可能事件,故C 不符合题意;圆的切线垂直于过切点的半径,是必然事件,故D 符合题意;故选:.D【点睛】本题考查的是确定事件与随机事件的概念,同时考查了二次函数的图像,圆的切线的性质,掌握以上知识是解题的关键.2.A解析:A【分析】由切线的性质得出∠OAP=∠OBP=90°,利用四边形内角和可求∠AOB=130°,再利用圆周角定理可求∠ADB=65°,再根据圆的内接四边形对角互补可求∠ACB .【详解】解:如图所示,连接OA 、OB ,在优弧AB 上取点D ,连接AD 、BD ,∵ AP 、BP 是切线,∠P=50°,∴ ∠OAP=∠OBP=90°,∴∠AOB=360°-90°-90°-50°=130°,∴∠ADB=65°,又∵圆的内接四边形对角互补,∴∠ACB=180°-∠ADB=180°-65°=115°.故选:A .【点睛】本题考查了切线的性质、圆周角定理、圆内接四边形的性质、解题的关键是连接OA 、OB ,求出∠AOB .3.C解析:C【分析】根据题意,得点E 、点D 、点F 分别为O 与AB 、BC 、AC 的交点,连接OA 、OB 、OC ;根据勾股定理,计算得AC ;设O 的半径为r ;根据内切圆性质,得OD BC ,OE AB ⊥,OF AC ⊥;再结合三角形面积关系,通过计算,即可得到答案.【详解】如图,直角ABC ,O 是直角ABC 的内切圆,点E 、点D 、点F 分别为O 与AB 、BC 、AC 的交点,连接OA 、OB 、OC根据题意,得8AB =,15BC = ∴2217AC AB BC =+= 设O 的半径为r ∵O 是直角ABC 的内切圆∴ODBC ,OE AB ⊥,OF AC ⊥,OD OE OF r === ∴ABC AOB BOC COA S S S S =++△△△△∴11112222AB BC AB r BC r AC r ⨯=⨯+⨯+⨯ ∴81581517r r r ⨯=++∴3r =∴O 的直径为6,即直径6步 故选:C .【点睛】本题考查了三角形内切圆、勾股定理、一元一次方程的知识;解题的关键是熟练掌握三角形内切圆、勾股定理的性质,从而完成求解.4.B解析:B【分析】连接OD ,可得∠ODC=∠OCD=22°,从而可求得∠AOD=46°,结合圆周角定理,即可求解.【详解】连接OD ,∵CO ⊥AB ,∠BEC= 68°,∴∠OCD=90°-68°=22°,∵CO=CD ,∴∠ODC=∠OCD=22°,∴∠COD=180°-22°-22°=136°,∴∠AOD=136°-90°=46°,∴∠ABD=12∠AOD=23°, 故选B .【点睛】本题主要考查圆周角定理以及等腰三角形的性质,掌握“同弧或等弧所对的圆周角等于圆心角的一半”,是解题的关键. 5.A解析:A【分析】根据二次函数的c 值为0,确定二次函数图象经过坐标原点,再根据a 值确定出二次函数的开口方向与一次函数所经过的象限即可得解.【详解】解:2(0)y ax bx a =+≠,0c ,∴二次函数经过坐标原点,故B 、C 选项错误; A 、根据二次函数开口向上0a >,对称轴b x 02a =->, 所以,0b <,一次函数经过第一三象限,0a >,与y 轴负半轴相交,所以,0b <,符合,故本选项正确;D 、二次函数图象开口向下,0a <,一次函数经过第一三象限,0a >,矛盾,故本选项错误.故选:A .【点睛】本题考查了二次函数的图象,一次函数的图象,熟练掌握函数解析式的系数与图象的关系是解题的关键.6.B解析:B【分析】先由一次函数y ax b =+的图象得到a 、b 的正负,再与二次函数2y ax bx c =++的图象的开口方向、对称轴位置相比较即可做出判断.【详解】解:A 、由抛物线可知,a <0,x =﹣2b a<0,得b <0,由直线可知,a >0,b >0,故本选项错误;B 、由抛物线可知,a <0,x =﹣2b a <0,得b <0,由直线可知,a <0,b <0,故本选项正确;C 、由抛物线可知,a >0,x =﹣2b a >0,得b <0,由直线可知,a >0,b >0,故本选项错误;D 、由抛物线可知,a <0,x =﹣2b a<0,得b <0,由直线可知,a <0,b >0,故本选项错误.故选:B .【点睛】 本题主要考查一次函数的图象、二次函数2y ax bx c =++的图象与性质,熟练掌握两函数图象与解析式的系数的关系是解答的关键. 7.D解析:D【分析】抛物线的顶点在x 轴上,则顶点的纵坐标为0,根据顶点纵坐标公式,列方程求解.【详解】解:抛物线24y x bx =++的顶点纵坐标为241441b ⨯⨯-⨯, ∵顶点在x 轴上, ∴241441b ⨯⨯-⨯=0, 解得b 2=16,b=±4.故选:D .【点睛】本题考查了二次函数的性质,抛物线y=ax 2+bx+c 的顶点在x 轴上,则顶点坐标的纵坐标为0.8.C解析:C【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=3x 2向左平移5个单位所得直线解析式为:y=3(x+5)2;再向下平移1个单位为:y=3(x+5)2-1.故选:C .【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键. 9.C解析:C【分析】由锐角三角函数余弦的定义即可得出∠B=30°.【详解】解:∵∠C=90°,,AB=2,∴cos 2BC B AB ==, ∴∠B=30°,故选:C .【点睛】此题考查了解直角三角形,熟练掌握锐角三角函数的定义是解题的关键.10.B解析:B【分析】根据题意求出滑下的距离s ,根据坡度的概念求出坡角,根据直角三角形的性质解答即可.【详解】解:设斜坡的坡角为α,当t=5时,2852590s =⨯+⨯=,∵斜坡的坡比1∴tanα=3, ∴α=30°, ∴此人下降的高度=12×90=45(m ), 故选:B .【点睛】本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解题的关键. 11.A解析:A【分析】证明()Rt ABE Rt ADF HL ≅△△即可证明①正确,由①的结论得到三角形CEF 是等腰直角三角形,即可证明②正确,根据AC 垂直平分EF 可以判断③错误,利用锐角三角函数值求出AC 的长度证明④正确.【详解】解:∵四边形ABCD 是正方形,∴AB AD =,90B D ∠=∠=︒,∵AEF 是等边三角形,∴AE AF =, 在Rt ABE △和Rt ADF 中,AE AF AB AD =⎧⎨=⎩, ∴()Rt ABE Rt ADF HL ≅△△,∴BE DF =,∵BC CD =,∴BC BE CD DF -=-,即CE CF =,故①正确;∵CE CF =,90C ∠=︒,∴45CEF ∠=︒,∵60AEF ∠=︒,∴180604575AEB ∠=︒-︒-︒=︒,故②正确;如图,连接AC ,交EF 于点G ,∵AE AF =,CE CF =,∴AC 是EF 的垂直平分线,∵CAF DAF ∠≠∠,∴DF FG ≠,同理BE EG ≠,∴BE DF EF +≠,故③错误;∵AEF 是边长为2的等边三角形,ACB ACD ∠=∠,∵AC EF ⊥,EG FG =, ∴3sin 60232AG AE =⋅︒=⨯=112CG EF ==, ∴13AC AG CG =+=+,故④正确.故选:A .【点睛】本题考查四边形综合题,解题的关键是掌握正方形的性质,等边三角形的性质,解直角三角形的方法.12.B解析:B【分析】首先证明四边形ACDF是矩形,利用∠PBE的正弦值可求出AC的长,即可得DF的长,利用∠PEB的正切值即可得答案.【详解】∵FD⊥AB,AC⊥EB,∴DF∥AC,∵AF∥EB,∴四边形ACDF是平行四边形,∵∠ACD=90°,∴四边形ACDF是矩形,∴DF=AC,在Rt△ACB中,∵∠ACB=90°,∠ABE=43°,∴AC=AB•sin43°≈1.6×0.7=1.12(m),∴DF=AC=1.12(m),在Rt△DEF中,∵∠FDE=90°,∠PEB=20°,∴tan∠PEB=DF≈0.4,DE∴DE≈1.12=2.8(m),0.4故选:B.【点睛】本题考查解直角三角形的应用及矩形的判定与性质,熟练掌握各三角函数的定义是解题关键.二、填空题13.【分析】点P的运动轨迹是以BC为直径在矩形内的半圆圆心在线段BC的中点处连接圆心和点D交半圆于点P则此时PD最短利用勾股定理求出OD的长再减去OP的长即可【详解】由题意可得:点P的运动轨迹是以BC为2【分析】点P的运动轨迹是以BC为直径,在矩形内的半圆,圆心在线段BC的中点处,连接圆心和点D,交半圆于点P,则此时PD最短,利用勾股定理求出OD的长,再减去OP的长即可【详解】由题意可得:点P的运动轨迹是以BC为直径,在矩形内的半圆,圆心在线段BC的中点处,设圆心为点O,如图:连接OD,交半圆与点P,则此时PD最短,4 BC=∴圆的半径122OP OC BC===3AB DC==在Rt DCO中22222313OD DC OC=+=+=132PD OD OP∴=-=-故答案为:132-.【点睛】本题考查了最值问题,矩形的性质,勾股定理,解题关键是能准确分析出点P的运动轨迹.14.【分析】连接AE过点F作FH⊥AE根据正六边形的内角和得出∠AFE=∠DEF=120°再根据等腰三角形的性质可得∠FAE=∠FEA=30°得出∠AEP=90°由直角三角形的性质和勾股定理求得FHAE解析:13【分析】连接AE,过点F作FH⊥AE,根据正六边形的内角和得出∠AFE=∠DEF=120°,再根据等腰三角形的性质可得∠FAE=∠FEA=30°,得出∠AEP=90°,由直角三角形的性质和勾股定理求得FH,AE,再利用勾股定理即可得出AP.【详解】解:如图,连接AE,过点F作FH⊥AE,∵六边形ABCDEF是正六边形,∴AB=BC=CD=DE=EF=AF=2,∠AFE=∠DEF=120°,∴∠FAE =∠FEA =30°,∴∠AEP =90°,∴FH =12AF =1,∴AH=,∴AE=2AH =∵P 是ED 的中点,∴EP =12DE =1,∴AP==【点睛】本题考查了正多边形、勾股定理及等腰三角形的性质等知识,掌握相关图形的性质并作辅助线构造出直角三角形是解题的关键.15.【分析】根据题意先把抛物线的一次项系数和常数项用含的式子表示出来从而表示出点P 的坐标再利用两点间的距离求出MN 的长和点P 到MN 的距离即可求出三角形的面积;再根据点MN 在矩形内部求出的范围进而可求的范 解析:42b c -<+<【分析】根据题意,先把抛物线的一次项系数和常数项用含,m n 的式子表示出来,从而表示出点P 的坐标,再利用两点间的距离求出MN 的长,和点P 到MN 的距离,即可求出三角形的面积;再根据点M ,N 在矩形内部求出,m n 的范围,进而可求b c +的范围【详解】点M 和点N 的纵坐标均为n 可知,M 与N 关于对称轴对称,点M (m 、n )点N (4m +、n )∴MN 的距离为:44m m +-=∴点P 的横坐标为:2m +抛物线2y x bx c =++的对称轴为:2b x =- 22b m ∴-=+ 24b m ∴=--将点 M (m 、n )代入2y x bx c =++得:2m bm c n ++=,则24c m m n =++①,点P 为抛物线的顶点,则点P 的纵坐标为:22244416164444ac b c m m c m m a ----==---,将①式代入得P 点的坐标为(2m +、4n -)∴点P 到MN 的距离为:()44n n --=14482PMN S ∴=⨯⨯=△ 2224424b c m m m n m m n +=--+++=++-②点M 在矩形的内部,045m m >⎧∴⎨+<⎩01m ∴<<点N 在矩形的内部03n ∴<<代入②式有:42b c -<+<故答案为:①8;②42b c -<+<【点睛】本题考查了二次函数的性质以及二次函数图像上点的特征,解题关键是用含,m n 式子表示出点P 的坐标,结合题意求出,m n 的范围16.-5或1【分析】利用配方法可得出:当x=m 时y 的最小值为1分m <-3-3≤m≤-1和m >-1三种情况考虑:当m <-3时由y 的最小值为5可得出关于m 的一元二次方程解之取其较小值;当-3≤m≤-1时y 的解析:-5或1【分析】利用配方法可得出:当x=m 时,y 的最小值为1.分m <-3,-3≤m≤-1和m >-1三种情况考虑:当m <-3时,由y 的最小值为5可得出关于m 的一元二次方程,解之取其较小值;当-3≤m≤-1时,y 的最小值为1,舍去;当m >-1时,由y 的最小值为5可得出关于m 的一元二次方程,解之取其较大值.综上,此题得解.【详解】解:∵y=x 2-2mx+m 2+1=(x-m )2+1,∴当x=m 时,y 的最小值为1.当m <-3时,在-3≤x≤-1中,y 随x 的增大而增大,∴9+6m+m 2+1=5,解得:m 1=-5,m 2=-1(舍去);当-3≤m≤-1时,y 的最小值为1,舍去;当m >-1时,在-3≤x≤-1中,y 随x 的增大而减小,∴1+2m+m 2+1=5,解得:m 1=-3(舍去),m 2=1.∴m 的值为-5或1.故答案为:-5或1.【点睛】本题考查了二次函数的最值以及二次函数图象上点的坐标特征,分m <-3,-3≤m≤-1和m>-1三种情况求出m 的值是解题的关键.17.(2-3)【分析】根据坐标特点判定AB 两点是一对对称点从而得到抛物线的对称轴根据对称轴x=确定b 的值从而确定顶点坐标【详解】∵和是抛物线上的两点∴抛物线对称轴为x==2∴顶点坐标的横坐标为2;∵∴b解析:(2,-3).【分析】根据坐标特点,判定A ,B 两点是一对对称点,从而得到抛物线的对称轴,根据对称轴x=2b a-,确定b 的值,从而确定顶点坐标. 【详解】 ∵()1,A m -和()5,B m 是抛物线21y x bx =++上的两点,∴抛物线对称轴为x=152-+=2, ∴顶点坐标的横坐标为2; ∵22b -=, ∴b= -4, ∴241y x x =-+,当x=2时,22421y =-⨯+= -3,∴抛物线的顶点坐标为(2,-3),故应填(2,-3).【点睛】本题考查了利用抛物线的对称点确定顶点坐标,熟练掌握抛物线对称轴与对称点的关系,抛物线顶点坐标的计算公式是解题的关键.18.【分析】根据题意可以设EC=a 然后即可得到ADDG 和AG 的长然后作FH ⊥AG 利用锐角三角函数和勾股定理可以得到AH 和FH 的长从而可以得到tan ∠FAG 的值【详解】解:作FH ⊥AG 于点H ∵正方形FEC 解析:15【分析】根据题意,可以设EC=a ,然后即可得到AD 、DG 和AG 的长,然后作FH ⊥AG ,利用锐角三角函数和勾股定理可以得到AH 和FH 的长,从而可以得到tan ∠FAG 的值.【详解】解:作FH ⊥AG 于点H ,∵正方形FECG ,设EC =FG=a ,则BC =AD =CD =3a ,∵四边形ABCD 是正方形,∴∠D=90°,DG=BE=2a,∴AG=22AD DG=13a,∴sin∠DAG=13a =21313,∵AD∥GF,∴∠HGF=∠DAG,∴sin∠HGF=213,∵sin∠HGF=HFGF,∴HFa =21313,解得HF=21313a,∴HG=313a,∴AH=AG﹣HG=13a﹣313a=1013a,∴tan∠FAH=FHAH =21313101313aa=15,即tan∠FAG=15,故答案为:15.【点睛】本题考查正方形的性质、锐角三角形函数,解答本题的关键是明确题意,利用数形结合的思想解答.19.【分析】如图连接OBOC;求出∠BOC=120°进而求出∠BOD=60°运用三角函数即可解决问题【详解】解:如图△ABC 为正三角形点O 为其中心;作OD ⊥BC 于点D ;连接OBOC ;∵OA =OC ∠BOC 解析:3 【分析】 如图,连接OB 、OC ;求出∠BOC =120°,进而求出∠BOD =60°,运用三角函数即可解决问题.【详解】解:如图,△ABC 为正三角形,点O 为其中心;作OD ⊥BC 于点D ;连接OB 、OC ;∵OA =OC ,∠BOC =120°,∴BD =12BC =1,∠BOD =12∠BOC =60°, ∴tan ∠BOD =BD OD , ∴OD =33BD =33, 即边长为2的正三角形的边心距为33. 故答案为:33.【点睛】本题考查了正三角形的性质、三角函数、边心距的计算;熟练掌握正三角形的性质,根据题意画出图形,利用数形结合的思想求解是解答本题的关键;20.【分析】根据三角函数的性质一个锐角的正弦值等于它余角的余弦值可求【详解】解:∴故答案为:【点睛】本题考查了三角函数的性质解题关键是正确理解三角函数的意义得出一个锐角的正弦值等于它余角的余弦值解析:513【分析】根据三角函数的性质一个锐角的正弦值等于它余角的余弦值可求.【详解】解:90C ∠=︒,5sin 13B =,∴513=AC AB , 5cos 13AC A AB ==, 故答案为:513. 【点睛】 本题考查了三角函数的性质,解题关键是正确理解三角函数的意义,得出一个锐角的正弦值等于它余角的余弦值.21.【分析】(1)根据三角形的面积推出边的比即可得到结果;(2)根据余弦的定义和勾股定理即可得到结果;【详解】(1)∵四边形ABCD 是矩形∴∠B=90°当点恰好为中点时则设则由题知:∴∴∵△ABC 和△E解析:12 【分析】(1)根据三角形的面积推出边的比即可得到结果;(2)根据余弦的定义和勾股定理即可得到结果;【详解】(1)∵四边形ABCD 是矩形,∴∠B=90°,当点B '恰好为AC 中点时,2AC BC =,则AB =, 设BC x =,则2AC x =,=AB , 由题知:EB AC '⊥,∴△△△AEB B CE EBC S S S ''==,∴△△2AEC EBC S S =,∵△ABC 和△EBC 的高都是BC ,设BC x =, ∴△△2AEC EBCS AE BE S ==; 故答案是2.(2)点B '在AC 上且D 、B '、E 在同一条直线上时,设AB a ,BC b =,BE x =,∵B E AC '⊥,∴B D AC '⊥, ∴cos CD B C ACD AC CD '∠==,∴a b=,4422a b a b =+,可得到:22b a =,∴)()222b x a x -+=-,∴22222222a b b x a ax x +-++=-+,∴2222ax b =-,∴)2221ax a =--,)221ax a =--,22222ax a a =-+,解得:x =,∴AE a a a =-=,∴12AE BE +=;. 【点睛】本题主要考查了矩形的性质和勾股定理,结合余弦的定义计算是解题的关键.22.(40+40)【分析】过A 作AQ ⊥BC 于Q ∠BAQ =60°∠CAQ =45°AB =80海里在直角三角形ABQ 中求出AQBQ 再在直角三角形AQC 中求出CQ 再根据BC =CQ+BQ 即可得出答案;【详解】解:解析:(【分析】过A 作AQ ⊥BC 于Q ,∠BAQ =60°,∠CAQ =45°,AB =80海里,在直角三角形ABQ 中求出AQ 、BQ ,再在直角三角形AQC 中求出CQ ,再根据BC =CQ+BQ 即可得出答案;【详解】解:过A 作AQ ⊥BC 于Q ,由题意得:AB =80,在直角三角形ABQ 中,∠BAQ =60°,∴∠B =90°﹣60°=30°,∴AQ=1AB=40,BQ=3AQ=403,2在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=BQ+CQ=(40+403)海里.故答案为:(40+403)【点睛】本题考查了解直角三角形的应用中的方向角问题、等腰直角三角形的性质、含30°角的直角三角形的性质等知识;通过解直角三角形得出CQ和BQ是解决问题的关键.三、解答题23.(1)见解析;(2)见解析【分析】(1)根据平行线之间的距离处处相等可取BD中点E,连接CE即可;(2)连接OE并延长,与圆O交于点F,连接CF即可.【详解】解:(1)如图,CE即为所作;(2)如图,CF即为所作.【点睛】本题考查了平行线之间的距离处处相等,垂径定理,圆周角定理,实质上是考验学生的阅读理解能力及知识的迁移能力.24.(1)见解析;(2)见解析;(3)3tan 4ABG ∠=【分析】(1)在O 中,连接AO 并延长交BC 于T ,由AD 与O 相切,可知AO AD ⊥,又因为//AD BC ,即可判断AT BC ⊥,故而即可证明;(2)由题意可知四边形ABCD 是平行四边形,再由=BE BE ,可推出BAE B ∠=∠,即可求证BF AF =;(3)令BH 与AE 的交点为M ,连接CG ,OA ,OC ,OE ,由题意可知AOC BOE ∠=∠,又因为=AB AC ,即可证得AOB BOE ∠=∠,再根据直径所对圆周角为直角可证90GCH BCE ∠+∠=︒,继而再利用锐角三角函数可令24BM m =,则7FM m =,根据BF =25718AM m m m =-=,即可求解;【详解】(1)证明:如图1 在O 中,连接AO 并延长交BC 于T , ∵AD 与O 相切于点A , ∴AO AD ⊥,∵//AD BC ,∴90OAD ATB ∠=∠=︒,∴AT BC ⊥,∴=AB AC ;(2)∵AD BC =,//AD BC ,∴四边形ABCD 是平行四边形,∴ABC D ∠=∠ ,∵//AD BC ,∴D BCE ∠=∠ ,∴ABC BCE ∠=∠,∵=BE BE ,∴BAE BCE ∠=∠,∴BAE B ∠=∠,∴BF AF =,(3)解:如图3 令BH 与AE 的交点为M ,连接CG ,OA ,OC ,OE∵2AOC ABC =∠∠ ,2BOE BAF ∠=∠, ABC BAF ∠=∠ ,∴AOC BOE ∠=∠,∵=AB AC ,∴AOB AOC ∠=∠ ,∴AOB BOE ∠=∠,∵180AOB AOH ∠+∠=︒ , 180BOE EOH ∠+∠=︒,∴AOH EOH ∠=∠,∵AO OE = ,∴OM AE ⊥,∴90EMH ∠=︒ ,∴90EHM MEH ∠+∠=︒,∵BG 为O 的直径,∴90BCG ∠=︒,∴90GCH BCE ∠+∠=︒,∵MEH ABC BCE ∠=∠=∠,∴EHM GCH ∠=∠,∴CG GH =, ∵724GH AD = ,AD BC =, ∴724CG GH BC ==, 在Rt BCG 中,7tan 24CG CBG BC ∠==, 在Rt BFM 中,7tan 24FM FBM BM ∠==, 令24BM m = , 则7FM m =,()()222224725BF BM FM m m m =+=+=, ∴25AF BF ==m , ∴25718AM m m m =-=,在Rt ABM 中,183tan 244AM m ABG BM m ∠===;【点睛】本题考查了圆周角定理、切线的性质、锐角三角函数、勾股定理、平行四边形的性质,,正确掌握知识点是解题的关键;25.(1)(6-t),(12-2t);(2)S=t 2-6t+36;(3)PQ ∥AC ,理由见解析【分析】(1)由题意可得出答案;(2)根据△PQD 的面积=矩形ABCD 的面积-△APD 的面积-△PBQ 的面积-△CDQ 的面积可得出答案;(3)由二次函数的性质及中位线定理可得出答案.【详解】解:(1)根据题意得:AP=t(cm),BQ=2t(cm),则BP=(6-t)cm,CQ=(12-2t)cm,故答案为:(6-t),(12-2t);(2)∵BP=6-t(cm),CQ=12-2t(cm),∴△PQD的面积=矩形ABCD的面积-△APD的面积-△PBQ的面积-△CDQ的面积=12×6-12×12t-12×2t×(6-t)-12×6(12-2t)=t2-6t+36,∴S=t2-6t+36;(3)∵S=t2-6t+36=(t-3)2+27,且1>0,∴当t=3时,S最小;即经过3s时,△PQD的面积最小,此时,PQ∥AC.理由:∵t=3,∴AP=PB=3(cm),CQ=BQ=6(cm),∴PQ∥AC..【点睛】本题考查了矩形的性质,二次函数的最值,中位线定理,熟练掌握二次函数的性质是解题的关键.26.(1)见解析;(2)第二年销售额最大,为64000百万元;(3)四【分析】(1)根据题意填写表格即可;(2)由题意得:W=(2x+12)(﹣500x+5000)=﹣1000(x﹣2)2+64000,进而求解;(3)由题意得:(2x+12)(﹣500x+5000﹣3000)=0,通过解方程即可求解.【详解】(1)根据题意,填写下表:第x年123 (x)售价(元)450040003500…﹣500x+5000∵﹣1000<0,故抛物线开口向下,W有最大值,当x=2(年)时,W最大值为64000(百万元),第二年销售额最大,为64000百万元;(3)由题意得:(2x+12)(﹣500x+5000﹣3000)=0,﹣1000(x+1)2+25000=0,∴x1=4,x2=﹣6(舍),∴第四年该手机应该停产,【点睛】本题考查了二次函数的性质在实际生活中的应用,解题关键是读懂题意,确定变量,建立函数模型,利用函数的增减性来解答.。
【必考题】九年级数学下期末一模试卷带答案(1)一、选择题1.下列各式中能用完全平方公式进行因式分解的是( ) A .x 2+x+1 B .x 2+2x ﹣1C .x 2﹣1D .x 2﹣6x+92.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°3.函数31x y x +=-中自变量x 的取值范围是( ) A .x ≥-3B .x ≥-3且1x ≠C .1x ≠D .3x ≠-且1x ≠4.三张外观相同的卡片分别标有数字1,2,3,从中随机一次性抽出两张,则这两张卡片上的数字恰好都小于3的概率是( ) A .19B .16C .13D .235.如图,⊙O 的半径为5,AB 为弦,点C 为»AB 的中点,若∠ABC=30°,则弦AB 的长为( )A .12B .5C .53D .536.如图,把一个正方形三次对折后沿虚线剪下,得到的图形是( )A .B .C .D .7.如图,菱形ABCD 的对角线相交于点O ,若AC =8,BD =6,则菱形的周长为( )A .40B .30C .28D .20 8.下列二次根式中的最简二次根式是( )A .30B .12C .8D .0.59.现定义一种变换:对于一个由有限个数组成的序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1,例如序列S 0:(4,2,3,4,2),通过变换可生成新序列S 1:(2,2,1,2,2),若S 0可以为任意序列,则下面的序列可作为S 1的是( )A .(1,2,1,2,2)B .(2,2,2,3,3)C .(1,1,2,2,3)D .(1,2,1,1,2)10.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A .B .C .D .11.若一元二次方程x 2﹣2kx +k 2=0的一根为x =﹣1,则k 的值为( ) A .﹣1B .0C .1或﹣1D .2或012.某商店有方形、圆形两种巧克力,小明如果购买3块方形和5块圆形巧克力,他带的钱会差8元,如果购买5块方形和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下( )元 A .8B .16C .24D .32二、填空题13.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x=(0x >)及22ky x =(0x >)的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则12k k =﹣________.14.如图,在Rt△ABC 中,∠ACB=90°,∠ABC=30°,将△ABC 绕点C 顺时针旋转至△A′B′C,使得点A′恰好落在AB 上,则旋转角度为_____.15.已知反比例函数的图象经过点(m ,6)和(﹣2,3),则m 的值为________. 16.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =_____.17.如图,把三角形纸片折叠,使点B ,点C 都与点A 重合,折痕分别为,DE FG ,若15,2C AE EG ︒∠===厘米,ABC △则的边BC 的长为__________厘米。
一、选择题1.如图平面直角坐标系中,点A ,B 均在函数y =k x (k >0,x >0)的图像上,⊙A 与x 轴相切,⊙B 与y 轴相切,若点B (1,8),⊙A 的半径是⊙B 半径的2倍,则点A 的坐标为( )A .(2,2)B .(2,4)C .(3,4)D .(4,2) 2.如图,ABC ∆是O 的内接三角形,AB BC =,30BAC ∠=︒,AD 是直径,8AD =,则AC 的长为( )A .4B .43C .83D .23.如图,AB 是⊙O 的直径,C 是⊙O 上一点,BD 平分∠ABC 交⊙O 于点D ,交AC 于点E ,已知DE =2,DB =6,则阴影部分的面积为( )A .2π3B .4π3C .4π3D .π3 4.如图,AB 是O 的直径,8AB =,点C 、D 、E 在O 上,45CAB ∠=︒,CD DE EB ==,P 是直径AB 上的一动点,则PCE 周长的最小值为( )A .243+B .443+C .83+D .125.已知二次函数2(21)1y mx m x m =+++-的图象与x 轴有两个交点,则m 的取值范围是( )A .18m >B .18mC .18m >-且0m ≠ D .18m 且0m ≠ 6.关于二次函数2241=-+y x x ,下列说法正确的是( )A .图象的对称轴在y 轴左侧B .图象的顶点在x 轴下方C .当0x >时,y 随x 的增大而增大D .y 有最小值是17.二次函数2y ax bx c =++的图象如图所示,那么一次函数y ax bc =+的图象大致是( )A .B .C .D .8.小凯在画一个开口向上的二次函数图象时,列出如下表格:x … -1 0 1 2 …y…1211…发现有一对对应值计算有误,则错误的那一对对应值所对的坐标是()A.(-1,1) B.(0,2) C.(1,1) D.(2,1)9.如图,AB是斜靠在墙上的长梯,AB与地面夹角为α,当梯顶A下滑1米到A'时,梯脚B滑到B',A B''与地面的夹角为β,若4tan3α=,1BB'=米,则cosβ=()A.35B.45C.34D.2510.如图,网格中所有小正方形的边长均为1,有A、B、C三个格点,则ABC∠的余弦值为()A.12B25C5D.211.cos60︒的值是()A.12B.33C.32D312.在Rt△ABC中,∠C=90°,若1cos2B=,则sin A的值为()A.1 B.12C.32D3二、填空题13.如图,正方形ABCD中,扇形BAC与扇形CBD的弧交于点E,AB=6cm.则图中阴影部分面积为___cm2.14.如图,已知O 中,弦AB CD 、交于,4,2P AP PB CP ===,则CD =____.15.如图,已知在边长为6的正方形FCDE 中,A 为EF 的中点,点B 在边FC 上,且2BF =,连接AB ,P 是AB 上的一动点,过点P 作PM DE ⊥,PN DC ⊥,垂足分别为M ,N ,则矩形PNDM 面积的最大值是______.16.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则关于x 的一元二次方程2ax bx c ++0(0)a =≠的根为___________.17.将抛物线()214y x =+-向上平移a 个单位后得到的抛物线恰好与x 轴只有一个交点,则a 的值为_________;18.在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =8,CD =5,则tan ∠ACD = ________ .19.如图,在平面直角坐标系中,点B 在第一象限,BA x ⊥轴于点A ,反比例函数()0k y x x=>的图象与线段AB 相交于点C ,且C 是线段AB 的中点,点C 关于直线y x =的对称点'C 的坐标为()()1,1n n ≠,若OAB 的面积为4.则下列结论:①2n =;②4k =;③不等式k x x <的解集是2x >;④tan 2ABO ,其中正确结论的序号是________.20.如图,在ABCD 中,60ABC ∠=︒,6BC =,4DC =.点E F 、分别是边AB AD 、的中点,连结CE BF 、.点G H 、分别是BF CE 、的中点,连结GH ,则线段GH 的长为______.21.如图是一个海绵施把,图1、图2是它的示意图,现用线段BC 表示拉手柄,线段DE 表示海绵头,其工作原理是:当拉动BC 时线段OA 能绕点O 旋转(设定转角AOQ ∠大于等于0°且小于等于180°),同时带动连杆AQ 拉着DE 向上移动.图1表示拖把的初始位置(点O 、A 、Q 三点共线,P 、Q 重合),此时45cm OQ =,图2表示拉动过程中的一种状态图,若DE 可提升的最大距离10cm PQ =.(1)请计算:OA =______cm ;AQ =_____cm .(2)当1sin 10OQA ∠=时,则PQ =______cm . 22.如图,在Rt ABC △中,90ABC ∠=︒,30ACB ∠=︒,2AB =,点E 为AC 上任意一点(不与点A 、C 重合),连结EB ,分别过点A 、B 作BE 、AE 的平行线交于点F ,则EF 的最小值为__________.三、解答题23.如图,在ABC 中,AB AC =,点O 在AB 上,O 经过点B ,与BC 交于另一点D ,与AB 交于另一点E ,作DF AC ⊥,连结EF .(1)求证∶DF 与O 相切; (2)若EF 与O 相切,7AC =,4DF =. ①求证∶四边形ODCF 为平行四边形; ②求O 的半径.24.在学了“过任意三角形的三个顶点都可以作一个外接圆”之后,张华同学对“过任意四边形的四个顶点能否作一个外接圆?”进行了探究,下面是他的探究过程,请帮他补充完整. (1)动手实践:张华先画出了3个不同的四边形,如图所示.接着,他在所画出的图①,图②中,分别任选三个顶点用尺规各作了一个圆.请仿照张华的作法在图③中任选三个顶点作一个圆(要求尺规作图,保留作图痕迹,不写作法)(2)观察、发现:观察所作的图形,你发现:过任意四边形的四个顶点能作一个外接圆;(选填“一定”或“不一定”)(3)测量、猜想:分别测量(1)中3个不同四边形的各个内角,猜想:如果过一个四边形的四个顶点能作一个圆,那么它相对的两个内角之间存在怎样的数量关系?请写出你的猜想.(4)证明你的猜想.25.某超市经销一种商品,每千克成本为50元.试销发现该种商品每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价、销售量的四组对应值如表所示:销售单价x(元/千克)5560n70销售量y(千克)70m5040y x(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?26.新年前夕,信业超市在销售中发现:某服装平均每天可售出20套,每件盈利40元.为了迎接新年,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每套降价1元,那么平均每天就可多售出2套.(1)要想平均每天在销售服装上盈利1200元,那么每套应降价多少元?(2)商场要想每天获取最大利润,每套应降价多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】把B 的坐标为(1,8)代入反比例函数解析式,根据⊙B 与y 轴相切,即可求得⊙B 的半径,则⊙A 的半径即可求得,即得到B 的纵坐标,代入函数解析式即可求得横坐标.【详解】解:把B 的坐标为(1,8)代入反比例函数解析式得:k=8,则函数的解析式是:y=8x, ∵B 的坐标为(1,8),⊙B 与y 轴相切,∴⊙B 的半径是1,则⊙A 的半径是2,把y=2代入y=8x得:x=4, 则A 的坐标是(4,2).故选:D .【点睛】 本题考查了反比例函数图象上点的坐标特征以及切线的性质,根据点B 的坐标利用反比例函数图象上点的坐标特征求出k 值是解题的关键.2.B解析:B【分析】连接CD ,根据圆周角定理,可以得到30CAD ∠=︒,在Rt ACD △中,利用锐角三角函数求出AC 的长即可.【详解】解:如图,连接CD ,∵AB BC =,30BAC ∠=︒,∴AB 和BC 所对的圆心角都是60︒,∵AD 是直径,∴CD 所对的圆心角也是60︒,∴30CAD ∠=︒,在Rt ACD △中,3cos30843AC AD =⋅︒=⨯=. 故选:B .【点睛】本题考查圆周角定理和锐角三角函数,解题的关键是掌握圆周角定理,以及利用锐角三角函数解直角三角形的方法. 3.A解析:A【分析】证明△DAE ~△DBA ,求得DA 23=,由AB 是⊙O 的直径,利用勾股定理求得⊙O 的直径,求得∠ABD=30︒,∠COD=60︒,再利用OCD OCD S S S=-阴影扇形即可求解.【详解】连接OC 、OD 、AD ,∵BD 平分∠ABC ,∴AD CD =,∴∠DAC=∠DBA ,∴△DAE ~△DBA , ∴DA DE DB DA =,即26DA DA=, ∴212DA =,∴DA 23=,∵AB 是⊙O 的直径,∴∠ADB=90︒,∴222AD BD AB +=,∴AB=43∴⊙O 的半径为3∵DA=OA=OD 23=,∴△DOA 是等边三角形,∴∠COD=∠AOD=60︒,∴OCD OCD S S S =-阴影扇形 ()2602312323sin 603602π⨯=-⨯⨯︒233π=-.故选:A .【点睛】本题考查了相似三角形的判定与性质、等边三角形的判定与性质、勾股定理、扇形与等边三角形的面积等知识点,熟练掌握相关性质及定理是解题的关键. 4.B解析:B【分析】根据圆周角定理可知∠COB=90°,结合圆的对称性可知PCE 周长的最小值为CE C E '+,根据圆周角定理可得90CEC '∠=︒,再根据弧与圆心角的关系可知30CC E '∠=︒,解直角三角形即可.【详解】解:如下图所示,连接CO 并延长至C ',连接CE ,OE ,EC ',∵45CAB ∠=︒,∴∠COB=90°,∴C 点与C '点关于AB 所在直线对称,故当P 为EC '与AB 的交点时,PCE 周长的最小,此时CP PE C E '+=,∵CD DE EB ==,∴1303BOE BOC ∠=∠=︒ ,60COE BOC BOE ∠=∠-∠=︒, ∴30CC E '∠=︒,∵CC '为直径,∴90CEC '∠=︒,8CC AB '==,∴14,2CE CC C E ''==== ∴PCE 周长为CE EP CP ++,最小值为4CE C E '+=+故选:B .【点睛】本题考查圆周角定理,弧、圆心角的关系,勾股定理,圆的对称性,含30°角的直角三角形.能结合圆的对称性正确作出辅助线是解题关键.5.C解析:C【分析】根据二次函数2(21)1y mx m x m =+++-的图象与x 轴有两个交点,可得△=221410m m m -⨯->(+)()且0m ≠求解后即可得出结论.【详解】解:∵原函数是二次函数,∴0m ≠,∵二次函数2(21)1y mx m x m =+++-的图象与x 轴有两个交点,则△=240b ac ->,即221410m m m -⨯->(+)(), 解得18m >-. ∴m 的取值范围是18m >-且0m ≠. 故选:C .【点睛】本题考查了抛物线与x 轴的交点问题,掌握抛物线与x 轴的交点问题与一元二次方程根之间的关系是解题的关键.6.B解析:B【分析】首先把一般式写成顶点式y=2(x-1)2-1,从而可得对称轴x=1,顶点坐标为(1,-1),再利用二次函数的性质进行分析即可.【详解】解:y=2x 2-4x+1=2(x 2-2x )+1=2(x 2-2x+1)-1=2(x-1)2-1,A 、图象的对称轴为x=1,在y 轴的右侧,故说法错误;B 、顶点点坐标为(1,-1),顶点在x 轴下方,故说法正确;C 、当x >1时,y 的值随x 值的增大而增大,故说法错误;D 、y 的最小值为-1,故说法错误;故选:B .【点睛】此题主要考查了二次函数的性质,关键是掌握配方法把二次函数解析式写成顶点式,掌握二次函数性质.7.B解析:B【分析】根据二次函数的图像,确定a ,b ,c 的符号,后根据一次函数k,b 的符号性质确定图像的分布即可.【详解】∵抛物线的开口向下,∴a <0;∵抛物线与y 轴交于正半轴,∴c >0,∵抛物线的对称轴在原点的左边, ∴2b a-<0,且a <0, ∴b <0,∴bc <0;∴y ax bc =+的图像分布在第二,第三,第四象限, 故选B .【点睛】本题考查了二次函数的图像,一次函数的图像,熟练掌握二次函数的图像与各系数之间的关系,一次函数中k ,b 与图像分布之间的关系是解题的关键.8.A解析:A【分析】观察图表数据,根据二次函数的对称性即可判断出计算错误的一组数据,然后再利用二次函数的增减性得出结论.【详解】解:观察y 值发现y =1时x 有三个不同的值,因此这三个值中必有一对计算错误.由二次函数的对称性:如果(-1,1),(1,1)是图象的两个对称点,那么根据描点得到这个函数图象的开口应该是向下的.同理若(-1,1),(2,1)是两个对称点,那么该函数图象的开口也是向下的,所以(1,1),(2,1)是图象的两个对称点,因此该图像的对称轴为直线032x =,根据二次函数的增减性,当开口向上时,在对称轴的左边,y 随x 的增大而减小,所以1x =-时,y 一定是大于1的,故选A .【点睛】本题考查了二次函数的图象,找出图表数据特点,根据函数的对称性解答即可,熟练掌握二次函数的图象和性质,是解答的关键.9.B解析:B【分析】 根据4tan 3α=设OA=4k ,则OB=3k ,AB=5k ,从而表示OA '=4k-1,OB '=3k+1,在OA B ''△中,由勾股定理,求得k 值,后根据三角函数的定义计算即可.【详解】∵4tan 3α=,设OA=4k ,则OB=3k ,AB=5k ,∴OA '=4k-1,OB '=3k+1,在OA B ''△中,222OB OA A B ''''+=,∴222(41)(31)(5)k k k -++=,解得k=1,∴31cos 5k k β+==45. 故选B .【点睛】本题考查了勾股定理,锐角三角函数,熟练用未知数表示锐角三角函数中的对应线段是解题的关键. 10.B解析:B【分析】过点B 作BD ⊥AC 于点D ,过点C 作CE ⊥AB 于点E ,则BD=AD=3,CD=1,利用勾股定理可求出AB ,BC 的长,利用面积法可求出CE 的长,再利用余弦的定义可求出∠ABC 的余弦值.【详解】解:过点B 作BD ⊥AC 于点D ,过点C 作CE ⊥AB 于点E ,则BD=AD=3,CD=1,如图所示.2232BD AD +=2210BD CD += ∵12AC•BD=12AB•CE ,即12×2×3=122•CE , ∴2,∴2222BC CE -=∴cos ∠ABC=2225510BE BC ==. 故选:B .【点睛】本题考查了解直角三角形、勾股定理以及三角形的面积,利用面积法及勾股定理求出CE ,BC 的长度是解题的关键. 11.A解析:A【分析】根据特殊角三角函数值直接判断即可.【详解】解:∵1cos 60=2︒, 故选:A .【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键. 12.B解析:B【分析】根据互余角的三角函数间的关系:sin (90°-α)=cosα,cos (90°-α)=sinα解答即可.【详解】解:解:∵在△ABC 中,∠C=90°,∴∠A+∠B=90°,∴sinA= cosB=12, 故选:B .【点睛】本题考查了互余两角的三角函数关系式,掌握当∠A+∠B=90°时, sinA= cosB 是解题的关键.二、填空题13.3π【分析】根据正方形的性质可得边相等角相等根据扇形BAC 与扇形CBD 的弧交于点E 可得△BCE 的形状根据图形的割补可得阴影的面积是扇形根据扇形的面积公式可得答案【详解】解:正方形ABCD 中∴∠DCB解析:3π【分析】根据正方形的性质,可得边相等,角相等,根据扇形BAC 与扇形CBD 的弧交于点E ,可得△BCE 的形状,根据图形的割补,可得阴影的面积是扇形,根据扇形的面积公式,可得答案.【详解】解:正方形ABCD 中,∴∠DCB =90°,DC =AB =6cm .扇形BAC 与扇形CBD 的弧交于点E ,∴△BCE 是等边三角形,∠ECB =60°,∴∠DCE =∠DCB -∠ECB =30°.根据图形的割补,可得阴影的面积是扇形DCE ,S 扇形DCE =π×62×30360=3π, 故答案为3π.【点睛】 本题主要考查了正方形的性质,扇形的面积,灵活应用图形的割补是解题关键. 14.10【分析】连接ADBC 可证∆BPC~∆DPA 从而列出比例式即可求解【详解】解:连接ADBC 则∠PBC=∠PDA 又∵∠BPC=∠DPA ∴∆BPC~∆DPA ∴∴DP ===8∴CD=8+2=10故答案是解析:10【分析】连接AD ,BC ,可证∆BPC~∆DPA ,从而列出比例式,即可求解.【详解】解:连接AD ,BC ,则∠PBC=∠PDA ,又∵∠BPC=∠DPA ,∴∆BPC~∆DPA , ∴PA PD PC PB=, ∴DP =PA PB PC ⋅=442⨯=8,∴CD=8+2=10.故答案是:10.【点睛】本题主要考查圆周角定理,相似三角形的判定和性质,添加辅助线,构造相似三角形,是解题的关键.15.24【分析】以FE 为x 轴以FC 为y 轴先建立平面直角坐标系求出AB 的解析式为设P (a )用含a 的式子表示出PMPN 根据矩形面积公式列式根据二次函数的性质即可求解【详解】解:以FE 为x 轴以FC 为y 轴建立平解析:24【分析】以FE 为x 轴,以FC 为y 轴,先建立平面直角坐标系,求出A B 的解析式为223AB y x =--,设P (a ,223a --),用含a 的式子表示出PM ,PN ,根据矩形面积公式列式,根据二次函数的性质即可求解.【详解】解:以FE 为x 轴,以FC 为y 轴,建立平面直角坐标系,∵边长为6的正方形FCDE 中,A 为EF 的中点,2BF =,∴A (-3,0),B (0,-2),C (0,-6),E (-6,0),设A B 的解析式为AB y kx b =+,则032k b b =-+⎧⎨=-⎩,解得232k b ⎧=-⎪⎨⎪=-⎩, ∴223AB y x =--(30x -≤≤), 设P (a ,223a --)(30a -≤≤),则PM=6+a ,PN=()2226433a a ----=-, ∴()2PNDM 22=642433S a a a ⎛⎫+-=-+ ⎪⎝⎭矩形, ∴当a =0时,矩形PNDM 面积的最大值是24.故答案为:24.【点睛】本题考查了二次函数的应用问题,用待定系数法求一次函数的解析式,矩形的面积,正方形的性质等知识点,能灵活运用知识点是解此题的关键.16.x1=-1x2=3【分析】关于x 的一元二次方程ax2+bx+c=0(a≠0)的根即为二次函数y=ax2+bx+c (a≠0)的图象与x 轴的交点的横坐标【详解】解:根据图象知抛物线y=ax2+bx+c (解析:x 1=-1,x 2=3【分析】关于x 的一元二次方程ax 2+bx+c=0(a≠0)的根即为二次函数y=ax 2+bx+c (a≠0)的图象与x 轴的交点的横坐标.【详解】解:根据图象知,抛物线y=ax 2+bx+c (a≠0)与x 轴的一个交点是(-1,0),对称轴是x=1. 设该抛物线与x 轴的另一个交点是(x ,0),则12x -=1, 解得,x=3,即该抛物线与x 轴的另一个交点是(3,0),所以关于x 的一元二次方程ax 2+bx+c=0(a≠0)的根为x 1=-1,x 2=3.故答案是:x 1=-1,x 2=3.【点睛】本题考查了抛物线与x 轴的交点,解题时,注意抛物线y=ax 2+bx+c (a≠0)与关于x 的一元二次方程ax 2+bx+c=0(a≠0)间的转换. 17.4【分析】根据上加下减左加右减的规律写出平移后抛物线的解析式由新抛物线恰好与x 轴有一个交点得到△由此求得的值【详解】抛物线y =(x+1)2﹣4向上平移a 个单位后得到的抛物线的解析式为y =(x+1)2解析:4【分析】根据“上加下减,左加右减”的规律写出平移后抛物线的解析式,由新抛物线恰好与x 轴有一个交点得到△0=,由此求得a 的值.【详解】抛物线y =(x +1)2﹣4向上平移a 个单位后得到的抛物线的解析式为y =(x +1)2﹣4+a ,即223y x x a =+-+∵新抛物线恰好与x 轴有一个交点,∴△()244430b ac a =-=--+= 解得4a =故答案为:4.【点睛】此题考查了抛物线与x 轴的交点坐标,二次函数图象与几何变换.由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.18.【分析】过D 作于点E 则DE 是的中位线即可求得DE 的长在直角利用勾股定理即可求得EC 的长根据正切的定义即可求解【详解】如图过D 作于点E 则∵CD 是AB 边上的中线∴DE 是的中位线∴在直角中∴故答案为:【点 解析:43. 【分析】过D 作DE AC ⊥于点E ,则DE 是ABC 的中位线,即可求得DE 的长,在直角 DCE ,利用勾股定理即可求得EC 的长,根据正切的定义即可求解.【详解】如图,过D 作DE AC ⊥于点E ,则//DE BC ,∵CD 是AB 边上的中线,∴DE 是ABC 的中位线,∴118422DE BC ==⨯=, 在直角DEC 中,2222543EC CD DE =-=-=, ∴4tan 3DE ACD EC ∠==, 故答案为:43.本题主要考查了正切的定义,三角形的中位线定理,正确作出辅助线,把求三角函数值的问题转化为求直角三角形的边的比值,是解题的关键.19.②④【分析】根据对称性求出C 点坐标进而得OA 与AB 的长度再根据已知三角形的面积列出n 的方程求得n 进而用待定系数法求得k 再利用相关性质即可判断【详解】解:∵点C 关于直线y=x 的对称点C 的坐标为(1n ) 解析:②④【分析】根据对称性求出C 点坐标,进而得OA 与AB 的长度,再根据已知三角形的面积列出n 的方程求得n ,进而用待定系数法求得k ,再利用相关性质即可判断.【详解】解:∵点C 关于直线y=x 的对称点C'的坐标为(1,n )(n≠1),∴C (n ,1),∴OA=n ,AC=1,∴AB=2AC=2,∵△OAB 的面积为4, ∴12n×2=4, 解得,n=4,故①不正确;∴C (4,1),B (4,1),∴k=4×1=4,故②正确;解方程组4y x y x =⎧⎪⎨=⎪⎩,得:22x y =⎧⎨=⎩(负值已舍), ∴直线y=x 反比例函数(0)k y x x=>的图象的交点为(2,2),观察图象,不等式k x x<的解集是02x <<,故③不正确; ∵B (4,1),∴OA=4,AB=2, ∴tan ABO 2OA AB∠==,故④正确; 故答案为:②④.本题是反比例函数图象与一次函数图象的交点问题,主要考查了一次函数与反比例函数的性质,对称性质,正切函数等,关键是根据对称求得C 点坐标及由三角形的面积列出方程.20.【分析】先证△CHM ∽△CEB 得出HM 是△CBE 的中位线再证HM 是△BCQ 的中位线最后利用勾股定理得出结论【详解】解:如图:作HM ∥AB 交BC 于点M 连接BH 并延长交CD 于Q 连接AC ∴△CHM ∽△CE【分析】先证△CHM ∽△CEB ,得出HM 是△CBE 的中位线,再证HM 是△BCQ 的中位线,最后利用勾股定理得出结论.【详解】解:如图:作HM ∥AB 交BC 于点M ,连接BH ,并延长交CD 于Q ,连接AC , ∴△CHM ∽△CEB ,∵点H 是CE 的中点, ∴12CH HM CM CE EB CB === , ∴HM 是△CBE 的中位线, ∴HM=12BE , ∵E 为AB 的中点,AB=4, ∴HM=12BE=12×(12×4)=1, 同理可证:HM 是△BCQ 的中位线,∴CQ=2HM=2×1=2,∴点Q 为CD 的中点,点H 为BQ 的中点,∵F 为AO 的中点,∴FQ=12AC , ∵G 为BF 的中点,点H 为BQ 的中点,∴GH=12FQ ,∴GH=12×(12AC)=14AC , 在△ABC 中,∠ABC=60°,AB=4=CD ,BC=6,过点A 作AN ⊥BC ,∴BN=AB·cos60°=2,AN=AB·sin60°=2∴CN=6-2=4,在Rt △AZC 中,=∴GH=1274⨯=72. ,【点睛】本题考查了相似三角形的判定与性质,三角形的中位线定理,解直角三角形及勾股定理的应用,解题的关键是正确作出辅助线.21.40或【分析】(1)由题意可知:OA 定义DE 使得最大值的一半AQ =OQ-OA 即可解决问题(2)分两种情形分别画出图形解直角三角形即可解决问题【详解】解:(1)由题意故答案为540(2)当是钝角时如图解析:40 421211-或481211-【分析】(1)由题意可知:OA 定义DE 使得最大值的一半,AQ =OQ -OA 即可解决问题. (2)分两种情形分别画出图形,解直角三角形即可解决问题.【详解】解:(1)由题意11052OA cm =⨯=,45540AQ cm =-=, 故答案为5,40.(2)当OAQ ∠是钝角时,如图1中,作AH PQ ⊥于H .在Rt AHQ ∆中,1sin 10AH AQH AQ ∠==,40AQ =, 4AH ∴=,22224041211QH AQ AH ∴--在Rt QOH ∆中,223OH OA AH ,31211OQ ∴=+,45(31211)(421211)PQ cm ∴=-+=-, 当OAQ ∠是锐角时,如图2中,作AH OP ⊥交PO 的延长线于H .同法可得:12113OQ =-,45(12113)(481211)PQ cm ∴=--=-.故答案为:421211-或481211-.【点睛】本题考查解直角三角形的应用,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22.【分析】由题意过点B 作BH ⊥AC 于H 先解直角三角形求出BH 再根据垂线段最短进行分析即可求解【详解】解:如图过点B 作BH ⊥AC 于H 在Rt △ABC 中∵∠ABC=90°AB=2∠C=30°∴AC=2AB=解析:3【分析】由题意过点B 作BH ⊥AC 于H ,先解直角三角形求出BH ,再根据垂线段最短进行分析即可求解.【详解】解:如图,过点B 作BH ⊥AC 于H ,在Rt △ABC 中,∵∠ABC=90°,AB=2,∠C=30°,∴AC=2AB=4,3∵∠BHC=90°,∴BH=123,∵BF//AC ,∵当EF ⊥AC 时,EF 的值最小,最小值=BH=3.故答案为:3.【点睛】本题考查解直角三角形的应用和平行线的性质以及垂线段最短等知识,解题的关键是理解题意,灵活运用所学知识解决问题.三、解答题23.(1)见解析;(2)见解析;(3)2或83. 【分析】(1)根据等腰三角形的性质,证明//OD AC ,根据切线的定义解答即可;(2)①连接OF ,利用切线长定理,证明//OF BC 即可;②设圆的半径为x ,根据平行四边形的性质,利用勾股定理构建x 的一元二次方程求解即可.【详解】解:(1)连接OD ,如图1, AB AC =,OB OD =B C ∴∠=∠,B ODB ∠=∠,C ODB ∴∠=∠,//OD AC ∴.DF AC ⊥,DF OD ∴⊥OD 为O 的半径,DF ∴与O 相切.(2)①连接OF ,如图2,∵EF=DF ,OE=OD ,∠OEF=∠ODF=90°,∴ODF OEF ≌△△,EOF DOF ∴∠=∠.EOD OBD ODB ∠=∠+∠,EOF OBD ∴∠=∠,OF//BC ∴ OD//CF ,∴四边形ODCF 为平行四边形.②设O 的半径为x7AB AC ==,72AE x ∴=-.四边形ODCF 为平行四边形,CF OD x ∴==,7AF x ∴=-.4OF =,4EF DF ∴==在Rt AEF △中,222AE EF AF +=,222(72)4(7)x x ∴-+=-解得12x =,283x = O ∴的半径是2或83. 【点睛】本题考查了圆的切线的判定,平行四边形的判定,切线长定理,平行线的性质,勾股定理和一元二次方程的解法,熟练掌握圆的切线的判定,灵活运用已知解答是解题的关键. 24.(1)见解析;(2)不一定;(3)猜想:如果过一个四边形的四个顶点能作一个圆,那么其相对的两个内角互补;(4)见解析【分析】(1)作两边的垂直平分线找到圆心,再以这点到其中一边任意一个端点的距离为半径,作圆即可;(2)通过作图可发现过任意四边形的四个顶点不一定能作一个外接圆;(3)根据度量的对角的度数,进行猜想即可;(4)先写出已知,求证,再根据圆周角的性质证明即可.【详解】解:(1)作图如下:图③(2)不一定(3)猜想:如果过一个四边形的四个顶点能作一个圆,那么其相对的两个内角互补 (4)如图,已知四边形ABCD 的顶点A 、B 、C 、D 均在O 上.求证:180A C ∠+∠=︒.证明:连接BO 、DO . 112A ∠=∠,122C ∠=∠ 1(12)2A C ∴∠+∠=∠+∠ 12360∠+∠=︒,180A C ∴∠+∠=︒.【点睛】本题考查了过不在同一直线上的三点作圆,圆周角的性质,解题关键是根据题意准确画图,合理猜想,并能够正确证明.25.(1)2180y x =-+;(2)60元或80元;(3)70元,最大利润800元【分析】(1)利用待定系数法来求一次函数的解析式即可;(2)依题意可列出关于销售单价x 的方程,然后解一元二次方程组即可;(3)利用每件的利润乘以销售量可得总利润,然后根据二次函数的性质来进行计算即可.【详解】解:(1)设y 与x 之间的函数表达式为y=kx+b (k≠0),将表中数据(55,70)、(70,40)代入得:55707040k b k b +⎧⎨+⎩==, 解得:2180k b -⎧⎨⎩==. ∴y 与x 之间的函数表达式为y=-2x+180.(2)由题意得:(x-50)(-2x+180)=600,整理得:x 2-140x+4800=0,解得x 1=60,x 2=80.答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克.(3)设当天的销售利润为w 元,则:w=(x-50)(-2x+180)=-2(x-70)2+800,∵-2<0,∴当x=70时,w 最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.【点睛】本题考查了待定系数法求一次函数的解析式、一元二次方程和二次函数在实际问题中的应用,理清题中的数量关系是解题的关键.26.(1)应降价20元;(2)每套应降价15元【分析】(1)设每件衬衫应降价x 元,利用每件利润×总销量=总利润,列方程求解即可; (2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.【详解】(1)解:设每件衬衫应降价x 元,根据题意,得()()402021200x x -+=,整理,得22604000x x -+=,解得110x =,220x =.∵尽快减少库存,∴20x答:应降价20元.(2)解:设每件衬衫应降价x 元,总利润为W 元,根据题意,得.()()40202W x x =-+2260800x x =-++, 当152b x a=-=时,利润最大, ()()4015202151250W =-+⨯=最大利润.【点睛】此题主要考查了一元二次方程以及二次函数的应用,正确利用每件利润×总销量=总利润得出关系式是解题关键.。
一、选择题1.下列命题:①任意三点确定一个圆;②平分弦(不是直径)的直径垂直于弦;③相等的圆心角所对的弦相等;④长度相等的弧是等弧.其中真命题的有( )A .0个B .1个C .2个D .3个 2.半径等于4的圆中,垂直平分半径的弦长为( ) A .43 B .45 C .23 D .25 3.CD 是圆O 的直径,弦AB ⊥CD 于点E ,若OE =3,AE =4,则下列说法正确的是( )A .AC 的长为25B .CE 的长为3C .CD 的长为12D .AD 的长为10 4.如图,AB 是O 的直径,CD 是弦,四边形OBCD 是菱形,AC 与OD 相交于点P ,则下列结论错误的是( )A .OD AC ⊥B .AC 平分OD C .2CB DP = D .2AP OP = 5.二次函数2y ax bx c =++的图象如图所示,那么一次函数y ax bc =+的图象大致是( )A .B .C .D .6.将二次函数y =2x +6x+2化成y =2-x h ()+k 的形式应为( ) A .y =23x +()﹣7 B .y =23x -()+11 C .y =23x +()﹣11 D .y =22x +()+4 7.如图,抛物线y =ax 2+bx +c 的对称轴是x =1,下列结论:①abc >0;②b 2﹣4ac >0; ③8a +c <0; ④5a +b +2c >0,正确的是( )A .①②③B .②③④C .①②④D .②③8.将进货价为35元的商品按单价40元售出时,能卖出200个,已知该商品单价每上涨1元,其销售量就减少5个,设这种商品的售价为x 元时,获得的利润为y 元,则下列关系式正确的是( )A .()()352005y x x =--B .()()354005y x x =--C .()()402005y x x =--D .()()403755y x x =--9.如图,在△ABC 中,AD 是BC 上的高,tan ∠B =cos ∠DAC ,若sin C =1213,BC =12,求AD 的长( )A .13B .12C .8D .无法判断 10.尚本步同学家住“3D 魔幻城市”——重庆,他决定用所学知识测量自己居住的单元楼的高度.如图,小尚同学从单元楼CD 的底端D 点出发,沿直线步行42米到达E 点,在沿坡度i=1:0.75的斜坡EF 行走20米到达F 点,最后沿直线步行30米到达隔壁大厦的底端B 点,小尚从 B 点乘直行电梯上行到顶端A 点,从A 点观测到单元顶楼C 的仰角为28º,从点A 观测到单元楼底端的俯角为37 º,若A 、B 、C 、D 、E 、F 在同一平面内,且D 、E 和F 、B 分别在通一水平线上,则单元楼CD 的高度约为( )(结果精确到0.1米,参考数据:sin28 º≈0.47,cos28 º≈0.88,tan28 º≈0.53,sin37 º≈0.6,cos37 º≈0.8,tan37 º≈0.75)A .79.0米B .107.5米C .112.6米D .123.5米 11.如图,某建筑物AB 在一个坡度为1:0.75i =的山坡CE 上,建筑物底部点B 到山脚点C 的距离20BC =米,在距山脚点C 右侧水平距离为60米的点D 处测得建筑物顶部点A 的仰角是24°,建筑物AB 和山坡CE 的剖面的同一平面内,则建筑物AB 的高度约为( )(参考数据:sin 240.41︒≈,cos240.91︒≈,tan 240.45︒≈)A .32.4米B .20.4米C .16.4米D .15.4米 12.如图,斜坡AP 的坡比为1∶2.4,在坡顶A 处的同一水平面上有一座高楼BC ,在斜坡底P 处测得该楼顶B 的仰角为45°,在坡顶A 处测得该楼顶B 的仰角为76°,楼高BC 为18m ,则斜坡AP 长度约为(点P 、A 、B 、C 、Q 在同一个平面内,sin760.97≈,cos760.22≈,tan76 4.5≈)( )A .30mB .28mC .26mD .24m二、填空题13.一个边长为4的正多边形的内角和是其外角和的2倍,则这个正多边形的半径_______.14.已知O 的两条半径OA 与OB 相互垂直,C 为优弧AB 上一点,且满足222AB OB BC +=,则OAC ∠=__________度.15.将抛物线y =2x 2向左平移2个单位,所得抛物线的对称轴是直线_____. 16.如图,已知在边长为6的正方形FCDE 中,A 为EF 的中点,点B 在边FC 上,且2BF =,连接AB ,P 是AB 上的一动点,过点P 作PM DE ⊥,PN DC ⊥,垂足分别为M ,N ,则矩形PNDM 面积的最大值是______.17.已知y 是x 的二次函数,y 与x 的部分对应值如表:该二次函数图象向左平移____________个单位,图象经过原点. x… ﹣2 ﹣1 0 1 2 … y … 0 4 6 6 4 …18.如图,在平面直角坐标系中,Rt ABC 的顶点A C 、的坐标分别是()0,3、3,0.90ACB ∠=︒,2AC BC =,反比例函数()0k y x x=>的图象经过点B ,则k 的值为________.19.如图,从A 地到B 地需经过C 地,现城市规划需修建一条从A 到B 的笔直道路,已知180AC 米,30CAB ∠=︒,45CBA ∠=︒,则道路改直后比原来缩短了___________米.(结果精确到1米,可能用到的数据:2 1.4≈,3 1.7≈)20.在ABC 中,90,3,4ACB BC AC ∠=︒==,动点P 从点A 出发,以2cm/s 的速度沿AB 移动到点B ,则BCP 为等腰三角形时,点P 的运动时间为_________. 21.如图,一艘轮船在小岛A 的北偏东60°方向且距小岛80海里的B 处,沿正西方向航行一定时间后到达小岛的北偏西45°的C 处,则该船航行的路程为_____海里.22.已知:等边△ABC ,点P 是直线BC 上一点,且PC:BC=1:4,则tan ∠APB=_______,三、解答题23.如图1,AB 为O 的直径,AB CD ⊥于点M ,点E 为CM 上一点,AE 的延长线交O 于点F ,AE DE =.点N 为AF 的中点,连接ON .(1)判断ADF 的形状,并说明理由;(2)求证:OM ON =;(3)如图2,连接FB 并延长,过点D 做DG FB ⊥,交FB 的延长线于点G ,求证:DG 是O 的切线.24.如图,在ABC 中,90,C ABC ∠=︒∠的平分线交AC 于点E ,过点E 作BE 的垂线交AB 于点,F O 是BEF 的外接圆.(1)求证:AC 是O 的切线;(2)过点E 作EH AB ⊥于点H ,若8,4BC EH ==,求O 的半径.25.已知二次函数2=++y x bx c -的图象如图所示,它与x 轴的一个交点坐标为(1,0)-,与y 轴的交点坐标为(0,3).(1)求此二次函数的表达式,并用配方法求顶点的坐标;(2)直接写出当函数值0y >时,自变量x 的取值范围.26.已知抛物线y =x 2﹣2(a +1)x +a 2+2a .(1)求证:不论a 取何实数,该抛物线与x 轴都有两个交点;(2)若抛物线与x 轴的两个交点分别为A 、B ,与y 轴的交点为C ,当a =1时,求△ABC 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】依次判断真假命题即可,可以通过找到相应的反例,去论证命题的正确性.【详解】解:①假命题,当三点在同一条直线上时,就不能确定一个圆了,故此项错误; ②真命题,平分弦(不是直径)的直径垂直于弦,故此项正确;③假命题,在同圆或等圆中,相等的圆心角所对的弦相等,故此项错误;④假命题,在同圆或等圆中,长度相等的弧是等弧,故此项错误;综上所述,②正确.故选:B.【点睛】本题主要考查了确定圆的条件,垂径定理及圆周角定理等圆的一些基本的知识,解答此题的关键掌握理解圆的定义及性质.2.A解析:A【分析】根据题意,利用勾股定理,先求出弦长的一半,进而求出弦长.【详解】解:如图由题意知,OA=4,OD=CD=2,OC⊥AB,∴AD=BD,在Rt△AOD中,2222-=-=AD AO OD4223∴22343AB=⨯=故选:A.【点睛】本题考查了垂径定理,在求弦长时,往往通过构造直角三角形,利用勾股定理,先求出弦长的一半,再求得弦长.此类问题极易出错,要特别注意.3.A解析:A【分析】连接AO,分别在Rt△AOE中,Rt△ACE中,Rt△ADE中,根据勾股定理即可求得相应线段的长度,依此判断即可.【详解】解:连接AO,∵AB⊥CD于点E,OE=3,AE=4,∴在Rt△AOE中,根据勾股定理2222435+=+=,AO AE OE∵CD为圆O的直径,∴OC=OD=OA=5,∴CD=10,CE=OC-OE=2,故B选项和C选项错误;在Rt△ACE中,根据勾股定理2222=+=+=A选项正确;4225AC AE CE在Rt △ADE 中,根据勾股定理 22224(35)45AD AE OD =+=++=,故D 选项错误;故选:A .【点睛】本题考查勾股定理,同圆半径相等.正确作出辅助线,构造直角三角形是解题关键.注意圆中半径相等这一隐含条件.4.D解析:D【分析】根据菱形的性质可以得出四条边平行并且都相等,又根据AB 是直径,即可知道∠ACB=90°,即可判断A ,因为三角形ABC 为直角三角形,根据求∠A 的正弦值即可判断∠A=30°,即可判断D ,根据中位线的性质即可B 、C 选项;【详解】∵ 四边形OBCD 是菱形,∴ OB ∥CD ,OD ∥BC ,OB=OD=CD=BC ,∵ AB 是直径,∴ ∠ACB=90°,∵OD ∥BC ,∴ ∠APO=90°,∴OD ⊥AC ,故A 正确;∵12BC OD A AB AB ===sin ∠ , ∴∠A=30°,∴2OA OP = ,故D 错误,∵2OA OP =,∴2OD OP = ,∴DP=OP ,∴AC 平分OD ,故C 正确;∴BC=2DP ,故B 正确;故选:D .【点睛】本题考查了菱形的性质,锐角三角函数、三角形的中位线的性质,圆周角的性质,熟练掌握知识点是解题的关键;5.B解析:B【分析】根据二次函数的图像,确定a ,b ,c 的符号,后根据一次函数k,b 的符号性质确定图像的分布即可.【详解】∵抛物线的开口向下,∴a <0;∵抛物线与y 轴交于正半轴,∴c >0,∵抛物线的对称轴在原点的左边, ∴2b a-<0,且a <0, ∴b <0,∴bc <0;∴y ax bc =+的图像分布在第二,第三,第四象限, 故选B .【点睛】本题考查了二次函数的图像,一次函数的图像,熟练掌握二次函数的图像与各系数之间的关系,一次函数中k ,b 与图像分布之间的关系是解题的关键.6.A解析:A【分析】根据配方法的基本步骤,规范配方,后对照选项作出判断.【详解】∵y =2x +6x+2=2x +6x+226()32-+2=()23x +﹣7,故选A .【点睛】本题考查了将一般形式的二次函数进行配方化成配方式,熟练掌握配方的基本步骤,规范配方是解题的关键.7.B解析:B【分析】由函数图像与对称轴的方程结合可判断①,由抛物线与x 轴有两个交点,可判断②,由抛物线的对称轴为:1,2b x a=-= 可得2,b a =-结合图像可得当2x =-时,42y a b c =-+<0, 可判断③,由图像可得当2x =时,4+2y a b c =+>0,当1x =-时,y a b c =-+>0,两式相加可得:52a b c ++>0,可判断④,从而可得答案.【详解】 解: 图像开口向下,a ∴<0,12b x a==->0, b ∴>0, 函数图像与y 轴交于正半轴,c ∴>0,abc ∴<0,故①不符合题意; 抛物线与x 轴有两个交点,24b ac ∴->0, 故②符合题意;抛物线的对称轴为:1,2b x a=-= 2,b a ∴=-当2x =-时,42y a b c =-+<0,()422a a c ∴-⨯-+<0,8a c ∴+<0,故③符合题意;当2x =时,4+2y a b c =+>0,当1x =-时,y a b c =-+>0,两式相加可得:52a b c ++>0,故④符合题意;故选:.B【点睛】本题考查的是抛物线的图像与系数之间的关系,二次函数的性质,掌握以上知识是解题的关键.8.B解析:B【分析】根据售价减去进价表示出实际的利润.【详解】解:设这种商品的售价为x元时,获得的利润为y元,根据题意可得:[](35)2005(40)y x x=---即y=(x-35)(400-5x),故选:B.【点睛】本题考查了二次函数的应用,解题的关键是理解“商品每上涨1元,其销售量就减少5个”.9.C解析:C【分析】根据12sin13ADCAC==,可设AD=12x,由勾股定理可求出DC,利用tan∠B=cos∠DAC可求出BD=13x,利用BC=12,求出x,进而求解.【详解】在Rt△ADC中,12 sin13ADCAC==,设AD=12x,则AC=13x,∴5 DC x==,∵cos∠DAC=sin C=1213,∴tan B=1213,在Rt△ABD中,∵tan B1213ADBD==,∴BD=13x,∴13x+5x=12,解得23x=,∴AD=12x=8.故选C.【点睛】本题考查解直角三角形,熟练掌握正切,正弦和余弦的定义是解题的关键.10.B解析:B【分析】作EG⊥BF交BF的延长线于G,AK⊥CD于K.延长DE交AB于H,解直角三角形求出CK、AH即可解决问题.【详解】解:作EG⊥BF交BF的延长线于G,AK⊥CD于K.延长DE交AB于H,如图,则四边形AKDH 是矩形,∴AK=DH ,KD=AH , ∵140.753EG GF == ∴设EG=4x ,则FG=3x ,由勾股定理得,222EG FG EF +=∵EF=20m∴22169400x x +=解得,=4x (负值舍去)∴EG=16m ,FG=12m∵DE=42m ,BF=30m∴DH=DE+FG+BF=84m ,∴AK=84m ;在Rt △ADH 中,∠ADH=37°∴tan37°=AH DH, ∴AH=DH×tan37°=84×0.75=63(m )同理,在Rt △AKC 中,∠KAC=28°∴tan28°=CK AK, ∴CK=AK×tan28°=84×0.53=44.52(m )∴CD=CK+DK=63+44.52=107.5≈107.5(m)故选:B【点睛】本题考查解直角三角形-仰角俯角问题,坡度坡角问题,解题的关键是熟练掌握基本知识,学会添加常用辅助线,构造直角三角形解决问题.11.C解析:C【分析】延长AB 交CD 反向延长线于F .根据题意可知43BF FC =,则设BF=4x ,FC=3x .由正切可求出AF 的长.再在Rt BFC △中,由勾股定理可求出x 的值.最后即可利用=AB AF BF -求出AB 长.【详解】如图延长AB 交CD 反向延长线于F ,由题意可知BF DF ⊥.∵建筑物AB 在一个坡度为i =1:0.75的山坡CE 上,∴10.75BF FC =,即43BF FC =. 设BF=4x 米,则FC=3x 米,DF=(60+3x )米,∵24D ∠=︒,∴tan tan 240.45AF D DF∠=︒==, ∴0.45(603)(27 1.35)AF x x =+=+米. 在Rt BFC △中,222BF FC BC +=,即222(4)(3)20x x +=,∴1244x x ==-,(舍).∴4416BF =⨯=米,27 1.354=32.4AF =+⨯米.∴=32.4-16=16.4AB AF BF -=米.故选:C .【点睛】本题考查解直角三角形的实际应用和勾股定理.作出常用的辅助线是解答本题的关键. 12.C解析:C【分析】先延长BC 交PD 于点D ,在Rt △ABC 中,tan76°=BC AC,BC=18求出AC ,根据BC ⊥AC ,AC ∥PD ,得出BE ⊥PD ,四边形AHEC 是矩形,再根据∠BPD=45°,得出PD=BD ,过点A 作AH ⊥PD ,根据斜坡AP 的坡度为1:2.4,得出512AH HP =,设AH=5k ,则PH=12k ,AP=13k ,由PD=BD ,列方程求出k 的值即可.【详解】解:延长BC 交PQ 于点D .∵BC ⊥AC ,AC ∥PQ ,∴BD ⊥PQ .∴四边形AHDC 是矩形,CD=AH ,AC=DH .∵∠BPD=45°,∴PD=BD .在Rt △ABC 中,tan76°=BC AC,BC=18米, ∴AC=4(米).过点A 作AH ⊥PQ ,垂足为点H .∵斜坡AP 的坡度为1:2.4, ∴512AH HP ,设AH=5k ,则PH=12k , 由勾股定理,得AP=13k .由PH+HD=BC+CD 得:12k+4=5k+18,解得:k=2,∴AP=13k=26(米).故选:C .【点睛】此题考查了解直角三角形,用到的知识点是勾股定理、锐角三角函数、坡度与坡角等,关键是做出辅助线,构造直角三角形.二、填空题13.【分析】先求出正多边形边数为6再根据正六边形性质即可求解【详解】解:设正多边形的边数为n 由题意得解得n=6∴正多边形为正六边形∵边长为4的正六边形可以分成六个边长为4的正三角形∴该正多边形的半径等于 解析:4【分析】先求出正多边形边数为6,再根据正六边形性质即可求解.【详解】解:设正多边形的边数为n,由题意得()21803602n-︒=︒⨯,解得 n=6∴正多边形为正六边形,∵边长为4的正六边形可以分成六个边长为4的正三角形,∴该正多边形的半径等于4.故答案为:4【点睛】本题考查了正多边形的相关概念,和正六边形的性质,熟知相关概念是解题关键.14.15或75【分析】先设的半径是r作直径BD作BC关于直径BD的对称线段BE连接ECBEEDAC再由直角三角形的性质即可解答【详解】解:如图设的半径是r则AB=rOB=r∵∴BC=rcos∠CBD=∴解析:15或75【分析】先设O的半径是r,作直径BD,作BC关于直径BD的对称线段BE,连接EC,BE,ED,AC,再由直角三角形的性质即可解答.【详解】解:如图,设O的半径是r,则AB=2r,OB=r,∵222+=,AB OB BC∴3,3cos∠∠AOB=45°,∴∠CBD=30°,而∠BCA=12在△ABC中,∠OAC=180°-∠ABO-∠CBD-∠ACB-∠BAO=15°.作直径BD,作BC关于直径BD的对称线段BE,连接EC,BE,ED,AC,CD,OE,在直角△BED中,可以得∠EBD=30°,∠EOD=60°,∠AOE=30°,∴∠OAE=1(180°-30°)=75°,即当C在点E处时,∠OAC=75°.2故答案为:15或75.【点睛】本题考查的是圆心角、弧、弦的关系及直角三角形的性质,直径所对的圆周角是直角,特殊角的锐角三角函数值,作出辅助线是解答此题的关键.15.x =-2【分析】利用平移可求得平移后的抛物线的解析式可求得其对称轴【详解】解:∵将抛物线y =2x2向左平移2个单位长度后抛物线解析式为y =2(x+2)2∴所得抛物线的对称轴为直线x =-2故答案是:x解析:x =-2【分析】利用平移可求得平移后的抛物线的解析式,可求得其对称轴.【详解】解:∵将抛物线y =2x 2向左平移2个单位长度后抛物线解析式为y =2(x +2)2,∴所得抛物线的对称轴为直线 x =-2.故答案是:x =-2.【点睛】主要考查了二次函数的图象与性质,熟练掌握函数图象平移的规律并准确运用平移规律求函数解析式是解题的关键.16.24【分析】以FE 为x 轴以FC 为y 轴先建立平面直角坐标系求出AB 的解析式为设P (a )用含a 的式子表示出PMPN 根据矩形面积公式列式根据二次函数的性质即可求解【详解】解:以FE 为x 轴以FC 为y 轴建立平解析:24【分析】以FE 为x 轴,以FC 为y 轴,先建立平面直角坐标系,求出A B 的解析式为223AB y x =--,设P (a ,223a --),用含a 的式子表示出PM ,PN ,根据矩形面积公式列式,根据二次函数的性质即可求解.【详解】解:以FE 为x 轴,以FC 为y 轴,建立平面直角坐标系,∵边长为6的正方形FCDE 中,A 为EF 的中点,2BF =,∴A (-3,0),B (0,-2),C (0,-6),E (-6,0),设A B 的解析式为AB y kx b =+,则032k b b =-+⎧⎨=-⎩,解得232k b ⎧=-⎪⎨⎪=-⎩, ∴223AB y x =--(30x -≤≤), 设P (a ,223a --)(30a -≤≤),则PM=6+a ,PN=()2226433a a ----=-, ∴()2PNDM 22=642433S a a a ⎛⎫+-=-+ ⎪⎝⎭矩形, ∴当a =0时,矩形PNDM 面积的最大值是24.故答案为:24.【点睛】本题考查了二次函数的应用问题,用待定系数法求一次函数的解析式,矩形的面积,正方形的性质等知识点,能灵活运用知识点是解此题的关键.17.3【分析】利用表格中的对称性得:抛物线与x 轴另一个交点为(30)可得结论【详解】解:由表格得:二次函数的对称轴是直线x ==∵抛物线与x 轴一个交点为(−20)∴抛物线与x 轴另一个交点为(30)∴该二次解析:3【分析】利用表格中的对称性得:抛物线与x 轴另一个交点为(3,0),可得结论.【详解】解:由表格得:二次函数的对称轴是直线x =012+=12, ∵抛物线与x 轴一个交点为(−2,0),∴抛物线与x 轴另一个交点为(3,0),∴该二次函数图象向左平移3个单位,图象经过原点;或该二次函数图象向右平移2个单位,图象经过原点.故答案为:3.【点睛】本题考查了二次函数图象与几何变换−平移,根据平移的原则:左加右减进行平移;也可以利用数形结合的思想画图解决. 18.【分析】过作于求解再求解证明由可得再求解从而可得答案【详解】解:过作于由故答案为:【点睛】本题考查的是勾股定理的应用等腰直角三角形的判定与性质锐角三角函数的应用利用待定系数法求解反比例函数的解析式掌 解析:27.4【分析】过B 作BH OC ⊥于,H 求解2232,AC OA OC =+=再求解32,2BC = 证明,CH BH = 由cos ,CH BCH BC ∠= 2,32= 再求解3,2CH = 339,3,222BH OH ==+= 从而可得答案. 【详解】解:过B 作BH OC ⊥于,H 90,BHC AOC ∴∠=︒=∠()()0,3,3,0,A B3,OA OC ∴==2232,AC OA OC ∴=+=2,AC BC =322BC ∴= 90,45,ACB ACO ∴∠=︒∠=︒45,BCH CBH ∠=︒=∠,CH BH ∴=由cos ,CH BCH BC∠= 2232=3,2CH ∴= 339,3,222BH OH ∴==+= 93,,22B ⎛⎫∴ ⎪⎝⎭3927.224k xy ∴==⨯= 故答案为:27.4【点睛】本题考查的是勾股定理的应用,等腰直角三角形的判定与性质,锐角三角函数的应用,利用待定系数法求解反比例函数的解析式,掌握以上知识是解题的关键. 19.【分析】过点C 作CD ⊥AB 垂足为D 计算BCAB 的长度比较AC+BC 与AB 的大小即可【详解】如图过点C 作CD ⊥AB 垂足为D ∵米∴DC=BD=90AD=90BC=90∴AC+BC=180+90≈306A解析:【分析】过点C 作CD ⊥AB ,垂足为D ,计算BC ,AB 的长度,比较AC+BC 与AB 的大小即可.【详解】如图,过点C 作CD ⊥AB ,垂足为D ,∵180AC 米,30CAB ∠=︒,45CBA ∠=︒,∴DC=BD=90,AD=903,BC=902,∴AC+BC=180+902≈306,AB=AD+BD=903+90≈243,∴缩短了:306-243=63(米),故答案为:63米.【点睛】本题考查了解斜三角形,学会作高化,把斜三角形化为直角三角形,并熟练运用特殊角的三角函数值是解题的关键.20.秒或1秒或秒【分析】根据利用勾股定理求出AB 的长设点P 的运动时间为t 秒则由①②③分三种情况求解即可【详解】解:在中设点P 的运动时间为t 秒则①由过点C 作CD ⊥AB 于D 在中解得当P 出发秒时是等腰三角形;解析:710秒或1秒或54秒. 【分析】根据90,3,4ACB BC AC ∠=︒==,利用勾股定理求出AB 的长,设点P 的运动时间为t 秒,则2AP tcm = ,()52BP t cm =-,由①CP BC =,②BC BP = , ③CP BP = 分三种情况求解即可.【详解】解: 在ABC 中,90,3,4ACB BC AC ∠=︒==, 225AB BC AC ∴=+=,3cos 5B = 设点P 的运动时间为t 秒,则2AP tcm = ,()52BP t cm =-, ①由CP BC =,过点C 作CD ⊥AB 于D ,()115222BD DP BP t ∴===-, 在Rt CPD △中,39cos 355BD BC B ==⨯=, ()152295t ∴-=, 解得,710t =, ∴ 当P 出发710秒时,BCP 是等腰三角形;②由BC BP =时,523t -= 解得,1t = ,∴当P 出发1秒时,BCP 是等腰三角形;③由CP BP =时,过点P 作PE BC ⊥于E ,2BC BE =, 在Rt BPE 中,()3=525BE BP cosB t =-, ()352532t ∴⨯-=解得,54t ,∴当P出发54秒时,BCP是等腰三角形.综上所述,当点P出发710秒或1秒或54秒时,BCP是等腰三角形.故答案为:710秒或1秒或54秒.【点睛】本题考查了勾股定理和等腰三角形的判定,解答此题的关键是首先根据勾股定理求出AB的长,然后再利用等腰三角形的性质去判定.21.(40+40)【分析】过A作AQ⊥BC于Q∠BAQ=60°∠CAQ=45°AB=80海里在直角三角形ABQ中求出AQBQ再在直角三角形AQC中求出CQ再根据BC=CQ+BQ即可得出答案;【详解】解:解析:(3【分析】过A作AQ⊥BC于Q,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,再根据BC=CQ+BQ即可得出答案;【详解】解:过A作AQ⊥BC于Q,由题意得:AB=80,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°﹣60°=30°,∴AQ=12AB=40,BQ3=3在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=BQ+CQ=(3故答案为:(3【点睛】本题考查了解直角三角形的应用中的方向角问题、等腰直角三角形的性质、含30°角的直角三角形的性质等知识;通过解直角三角形得出CQ和BQ是解决问题的关键.22.或【分析】过A作AD⊥BC于D设等边△ABC的边长为4a则DC=2aAD=2aPC=a分类讨论:当P在BC的延长线上时DP=DC+CP=2a+a=3a;当P 点在线段BC上即在P′的位置则DP′=DC解析:23或23.【分析】过A作AD⊥BC于D,设等边△ABC的边长为4a,则DC=2a,AD=23a,PC=a,分类讨论:当P在BC的延长线上时,DP=DC+CP=2a+a=3a;当P点在线段BC上,即在P′的位置,则DP′=DC-CP′=a,然后分别利用正切的定义求解即可.【详解】解:如图,过A作AD⊥BC于D,设等边△ABC的边长为4a,则DC=2a,3a,PC=a,当P在BC的延长线上时,DP=DC+CP=2a+a=3a,在Rt△ADP中,tan∠APD=3333 AD aDP a==;当P点在线段BC上,即在P′的位置,则DP′=DC-CP′=a,在Rt△ADP′中,tan∠AP′D=233 AD aDP=='23或3【点睛】本题考查解直角三角形;等边三角形的性质.三、解答题23.(1)等腰三角形,见解析;(2)见解析;(3)见解析【分析】(1)根据垂径定理定理和圆周角定理可得C ADC ∠=∠,F C ∠=∠,然后根据已知AE DE =可以得到 EAD ADC ∠=∠,得到F EAD ∠=∠,得到结果(2)连接OE ,OD ,可证AOE DOE ≌△△.可得AEO DEO ∠=∠.利用角平分线的性质求出OM ON =(3)由题意可得AOE DOE ∠=∠,NOE MOE ∠=∠根据180AOE MOE ∠+∠=︒得到180DOE NOE ∠+∠=︒, 证出N 、O 、D 三点共线,证出矩形DNFG ,可证DG OD ⊥,结论得证.【详解】(1)等腰三角形证明:如图1 连接AC∵AB 为O 的直径,AB CD ⊥于点M∴C ADC ∠=∠∵F C ∠=∠(同弧所对圆周角相等)∵AE DE =,∴EAD ADC ∠=∠∴F EAD ∠=∠,∴AD DF =.∴ADF 是等腰三角形(2)如图2 连接OE ,OD ,在AOE △与DOE △中AE DEEO EO OA OD=⎧⎪=⎨⎪=⎩∴AOE △≌DOE △∴AEO DEO ∠=∠∵OM DE ⊥ 点N 为AF 的中点∴ 90ONE OME ∠=∠=︒利用角平分线的性质得OM ON =.(3)∵AOE △≌DOE △∴AOE DOE ∠=∠∵90ONE OME ∠=∠=︒,AEO DEO ∠=∠∴NOE MOE ∠=∠又∵180AOE MOE ∠+∠=∴180DOE NOE ∠+∠=∴N 、O 、D 三点共线∵DG FB ⊥,90ONE ∠=,90AFG ∠=∴四边形DNFG 为矩形∴90GDN ∠=∴DG 是O 的切【点睛】本题主要考查了等腰三角形的性质,垂径定理,圆周角定理,切线的判定等概念,熟练掌握知识点是解题的关键.24.(1)见解析;(2)5【分析】(1)连接OE ,由于BE 是角平分线,则有CBE ABE ∠=∠,再证可得OE//BC ;根据平行线的性质和切线的判定即可证得结论;(2)先证明△BCE ≌△BHE ,再根据勾股定理列方程求解即可.【详解】 ()1证明:连结OE,∵BE 平分ABC ∠,CBE ABE ∴∠=∠又,=OB OE,∴∠=∠ABE BEO∴∠=∠CBE BEO ,//OE AC ∴,又90C ∠=︒,即AC BC ⊥.OE AC ∴⊥,∴AC 是O 的切线,()2解:∵BE 平分,ABC AC BC EH AB ∠⊥⊥、,CE EH ∴=,∵BE BE =,∴()Rt CBE Rt HBE HL ≌,8CB HB ∴==,设OE=OB=r ,8HO BH OB r ∴=-=-,222OE OH HE =+,()22284r r ∴=-+.解得:=5r .【点睛】本题主要考查了切线的证明、角平分线的性质定理以及全等三角形的判定与性质,勾股定理,掌握切线的证明、角平分线的性质定理以及全等三角形的判定与性质,勾股定理是解题关键.25.2y x 2x 3=-++;()1,4;(2)13x【分析】(1)将(-1,0)和(0,3)两点代入二次函数y=-x 2+bx+c ,求得b 和c ,从而得出抛物线的解析式;(2)令y=0,解得x 1,x 2,得出此二次函数的图象与x 轴的另一个交点的坐标,进而求出当函数值y>0时,自变量x 的取值范围.【详解】解:(1)由二次函数2y x bx c =-++的图象经过(-1,0)和(0,3)两点, 得103b c c --+=⎧⎨=⎩, 解得23b c =⎧⎨=⎩, ∴抛物线的解析式为2y x 2x 3=-++,∵()222314y x x x =-++=--+, ∴抛物线的顶点坐标为(1,4);(2)令0y =,得2230x x -++=,解得13x =,21x =-,∴此二次函数的图象与x 轴的另一个交点的坐标为(3,0),∵抛物线开口向下,∴当13x时,0y >.【点睛】本题考查待定系数法求二次函数解析式及抛物线与坐标轴的交点,解题的关键是熟练掌握待定系数法求二次函数解析式及抛物线与坐标轴的交点.26.(1)证明见解析,(2)3.【分析】(1)当y=0时,判断一元二次方程是否有两个不相等的实数根即可;(2)求出解析式和A、B、C三点坐标,利用面积公式即可求.【详解】解:当y=0时,0=x2﹣2(a+1)x+a2+2a.2224=[2(1)]4(2)b ac a a a--+-⨯+=4>0,∴不论a取何实数,该抛物线与x轴都有两个交点;(2)当a=1时,抛物线解析式为:y=x2﹣4x+3当y=0时,x2﹣4x+3=0,解得,x1=1,x2=3,设A点坐标为(1,0),B点坐标为(3,0),当x=0时,y=3,C点坐标为(0,3)S△ABC=1(31)33 2⨯-⨯=.【点睛】本题考查了二次函数与x轴交点个数和求与坐标轴交点坐标,解题关键是熟练运用一元二次方程知识解决问题.。
一、选择题1.如图平面直角坐标系中,点A,B均在函数y=kx(k>0,x>0)的图像上,⊙A与x轴相切,⊙B与y轴相切,若点B(1,8),⊙A的半径是⊙B半径的2倍,则点A的坐标为()A.(2,2)B.(2,4)C.(3,4)D.(4,2)2.已知一个扇形的半径长为3,圆心角为60°,则这个扇形的面积为()A.12πB.πC.3π2D.3π3.如图,AB是⊙O的直径,∠BOD=120°,点C为弧BD的中点,AC交OD于点E,DE=1,则AE的长为()A.3B.5C.23D.254.如图,在半径为1的⊙O中,将劣弧AB沿弦AB 翻折,使折叠后的AB恰好与OB、OA 相切,则劣弧AB的长为()A.12πB.13πC.14πD.16π5.一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象可能是()A.B.C .D .6.如图在平面直角坐标系中,点A 在抛物线245y x x =-+上运动.过点A 作AC x ⊥轴于点C ,以AC 为对角线作矩形ABCD ,则对角线BD 的最小值为( )A .4B .3C .2D .17.小凯在画一个开口向上的二次函数图象时,列出如下表格: x … -1 0 1 2 … y…1211…A .(-1,1)B .(0,2)C .(1,1)D .(2,1)8.已知二次函数2y ax bx c =++的部分图象如图所示,下列关于此函数图象的描述中,正确的个数是( )①对称轴是直线1x =;②当0x <时,函数值y 随x 的增大而增大;③方程20ax bx c ++=的解为11x =-,23x =;④当1x <-或3x >时,20ax bx c ++<.A .1B .2C .3D .49.在RtΔABC 中,若∠C=90°,cosA=35,则sinA 的值为( ) A .35B .45 C .34D .5410.三角形在正方形网格纸中的位置如图所示,则sinα的值是( )A .34B .43C .35D .45 11.在Rt △ABC 中,∠C =90°,AB =3BC ,则sin B 的值为( ) A .12B .2 C .3 D .2212.△ABC 中,∠C=90°,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,且22440c ac a -+=,则sinA+cosA 的值为( ) A .13+ B .12C .23+ D .2二、填空题13.如图,PA ,PB 是圆O 的切线,切点为A 、B ,∠P =50°,点C 是圆O 上异于A ,B 的点,则∠ACB 等于_____.14.如图,圆锥的母线长l 为10cm ,底面圆半径r 为4.5cm ,则该圆锥的侧面积为_______2cm .15.二次函数224y x x =-++的最大值是______.16.如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端A 点安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为2m 处达到最高,高度为5m ,水柱落地处离池中心距离为6m ,则水管的长度OA 是________m .17.已知抛物线为21()y a x m k =++与()22()0y a x m k m =---≠关于原点对称,我们称1y 为与2y 互为“和谐抛物线”,请写出抛物线2467y x x =-++的“和谐抛物线”________.18.如图,在平面直角坐标系中,矩形OABC 的顶点A 和C 分别在x 轴和y 轴上,点B 的坐标为(8,10),点E 为边BC 上一动点,连接OE ,将OCE △沿OE 折叠,点C 落在点C '处,当C CB '△为直角三角形时,直线OC '的解析式为__________.19.如图,在2×4的方格中,两条线段的夹角(锐角)为∠1,则sin ∠1=______________.20.如图,在△ABC 中,∠A =30°,∠B =45°,BC =6cm ,则AB 的长为_____.21.如图,在一笔直的海岸线l 上有A ,B 两个观测站,AB =2km ,从A 测得灯塔P 在北偏东60°的方向,从B 测得灯塔P 在北偏东45°的方向,则灯塔P 到海岸线l 的距离为_____km .22.已知:等边△ABC ,点P 是直线BC 上一点,且PC:BC=1:4,则tan ∠APB=_______,三、解答题23.如图,台风中心位于点P ,并沿东北方向PQ 移动,已知台风移动的速度为40千米时,受影响区域的半径为260千米,B 市位于点P 的北偏东75︒方向上,距离P 点480千米.问:本次台风是否会影响B 市.若这次台风会影响B 市,求B 市受台风影响的时间.24.如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 与BC 相交于点D ,且DE ⊥AC ,垂足为E .(1)求证:DE 是⊙O 的切线;(2)∠A=45º,⊙O 的半径为5,求图中阴影部分的面积.25.如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =﹣1,且抛物线经过A (1,0),C (0,3)两点,与x 轴的另一交点为点B .(1)若直线y =mx +n 经过B ,C 两点,求直线BC 和抛物线的解析式;(2)M 为抛物线的对称轴x =﹣1上一点,设点M 到点A 的距离与到点C 的距离之和为t ,求t 的最小值;(3)设点P 为抛物线的对称轴x =﹣1上的一个动点,请直接写出使△BPC 为直角三角形的点P 的坐标.26.如图,在平面直角坐标系中,已知抛物线252y ax bx =++与x 轴交于()5,0A ,()1,0B-两点,与y轴交于点C.(1)求抛物线的解析式;(2)若点M是抛物线的顶点,连接AM,CM,求AMC的面积;(3)若点Р是抛物线上的一个动点,过点Р作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为点F,连接EF,当线段EF的长度最短时,求出点P的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】把B的坐标为(1,8)代入反比例函数解析式,根据⊙B与y轴相切,即可求得⊙B的半径,则⊙A的半径即可求得,即得到B的纵坐标,代入函数解析式即可求得横坐标.【详解】解:把B的坐标为(1,8)代入反比例函数解析式得:k=8,则函数的解析式是:y=8x,∵B的坐标为(1,8),⊙B与y轴相切,∴⊙B的半径是1,则⊙A的半径是2,把y=2代入y=8x得:x=4,则A的坐标是(4,2).故选:D.【点睛】本题考查了反比例函数图象上点的坐标特征以及切线的性质,根据点B的坐标利用反比例函数图象上点的坐标特征求出k值是解题的关键.2.C解析:C 【分析】根据计算公式直接套用求解即可. 【详解】 根据题意,得260333602S ππ⨯⨯==,故选C . 【点睛】本题考查了扇形的面积计算问题,熟记扇形面积计算公式,准确判断计算条件是解题的关键.3.A解析:A 【分析】连接AD ,可证∠ODA=∠OAD=∠AOD=60°,根据弧中点,得出∠DAC=30°,△ADE 是直角三角形,用勾股定理求AE 即可. 【详解】 解:连接AD ,∵∠BOD =120°,AB 是⊙O 的直径, ∴∠AOD =60°, ∵OA=OD ,∴∠OAD =∠ODA =60°, ∵点C 为弧BD 的中点, ∴∠CAD =∠BAC =30°, ∴∠AED =90°, ∵DE =1, ∴AD=2DE=2, AE =2222213AD DE -=-=,故选:A .【点睛】本题考查了圆周角的性质、勾股定理,解题关键是通过连接弦构造直角三角形,并通过弧相等导出30°角.4.A解析:A 【分析】如图画出折叠后AB 所在的⊙O ',连O 'B ,O 'A ,根据题意可得O 'B ⊥OB 、O 'A ⊥OA ,且OB=OA=O 'B=O 'A,得到四边形O 'BOA 是正方形,即∠O=90°,最后根据弧长公式计算即可. 【详解】解:如图:画出折叠后AB 所在的⊙O ',连O 'B ,O 'A ∵AB 恰好与OA 、OB 相切 ∴O 'B ⊥OB 、O 'A ⊥OA ∵OB=OA=O 'B=O 'A, ∴四边形O 'BOA 是正方形 ∴∠O=90° ∴劣弧AB 的长为9011801802n r πππ︒⨯⨯==︒. 故选择:A .【点睛】本题考查了折叠的性质、正方形的判定与性质、弧长公式等知识点,其中掌握弧长公式和折叠的性质是解答本题的关键.5.B解析:B 【分析】先由一次函数y ax b =+的图象得到a 、b 的正负,再与二次函数2y ax bx c =++的图象的开口方向、对称轴位置相比较即可做出判断. 【详解】解:A 、由抛物线可知,a <0,x =﹣2ba<0,得b <0,由直线可知,a >0,b >0,故本选项错误;B 、由抛物线可知,a <0,x =﹣2ba<0,得b <0,由直线可知,a <0,b <0,故本选项正确;C 、由抛物线可知,a >0,x =﹣2ba>0,得b <0,由直线可知,a >0,b >0,故本选项错误;D 、由抛物线可知,a <0,x =﹣2ba<0,得b <0,由直线可知,a <0,b >0,故本选项错误. 故选:B . 【点睛】本题主要考查一次函数的图象、二次函数2y ax bx c =++的图象与性质,熟练掌握两函数图象与解析式的系数的关系是解答的关键.6.D解析:D 【分析】先利用配方法得到抛物线的顶点坐标为(2,1),再根据矩形的性质得BD =AC ,由于AC 的长等于点A 的纵坐标,所以当点A 在抛物线的顶点时,点A 到x 轴的距离最小,最小值为2,从而得到BD 的最小值. 【详解】解:∵y =x 2﹣4x +5=(x ﹣2)2+1, ∴抛物线的顶点坐标为(2,1), ∵四边形ABCD 为矩形, ∴BD =AC , 而AC ⊥x 轴,∴AC 的长等于点A 的纵坐标,当点A 在抛物线的顶点时,点A 到x 轴的距离最小,最小值为1, ∴对角线BD 的最小值为1. 故选:D . 【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了矩形的性质.7.A解析:A 【分析】观察图表数据,根据二次函数的对称性即可判断出计算错误的一组数据,然后再利用二次函数的增减性得出结论. 【详解】解:观察y 值发现y =1时x 有三个不同的值,因此这三个值中必有一对计算错误. 由二次函数的对称性:如果(-1,1),(1,1)是图象的两个对称点,那么根据描点得到这个函数图象的开口应该是向下的.同理若(-1,1),(2,1)是两个对称点,那么该函数图象的开口也是向下的,所以(1,1),(2,1)是图象的两个对称点,因此该图像的对称轴为直线032x =,根据二次函数的增减性,当开口向上时,在对称轴的左边,y 随x 的增大而减小,所以1x =-时,y 一定是大于1的, 故选A . 【点睛】本题考查了二次函数的图象,找出图表数据特点,根据函数的对称性解答即可,熟练掌握二次函数的图象和性质,是解答的关键.8.D解析:D 【分析】利用拋物线的顶点的横坐标为1可对①进行判断;根据二次函数的性质对②进行判断;利用对称性得到拋物线与x 轴的另一个交点坐标为(3、0),则可对③进行判断;观察函数图象,当抛物线在x 轴下方时,得出其x 的取值范围,则可对④进行判断. 【详解】根据函数图像可知,抛物线的对称轴为直线1x =,故①的说法正确; 当1x <时,函数y 随x 的增大而增大,故②的说法正确;点(1-、0)关于1x =的对称点为(3、0),则抛物线与x 轴的另一个交点坐标为(3、0),所以方程20ax bx c ++=的解为121,3x x =-=,故③说法正确; 由函数图像可知,当1x <-或3x >时,抛物线在x 的下方,即20ax bx c ++<,所以④的说法正确综上所述①②③④的说法都正确 故选:D . 【点睛】本题考查了拋物线与x 轴的交点:把求二次函数y=ax2+bx+c(a,b,c 是常数,a≠0)与x 轴的交点坐标问题转化解关于x 的一元二次方程即可求得交点横坐标.也考查了二次函数的性质.9.B解析:B 【分析】根据正弦和余弦的平方和等于1求解. 【详解】解:∵()()22sin cos 1A A +=,∴4sin 5A ===,故选B . 【点睛】本题考查锐角三角函数的性质,熟练掌握正弦函数与余弦函数的平方和等于1的性质是解题关键.10.C解析:C【分析】将α∠转换成β∠去计算正弦值.【详解】解:如图,βα∠=∠,4AB =,3BC =,∴5AC =, 则3sin sin 5BC AC αβ===. 故选:C .【点睛】本题考查正弦值的求解,解题的关键是掌握网格图中三角函数值的求解.11.D解析:D【分析】设BC=a ,则AB=3a ,根据勾股定理求出AC ,再根据正弦的定义求sin B .【详解】解:设BC=a ,则AB=3a ,2222922AC AB BC a a a -=-=,sin B =222233AC a AB a ==, 故选:D .【点睛】本题考查了三角函数,勾股定理,解题关键是明确三角函数的意义,通过设参数,求出需要的边长.12.A解析:A【分析】 由22440c ac a -+=得2c a =,则1sin 2a A c ==,即可得到30A ∠=︒,利用特殊角的三角函数值就可以求出结果.【详解】解:∵22440c ac a -+=,∴()220c a -=,即2c a =, ∵90C ∠=︒, ∴1sin 2a A c ==, ∴30A ∠=︒,∴cos A =,∴1sin cos 2A A +=. 故选:A .【点睛】 本题考查锐角三角函数,解题的关键是掌握特殊角的三角函数值.二、填空题13.65°或115°【分析】连接OAOB 进而求出∠AOB=130°再分两种情况:当C 在劣弧AB 上当C 在劣弧AB 上理由圆周角定理和圆内接四边形的性质即可得出结论【详解】解:如图连接OAOB ∵PAPB 分别切解析:65°或115°.【分析】连接OA ,OB ,进而求出∠AOB=130°,再分两种情况:当C 在劣弧AB 上,当C 在劣弧AB 上,理由圆周角定理和圆内接四边形的性质,即可得出结论.【详解】解:如图,连接OA 、OB ,∵PA 、PB 分别切⊙O 于点A 、B ,则∠OAP =∠OBP =90°;在四边形APBO 中,∠P =50°,∴∠AOB =360°﹣∠OAP ﹣∠P ﹣∠OBP =360°﹣50°﹣90°﹣90°=130°①当点C 在优弧AB 上时,∠ACB =12∠AOB (同弧所对的圆周角是所对的圆心角的一半),∴∠ACB =65°;当点C 在劣弧AB 上时,记作C ',由①知,∠ACB =65°,∵四边形ACBC '是⊙O 的内接四边形,∴∠AC 'B =180°﹣∠ACB =180°﹣65°=115°,故答案为:65°或115°.【点睛】本题考查了切线的性质,圆周角定理,圆内接四边形的性质,求出∠AOB 是解本题的关键.14.【分析】根据圆锥的侧面积计算公式求解即可【详解】解:∵圆锥的母线长是10cm 底面圆半径为∴圆锥的侧面积:S=(cm2)故答案为:【点睛】本题考查了圆锥的计算解题的关键是正确地进行圆锥与扇形的转化解析:45π【分析】根据圆锥的侧面积计算公式求解即可.【详解】解:∵圆锥的母线长是10cm ,底面圆半径r 为4.5cm∴圆锥的侧面积:S=112=102 4.5=4522l r πππ⨯⨯⨯(cm 2), 故答案为:45π.【点睛】本题考查了圆锥的计算,解题的关键是正确地进行圆锥与扇形的转化. 15.【分析】利用二次函数的配方法确定最值即可【详解】∵∵a=-1<0∴二次函数有最大值且最大值为5;故答案为:5【点睛】本题考查了二次函数的最值问题熟练运用配方法确定二次函数的最值是解题的关键解析:【分析】利用二次函数的配方法确定最值即可.【详解】∵224y x x =-++2(24)x x =---2[(1)14]x =----2(1)5x =--+,∵a= -1<0,∴二次函数224y x x =-++有最大值,且最大值为5;故答案为:5.【点睛】本题考查了二次函数的最值问题,熟练运用配方法确定二次函数的最值是解题的关键.16.【分析】设抛物线解析式为y=a (x-h )2+k 将(25)与(60)代入解析式求得a 的值再令x=0求得y 的值即可得出答案【详解】解:设抛物线解析式为y=a (x-h )2+k 由题意可知抛物线的顶点为(25 解析:154【分析】设抛物线解析式为y=a (x-h )2+k ,将(2,5)与(6,0)代入解析式,求得a 的值,再令x=0,求得y 的值,即可得出答案.【详解】解:设抛物线解析式为y=a (x-h )2+k ,由题意可知抛物线的顶点为(2,5),与x 轴的一个交点为(6,0),∴0=a (6-2)2+5,解得:516a, ∴抛物线解析式为:25(2)516y x =--+ 当x=0时,2515(02)5164y ==--+ ∴水管的长度OA 是154m . 故答案为:154. 【点睛】 本题考查了二次函数在实际问题中的应用,数形结合并熟练掌握待定系数法是解题的关键.17.【分析】先将抛物线进行配方后根据和谐抛物线定义写出已知函数的和谐抛物线并整理成一般式【详解】解:∵∴抛物线的和谐抛物线为:即故答案为:【点睛】本题考查了新定义函数问题配方法熟练配方并准确理解新定义是 解析:2467y x x =+-.【分析】先将抛物线进行配方,后根据 “和谐抛物线”定义写出已知函数的“和谐抛物线”,并整理成一般式.【详解】 解:∵223374674()44y x x x =-++=--+, ∴抛物线2467y x x =-++的“和谐抛物线”为:23374()44y x =+- 即2467y x x =+-,故答案为:2467y x x =+-.【点睛】本题考查了新定义函数问题,配方法,熟练配方,并准确理解新定义是解题的关键. 18.【分析】分两种情况讨论:当在AB 边上的时候和在正方形内部的时候分别计算一次函数的解析式即可;【详解】①当在AB 边上此时OA=8则∴解析式为:;②当在正方形内部时设CE=m 则BE=8-m ∴故∵∴即解得 解析:34y x =,2120y x = 【分析】分两种情况讨论:当C '在AB 边上的时候和C '在正方形内部的时候,分别计算一次函数的解析式即可;【详解】①当C '在AB 边上,此时10C O CO '== , 6C A '= ,OA=8, 则63tan 84C OA '==∠ , ∴ 解析式为:34y x = ; ②当C '在正方形内部时,设CE=m ,则EC m '= ,BE=8-m ,∴ 222CE CO EO += ,故EO =,∵ 2OCE ECOC S S ∆'=四边形 ,∴ 222CE OC CC OE '⨯⨯⨯= ,即10m CC '= ,解得:CC '=,由∠CBC ' +∠BCC ' =90°,∠OCC ' +∠BCC '=90°,∴∠CBC '=∠OCC ',CO BC FO CC =',即10820m FO = , ∴FO = ,在△CFO 中,由勾股定理得222CF FO CO +=∴2tan 5EOC '=∠ ,∴2522tan 202tan 41tan 21125EOC EOC ⨯''=='--∠∠COC =∠ , ()21tan tan 9020C OA COC ''=︒-=∠∠ , ∴解析式为:2120y x = ; 故答案为:2120y x =或34y x =.【点睛】本题考查了锐角三角函数的应用,一次函数的解析式,勾股定理以及分情况讨论的问题,重点是注意分情况讨论求解.19.【分析】解:如图添加字母过A 作AB ∥ED 可得∠1=∠CAB 连结BC 在△ABC 中由勾股定理AC=AB=BC=由AB2+BC2=5+5=10=AC2证得∠ABC=90°由AB=BC 可得∠CAB=45°利 解析:22【分析】解:如图添加字母,过A 作AB ∥ED ,可得∠1=∠CAB ,连结BC ,在△ABC 中由勾股定理223+1=10,222+1=5221+2=5AB 2+BC 2=5+5=10=AC 2,证得∠ABC=90°,由AB=BC 可得∠CAB=45°,利用三角函数定义sin ∠CAB=5210BC AC ===。
一、选择题1.如图,抛物线2144y x =-与x 轴交于A ,B 两点,P 是以点(0,3)C 为圆心,3为半径的圆上的动点,Q 是线段PA 的中点,连结OQ 、则线段OQ 的最大值是( )A .532-B .3C .532+D .5232+ 2.如图,半圆的直径为AB ,圆心为点O ,C 、D 是半圆的3等分点,在该半圆内任取一点,则该点取自阴影部分的概率是( )A .3πB .6πC .12D .133.如图,有一块半径为1m ,圆心角为120︒扇形铁皮,要把它做成一个圆锥体容器(接缝忽略不计),那么这个圆锥体容器的高为( )A .13mB .23mC 22D .43m 4.往直径为26cm 的圆柱形容器内装入一些水以后,截面如图所示,若水的最大深度为8cm ,则水面AB 的宽度为( )A .12cmB .18cmC .20cmD .24cm 5.把二次函数243y x x =-+化成2()y a x h k =++的形式是( )A .2(2)1y x =++B .2(2)7y x =++C .2(2)1y x =--D .2(2)7y x =-- 6.抛物线222=++y x x 与y 轴的交点坐标为( )A .(1,0)B .(0,1)C .(0,0)D .(0,2) 7.如图,二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的一个交点为()3,0A ,对称轴为直线1x =,下列结论:①0abc <;②0a b c -+<;③2b a =-;④80a c +>.其中正确结论的个数为( )A .1个B .2个C .3个D .4个8.飞机着陆后滑行的距离s (单位:m )与滑行的时间t (单位:s )的函数解析式是260 1.5s t t =-,那么飞机着陆后滑行多长时间才能停下来.( )A .10sB .20sC .30sD .40s9.如图,在ABC 中,AD 平分BAC ∠,//DE AC 交AB 于点E ,//DF AB 交AC 于点F ,且AD 交EF 于点O ,若8AF EF ==,则sin DAC ∠的值为( )A .13B .32C .12D .2210.如图,CD 是Rt ABC 斜边上的高,43AC BC ==,.则tan BCD ∠的值是( )A .34B .35C .45D .4311.如图,△ABC 中,AB =AC =5,BC =8,则sin B 的值为( )A .58B .45C .35D .1212.如图大坝的横断面,斜坡AB 的坡比i =1:2,背水坡CD 的坡比i =1:1,若坡面CD 的长度为62米,则斜坡AB 的长度为( )A .43B .63C .65D .24二、填空题13.如图,在ABC 中,A 30∠=︒,45B ∠=︒,72cm AB =,点O 以2/cm s 的速度在ABC 边上沿A B C A →→→的方向运动.以O 为圆心作半径为2cm 的圆,运动过程中O 与ABC 三边所在直线首次相切和第三次相切的时间间隔为__________秒.14.刘徵是我国古代最杰出的数学家之一,他在《九章算术圆田术)中用“割圆术”证明了圆面积的精确公式,并给出了计算圆周率的科学方法(注:圆周率=圆的周长与该圆直径的比值).刘徽计算圆周率是从正六边形开始的,易知圆的内接正六边形可分为六个全等的正三角形,每个三角形的边长均为圆的半径R .此时圆内接正六边形的周长为6R ,如果将圆内接正六边形的周长等同于圆的周长,可得圆周率为3.当正十二边形内接于圆时,如果按照上述方法计算,可得圆周率为_______.(参考数据:sinl5°=0.26)15.若点A (﹣12021,y 1)、B (40412021,y 2)都在二次函数y =﹣x 2+2x +m 的图像上,则y 1_____y 2. 16.抛物线y =a (x ﹣2)(x ﹣2a )(a 是不等于0的整数)顶点的纵坐标是一个正整数,则a 等于_____.17.一个盒子中装有分别写上数字1,2,﹣4的三个大小形状相同的白球,现摇匀后从中随机摸出一个球,将上面的数字记作a ,不放回.再从中随机摸出一个球,将上面的数字记作b ,则a ,b 的值使得抛物线y =ax 2+bx +3的对称轴在y 轴右侧的概率为_____. 18.如图,从A 地到B 地需经过C 地,现城市规划需修建一条从A 到B 的笔直道路,已知180AC 米,30CAB ∠=︒,45CBA ∠=︒,则道路改直后比原来缩短了___________米.(结果精确到1米,可能用到的数据:2 1.4≈,3 1.7≈)19.如图,在平面直角坐标系中,点O 为坐标原点,点B 的坐标为(4,0),AB ⊥x 轴,连接AO ,tan ∠AOB =54,动点C 在x 轴上,连接AC ,将△ABC 沿AC 所在直线翻折得到△ACB ',当点B '恰好落在y 轴上时,则点C 的坐标为_____.20.如图,在Rt ABC △中,90ABC ∠=︒,30ACB ∠=︒,2AB =,点E 为AC 上任意一点(不与点A 、C 重合),连结EB ,分别过点A 、B 作BE 、AE 的平行线交于点F ,则EF 的最小值为__________.21.如图,在菱形ABCD 中,AC 、BD 相交于点O ,60BAD ∠=︒,BD 长为4,则菱形ABCD 的面积是__________.22.如图,在Rt △ABC 中,∠C =90°,AB =13,AC =5,则cos A 的值是_____.三、解答题23.如图,直线AB 经过⊙O 上一点C ,且OA =OB ,CA =CB .(1)求证:AB 是⊙O 的切线;(2)若AB =6,△AOB 的面积为9,求图中阴影部分的面积.24.如图,ABC 中,AB AC =,以AC 为直径的半圆交 BC 于点D ,DE AB ⊥于点E .(1)求证:DE 为半圆的切线;(2)若23BC =120BAC ∠=︒,求 AD 的长.25.天气寒冷,某百货商场准备销售一种围巾,围巾的进货价格为每条50元,并且每条的售价不低于进货价,经过市场调查,每月的销售量y(条)与每条的售价x(元)之间满足人体所示的函数关系.(1)求每月销售y(条)与售价x(元)的函数关系式;(2)物价部门规定,该围巾的每条利润不允许高于进货价的30%,设这种围巾每月的总利润为w(元),那么售价定为多少元可获得最大利润?最大利润是多少?26.某工艺品厂设计了一款每件成本为11元的工艺品投放市场进行试销,经过市场调查,得出每天销售量y(件)是每件售价x(元)(x为正整数)的一次函数,其部分对应数据如下表所示:(1)求y关于x的函数解析式.(2)该工艺品每件售价为多少元时,工艺品厂试销该工艺品每天获得的利润是900元?每件售价x/元…15161718…每天销售量y/件…150140130120…【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据抛物线解析式可求得点A (-4,0),B (4,0),故O 点为AB 的中点,又Q 是AP 上的中点可知OQ=12BP ,故OQ 最大即为BP 最大,即连接BC 并延长BC 交圆于点P 时BP 最大,进而即可求得OQ 的最大值.【详解】∵抛物线2144y x =-与x 轴交于A 、B 两点 ∴A (-4,0),B (4,0),即OA=4.在直角三角形COB 中5==∵Q 是AP 上的中点,O 是AB 的中点∴OQ 为△ABP 中位线,即OQ=12BP又∵P 在圆C∴当B 、C 、P 共线时BP 最大,即OQ 最大此时BP=BC+CP=5+OQ=12 故选:C.【点睛】本题考查了勾股定理求长度,二次函数解析式求点的坐标及线段长度,中位线,与圆相离的点到圆上最长的距离,解本题的关键是将求OQ 最大转化为求BP 最长时的情况. 2.D解析:D【分析】由C 、D 是半圆的3等分点知∠AOC=∠COD=∠BOD=60°,据此得S 扇形AOC =S 扇形COD =S 扇形BOD =13S 半圆,再根据概率公式求解即可. 【详解】解:∵C 、D 是半圆的3等分点,∴∠AOC =∠COD =∠BOD =60°,∴S扇形AOC=S扇形COD=S扇形BOD=13S半圆,∴该点取自阴影部分的概率为1=3CODSS扇形半圆,故选:D.【点睛】本题主要考查概率公式,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.3.C解析:C【分析】设做成圆锥之后的底面半径为r,可得12012180rππ⋅=,再利用勾股定理即可求解.【详解】解:设做成圆锥之后的底面半径为r,则12012180rππ⋅=,解得13 r=,∴这个圆锥体容器的高为3h==,故选:C.【点睛】本题考查圆锥的计算,求出圆锥的底面半径是解题的关键.4.D解析:D【分析】连接OB,过点O作OC⊥AB于点D,交圆O于点C,由题意可知CD为8,然后根据勾股定理求出BD的长,进而可得出AB的长.【详解】如图,连接OB,过点O作OC⊥AB于点D,交圆O于点C,则AB=2BD,∵圆的直径为26cm,∴圆的半径r=OB=13cm,由题意可知,CD=8cm,∴OD=13-8=5(cm),∴()12BD cm===,∴AB=24cm,故选:D.【点睛】本题考查了垂径定理的应用,过圆心向弦作垂线构造垂径定理是解题的关键. 5.C解析:C【分析】利用配方法先提出二次项系数,在加上一次项系数的一半的平方来凑完全平方式,即可把一般式转化为顶点式.【详解】解:()()22243443421y x x x x x =-+=-++-=--. 故选:C .【点睛】此题考查了二次函数的顶点式,掌握利用配方法将二次函数一般式转化为顶点式是解题的关键.6.D解析:D【分析】令x=0,则y=2,抛物线与y 轴的交点为 (0,2)【详解】令x=0,则y=2,∴抛物线与y 轴的交点为(0,2),故选:D .【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,会求函数图象与坐标轴的交点是解题的关键;7.B解析:B【分析】利用数形结合思想,从抛物线的开口,与坐标轴的交点,对称轴等方面着手分析判断即可.【详解】∵抛物线的开口向上,对称轴在原点的右边,与y 轴交于负半轴,∴a >0, b <0,c <0,∴abc >0,∴结论①错误;∵抛物线的对称轴为x=1, ∴12b a-=, ∴2b a =-; ∴结论③正确;∵二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的一个交点为()3,0A ,对称轴为直线1x =, ∴1312x +=, ∴11x =-,∴二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的另一个交点为(-1,0),∴0a b c -+=;∴结论②错误;∵当x=-2时,y=4a-2b+c >0, ∵12b a-=,则b=-2a ∴80a c +>,∴结论④正确;故选B .【点睛】 本题考查了二次函数的图像与系数之间的关系,对称轴的使用,代数式符号的判定,熟练运用数形结合的思想,二次函数的性质是解题的关键.8.B解析:B【分析】当s 取最大值时,飞机停下来,求函数最大值时的自变量即可.【详解】∵当s 取最大值时,飞机停下来,∴t= 6022( 1.5)b a -=-⨯-=20, 故选:B .【点睛】本题考查了二次函数应用-飞机着陆问题,熟练把问题转化为二次函数的最值问题是解题的关键.9.C解析:C【分析】先证明四边形AEDF 是平行四边形,在根据题意得到四边形AEDF 是菱形,即可得到结果;【详解】由题意://DE AC ,//DF AB ,即//DE AF ,//DF EA ,∴四边形AEDF 是平行四边形,又∵AD 平分BAC ∠,∴BAD CAD ∠=∠,∵//AE DF ,∴BAD ADF ∠=∠,∴DAF FDA ∠=∠,∴FA FD =,∴四边形AEDF 是菱形,∴EF AD ⊥,且O 为EF 的中点,8EF =,∴4OF =,∴在Rt △OAF 中,41sin 82OF DAF AF ∠===; ∴1sin 2DAC ∠=; 故答案选C .【点睛】本题主要考查了菱形的判定与性质,结合三角函数计算是解题的关键. 10.A解析:A【分析】易证∠BCD=∠A ,则求tan ∠BCD 的值就可以转化为求tan ∠A ,而tan ∠A 可由△ABC 边长比求得,所以得解.【详解】解:由勾股定理得,5=, ∵∠BCD+∠ACD=∠A+∠ACD=90°, ∴∠BCD=∠A ,∴tan ∠BCD=tan ∠A=34BC AC =, 故选:A .【点睛】本题考查锐角三角函数的综合应用,熟练掌握勾股定理的应用、锐角三角函数的定义及余角的性质和直角三角形的性质是解题关键.11.C解析:C【分析】过A 点作AD BC ⊥交BC 于点D ,利用等腰三角形的三线合一求出BD ,利用勾股定理求出AD 即可解决问题.【详解】过A 点作AD BC ⊥交BC 于点D ,如图∵5AB AC ==,8BC =,∴4BD CD ==, ∴2222543AD AB BD =-=-=, ∴3sin 5AD B AB ==. 故选:C .【点睛】本题考查等腰三角形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.12.C解析:C【分析】过B 作BE ⊥AD 于E ,过C 作CF ⊥AD 于F ,则四边形BEFC 是矩形,得BE =CF ,由坡比得BE =CF =DF =22CD =6(米),AE =2BE =12(米),再由勾股定理解答即可. 【详解】过B 作BE ⊥AD 于E ,过C 作CF ⊥AD 于F ,如图所示:则四边形BEFC 是矩形,∴BE =CF .∵背水坡CD 的坡比i =1:1,CD =∴CF =DF CD =6(米),∴BE =CF =6米, 又∵斜坡AB 的坡比i =1:2=BE AE ,∴AE =2BE =12(米), ∴AB=(米),故选:C .【点睛】本题考查了解直角三角形的应用−坡度坡角问题、等腰直角三角形的性质以及勾股定理等知识;熟练掌握坡比的定义,正确作出辅助线构造直角三角形是解题的关键.二、填空题13.【分析】要求第一次相切和第三次相切的时间间隔题目已知速度那么就要求第一次相切圆心运动的距离与第三次相切圆心运动的距离之差根据公式:时间=路程÷速度即可求解【详解】解:第一次相切如图①∵∴即第一次相切解析:12+ 【分析】要求第一次相切和第三次相切的时间间隔,题目已知速度,那么就要求第一次相切圆心运动的距离与第三次相切圆心运动的距离之差,根据公式:时间=路程÷速度即可求解.【详解】解:第一次相切如图①,∵1O P ,1O P AC ⊥,∴11sin sin 30O P O A A ===︒,即第一次相切圆心运动的距离为.第二次相切如图②,2O P =,2O P BC ⊥,第三次相切如图③,∵3O P =,3O P AB ⊥,∴332sin sin 45O P O B cm B ===︒,第三次相切圆心运动的距离为32AB O B +=+,∴第一次相切圆心运动的距离与第三次相切圆心运动的距离之差为:22-=,∴52252122s t v +===+, 故答案为:5212+.【点睛】本题考查的是特殊角的三角函数值以及求圆平移到与直线相切时圆心经过的距离,解题的关键是求出第一次相切圆心运动的距离与第三次相切圆心运动的距离之差.14.12【分析】连接根据正十二边形的性质得到=30°作OM ⊥A₁A₂于M 根据等腰三角形三线合一的性质得出∠A₁OM=15°A₁A₂=2A₁M 设圆的半径R 解直角△A₁OM 求出A₁M 进而得到正十二边形的周长解析:12【分析】连接1OA 、2OA ,根据正十二边形的性质得到12A OA ∠=30°,作OM ⊥A₁A₂于M ,根据等腰三角形三线合一的性质得出∠A₁OM=15°,A₁A₂=2A₁M ,设圆的半径R ,解直角△A₁OM ,求出A₁M ,进而得到正十二边形的周长L ,那么圆周率≈2L R. 【详解】解:如图,设半径为R 的圆内接正十二边形的周长为L ,连接1OA 、2OA ,∵十二边形1212A A A 是正十二边形, ∴123603012AOA ︒∠==︒, 作OM ⊥A₁A₂于M ,又OA₁=OA₂,∴∠A₁OM=15°,A₁A₂=2A₁M ,在直角△A₁OM 中,111sin 0.26A M OA AOM R =⋅∠=, ∴A₁A₂=2A₁M=0.52R ,∴L=12A₁A₂=6.24R ,∴圆周率≈6.24 3.1222L R R R==, 故答案为:3.12.【点睛】 本题考查直角三角形的应用、正多边形和圆、等腰三角形的性质,求出正十二边形的周长L是解题的关键.15.<【分析】把AB 两点坐标代入函数关系式再根据已知条件求出的值最后求出答案即可【详解】解:∵点A (﹣y1)B (y2)都在二次函数y =﹣x2+2x+m 的图像上∴====∴故答案为:<【点睛】本题考查了二解析:<【分析】把A ,B 两点坐标代入函数关系式,再根据已知条件求出21y y -的值,最后求出答案即可.【详解】解:∵点A (﹣12021,y 1)、B (40412021,y 2)都在二次函数y =﹣x 2+2x +m 的图像上, ∴21y y -=224041404111()2[()2()]2021202120212021m m -+⨯+---+⨯-+ =2111(2)2(2)()202120212021--+⨯-+-222021+ =22412124()4()20212021202120212021-+-+-++ =402021> ∴12y y <故答案为:<.【点睛】本题考查了二次函数图象上点的坐标特征,能选择适当的方法求解是解答此题的关键. 16.-1【分析】令y=0时则有则有进而可得对称轴为直线然后可求抛物线顶点纵坐标为由此可得当a 不为±1时纵坐标不为整数进而可求解a 的值【详解】解:由题意得:令y=0时则有解得:∴抛物线与x 轴交点的坐标为由 解析:-1【分析】令y=0时,则有()220a x x a ⎛⎫--= ⎪⎝⎭,则有122,2x x a==,进而可得对称轴为直线11x a =+,然后可求抛物线顶点纵坐标为12a a--+,由此可得当a 不为±1时,纵坐标不为整数,进而可求解a 的值.【详解】解:由题意得:令y=0时,则有()220a x x a ⎛⎫--= ⎪⎝⎭, 解得:122,2x x a==, ∴抛物线与x 轴交点的坐标为()2,0,2,0a ⎛⎫ ⎪⎝⎭, 由抛物线的对称性可得对称轴为直线11x a =+, ∴把11x a =+代入抛物线解析式得顶点纵坐标为12y a a=--+, ∵顶点的纵坐标是一个正整数且a 是不等于0的整数,∴1a =±,当1a =时,y=0(不符合题意,舍去);当1a =-时,y=4,(符合题意)∴1a =-;故答案为-1.【点睛】本题主要考查二次函数的性质,熟练掌握二次函数的性质是解题的关键.17.【分析】根据题意画出树状图然后根据对称轴位于y轴的右侧找出满足条件的结果数即可求解【详解】解:根据题意画树状图如下:共有6种等可能的结果二次函数y =ax2+bx+3的对称轴为要保证对称轴在y 轴的右侧 解析:23【分析】根据题意画出树状图,然后根据对称轴位于y轴的右侧,找出满足条件的结果数即可求解.【详解】解:根据题意画树状图如下:共有6种等可能的结果,二次函数y =ax 2+bx +3的对称轴为2b x a =-, 要保证对称轴在y 轴的右侧,即b x 02a=->, 则满足条件的结果有(1,-4)、(2,-4)、(-4,1)、(-4,2),∴概率为4263P ==, 故答案为:23. 【点睛】本题考查利用树状图求概率、抛物线的对称轴,解题的关键是根据题意画出树状图. 18.【分析】过点C 作CD ⊥AB 垂足为D 计算BCAB 的长度比较AC+BC 与AB 的大小即可【详解】如图过点C 作CD ⊥AB 垂足为D ∵米∴DC=BD=90AD=90BC=90∴AC+BC=180+90≈306A解析:【分析】过点C 作CD ⊥AB ,垂足为D ,计算BC ,AB 的长度,比较AC+BC 与AB 的大小即可.【详解】如图,过点C 作CD ⊥AB ,垂足为D ,∵180AC 米,30CAB ∠=︒,45CBA ∠=︒,∴DC=BD=90,AD=903,BC=902,∴AC+BC=180+902≈306,AB=AD+BD=903+90≈243,∴缩短了:306-243=63(米),故答案为:63米.【点睛】本题考查了解斜三角形,学会作高化,把斜三角形化为直角三角形,并熟练运用特殊角的三角函数值是解题的关键.19.【分析】根据题意先求出AB =5由折叠的性质得出AB =AB =5BC =BC 过点A 作AD ⊥y 轴于点D 由勾股定理求出OB =2得出x2+22=(4﹣x )2解得x =则可得出答案【详解】解:∵tan ∠AOB =B ( 解析:3,02⎛⎫ ⎪⎝⎭【分析】根据题意先求出AB =5,由折叠的性质得出AB =AB'=5,BC =B'C ,过点A 作AD ⊥y 轴于点D ,由勾股定理求出OB'=2,得出x 2+22=(4﹣x )2,解得x =32,则可得出答案. 【详解】解:∵tan ∠AOB =54,B (4,0), ∴54AB OB =, ∴AB =5, ∵将△ABC 沿AC 所在直线翻折得到△ACB′,∴AB =AB'=5,BC =B'C ,过点A 作AD ⊥y 轴于点D ,∴B'D ,22AB AD -2254-3,∴OB'=2,设OC =x ,则BC =B'C =4﹣x ,Rt △OB'C 中,∵OC 2+OB'2=B'C 2,∴x 2+22=(4﹣x )2,解得x =32, ∴C (32,0).故答案为:(32,0).【点睛】本题考查勾股定理以及翻折问题,熟练掌握勾股定理以及折叠的性质是解题的关键.20.【分析】由题意过点B作BH⊥AC于H先解直角三角形求出BH再根据垂线段最短进行分析即可求解【详解】解:如图过点B作BH⊥AC于H在Rt△ABC中∵∠ABC=90°AB=2∠C=30°∴AC=2AB=解析:3【分析】由题意过点B作BH⊥AC于H,先解直角三角形求出BH,再根据垂线段最短进行分析即可求解.【详解】解:如图,过点B作BH⊥AC于H,在Rt△ABC中,∵∠ABC=90°,AB=2,∠C=30°,∴AC=2AB=4,3∵∠BHC=90°,∴BH=123,∵BF//AC,∵当EF⊥AC时,EF的值最小,最小值33【点睛】本题考查解直角三角形的应用和平行线的性质以及垂线段最短等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21.【分析】根据菱形的性质可知∠BAO=30°△ABD是等边三角形得到AB=BD=4再利用三角函数求得OA则AC可求再用菱形面积公式即可【详解】∵四边形ABCD是菱形∠BAD=60°∴AB=BD∠BAO解析:3【分析】根据菱形的性质可知∠BAO=30°,△ABD是等边三角形,得到AB=BD=4,再利用三角函数求得OA,则AC可求,再用菱形面积公式即可.【详解】∵四边形ABCD是菱形,∠BAD=60°,∴ AB=BD,∠BAO=30°,BD⊥AC,AC=2OA,∴△ABD是等边三角形,AB=BD=4,在Rt△ABO中,OA=AB•cos30°=4×2=,∴ AC=2OA=∴S菱形ABCD=11AC BD=22⋅⨯故填:【点睛】本题考查菱形的性质、等边三角形的判定、菱形的面积公式、勾股定理,求得对角线的长度是关键.22.【分析】根据余弦的定义解答即可【详解】解:在Rt△ABC中cosA==故答案为:【点睛】此题考查解直角三角形正确掌握三角函数的计算公式是解题的关键解析:5 13【分析】根据余弦的定义解答即可.【详解】解:在Rt△ABC中,cos A=ACAB=513,故答案为:5 13.【点睛】此题考查解直角三角形,正确掌握三角函数的计算公式是解题的关键.三、解答题23.(1)见解析;(2)994π-.【分析】(1)连接OC,结合已知条件利用SSS易证△AOC≌△BOC,再利用全等三角形的性质可得∠OCA=∠OCB=90°,然后利用切线的判定可得直线AB与⊙O相切;(2)根据AB=6和(1)中三角形的全等,可得AC=BC=3,根据△AOB的面积为9,可得OC,并推出∠AOB=90°,则可利用扇形面积公式与△AOB的面积计算阴影部分的面积.【详解】(1)证明:如图,连接OC,∵OA =OB ,CA =CB ,OC =OC ,∴△AOC ≌△BOC (SSS ),∴∠OCA =∠OCB =90°,∴直线AB 与⊙O 相切;(2)解:∵△AOC ≌△BOC ,∴AC =BC =12AB =3, ∵△AOB 的面积为9, ∴12×AB•OC =9, ∴12×6•OC =9, ∴OC =3,∴OC =AC ,∴△OAC 是等腰直角三角形,∴∠AOC =∠BOC =45°,∴∠AOB =90°,∴S 阴影=S △AOB −S 扇形=29039993604ππ⋅-=-. 【点睛】本题考查了切线的判定和性质、全等三角形的判定和性质、扇形面积的计算等知识,解题的关键是掌握切线的判定与性质.24.(1)见解析;(2)3π 【分析】(1)连接AD ,由三角形中位线定理可求得//OD AB ,可得OD DE ⊥,可得DE 为O 的切线;(2)连接AD ,AC 是直径,根据AD BC ⊥,AB AC =,可得132BD DC BC ===60OAD ∠=︒,证得AOD △是等边三角形,设半圆的半径为()0r r >,根据勾股定理得222(3)(2)r r +=,解得1r =,利用弧长公式即可求出AD 的长.【详解】(1)证明:连接OD .如图∵OC OD =,∴ODC OCD ∠=∠.又AB AC =,∴B OCD ∠=∠.∴B ODC ∠=∠.∴OD AB .而DE AB ⊥,∴DE OD ⊥.又OD 是半圆的半径,∴DE 为半圆的切线.(2)解:如图2,连接AD .∵AC 是直径,∴AD BC ⊥.又AB AC =,∴BD DC =,AD 平分BAC ∠.∴132BD DC BC ===60OAD ∠=︒. ∵OA OD =,∴AOD △是等边三角形∴60AOD ∠=︒.设半圆的半径为()0r r >.∵222AD DC AC +=,即2223)(2)r r +=.解得1r =.∴AD 的长6011803ππ⨯=.【点睛】本题主要考查切线的判定及相似三角形的判定和性质,掌握切线的判定方法是解题的关键.25.(1)y 101200x =-+(x≥50);(2)售价定为65元可获得最大利润,最大利润8250元.【分析】(1)设一次函数解析式y kx b =+ (x≥50),利用待定系数法将(60,600),(80,400)代入即得解得解析式;(2)根据题意列出函数关系式,再利用二次函数的性质求最大利润即可,注意考虑自变量的范围,围巾的每条利润不允许高于进货价的30%.【详解】解:(1)设一次函数解析式y kx b =+ (x≥50).由函数图像可知(60,600),(80,400)在函数图像上,代入即得:6006040080k b k b =+⎧⎨=+⎩解得:101200k b =-⎧⎨=⎩. 所以,每月销售y (条)与售价x (元)的函数关系式:y 101200x =-+(x≥50). (2)由题意得:()()=10120050w x x -+-化简得:2=10170060000w x x -+-由函数解析式可知对称轴是x=85时,x≤85时,w 随x 的增加而增大.因为,围巾的每条利润不允许高于进货价的30%,那么 x≤50×(1+30%),即x≤65. 所以,当x=65时,w 取到最大值:2=106517006560000=8250w -⨯+⨯-. 所以,售价定为65元可获得最大利润,最大利润8250元.【点睛】本题考查了一次函数与二次函数在销售问题中的应用,理清题中的数量关系并熟练掌握二次函数的性质是解题的关键.26.(1)10300y x =-+;(2)20元或21元.【分析】(1)通过表格的数据,利用待定系数法求一次函数解析式即可;(2)通过题意得到利润和售价之间的关系式,然后当利润为900元时,解方程即可得到结果.【详解】解:(1)设该一次函数的解析式为y kx b =+,由表可知15x =时150y =,16x =时140y =,∴1501514016k b k b =+⎧⎨=+⎩∴10300k b =-⎧⎨=⎩∴一次函数的解析式为10300y x =-+;(2)设利润为W ,则()()()111110300W x y x x =-=--+, ∴2104103300W x x =-+-当900W =时,2900104103300x x =-+-,即2414200x x -+=,解得120x =,221x = ∴每件售价为20元或21元时,工艺品厂试销该工艺品每天获得的利润是900元. 【点睛】本题考查了函数的应用问题,正确列出函数关系式是解题的关键.。
【必考题】九年级数学下期末一模试题带答案一、选择题1.如图,矩形ABCD 的顶点A 和对称中心均在反比例函数y =k x(k≠0,x >0)上,若矩形ABCD 的面积为12,则k 的值为( )A .12B .4C .3D .62.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是 A . B .C .D .3.如图抛物线y =ax 2+bx +c 的对称轴为直线x =1,且过点(3,0),下列结论:①abc >0;②a ﹣b +c <0;③2a +b >0;④b 2﹣4ac >0;正确的有( )个.A .1B .2C .3D .4 4.已知11(1)11A x x ÷+=-+,则A =( ) A .21x x x -+ B .21x x - C .211x - D .x 2﹣1 5.-2的相反数是( ) A .2 B .12 C .-12 D .不存在6.如图,是一个几何体的表面展开图,则该几何体是( )A .三棱柱B .四棱锥C .长方体D .正方体 7.方程21(2)304m x mx ---+=有两个实数根,则m 的取值范围( ) A .52m > B .52m ≤且2m ≠ C .3m ≥ D .3m ≤且2m ≠8.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤9.已知命题A :“若a 为实数,则2a a =”.在下列选项中,可以作为“命题A 是假命题”的反例的是( )A .a =1B .a =0C .a =﹣1﹣k (k 为实数)D .a =﹣1﹣k 2(k 为实数)10.估计10+1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间 11.如图,菱形ABCD 的对角线相交于点O ,若AC =8,BD =6,则菱形的周长为( )A .40B .30C .28D .2012.矩形ABCD 与CEFG ,如图放置,点B ,C ,E 共线,点C ,D ,G 共线,连接AF ,取AF 的中点H ,连接GH .若BC=EF=2,CD=CE=1,则GH=( )A .1B .23C .2D .5 二、填空题13.已知扇形的圆心角为120°,半径等于6,则用该扇形围成的圆锥的底面半径为_________.14.一列数123,,,a a a ……n a ,其中1231211111,,,,111n n a a a a a a a -=-===---L L ,则1232014a a a a ++++=L L __________.15.若一个数的平方等于5,则这个数等于_____.16.分式方程32xx 2--+22x-=1的解为________. 17.如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是 .18.若a b =2,则222a b a ab--的值为________. 19.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率______.20.在一个不透明的口袋中,装有A ,B ,C ,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是___.三、解答题21.2x =600答:甲公司有600人,乙公司有500人.点睛:本题考查了分式方程的应用,关键是分析题意找出等量关系,通过设未知数并根据等量关系列出方程.22.如图,AD 是ABC ∆的中线,AE BC ∥,BE 交AD 于点F ,F 是AD 的中点,连接EC .(1)求证:四边形ADCE 是平行四边形;(2)若四边形ABCE 的面积为S ,请直接写出图中所有面积是13S 的三角形.23.先化简,再求值:(2)(2)(4)a a a a +-+-,其中14a =. 24.先化简,再求值: 233212-),322x x x x x x (其中+-+÷=++ 25.某旅行团32人在景区A 游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B 游玩.景区B 的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.26.某校在宣传“民族团结”活动中,采用四种宣传形式:A .器乐,B .舞蹈,C .朗诵,D .唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次调查的学生共有 人;(2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D 【解析】分析:设点A的坐标为(m,km),则根据矩形的面积与性质得出矩形中心的纵坐标为2km,求出中心的横坐标为m+6mk,根据中心在反比例函数y=kx上,可得出结果.详解:设点A的坐标为(m,km),∵矩形ABCD的面积为12,∴121212m BCkAB km===,∴矩形ABCD的对称中心的坐标为(m+6mk,2km),∵对称中心在反比例函数上,∴(m+6mk)×2km=k,解方程得k=6,故选D.点睛:本题考查了反比例函数图象上点的坐标特点,熟知反比例函数中k=xy位定值是解答本题的关键.2.C解析:C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.3.B【解析】【分析】由图像可知a >0,对称轴x=-2b a=1,即2a +b =0,c <0,根据抛物线的对称性得x=-1时y=0,抛物线与x 轴有2个交点,故△=b 2﹣4ac >0,由此即可判断.【详解】 解:∵抛物线开口向上,∴a >0,∵抛物线的对称轴为直线x =﹣2b a=1, ∴b =﹣2a <0,∵抛物线与y 轴的交点在x 轴下方,∴c <0,∴abc >0,所以①正确;∵抛物线与x 轴的一个交点为(3,0),而抛物线的对称轴为直线x =1,∴抛物线与x 轴的另一个交点为(﹣1,0),∵x =﹣1时,y =0,∴a ﹣b +c =0,所以②错误;∵b =﹣2a ,∴2a +b =0,所以③错误;∵抛物线与x 轴有2个交点,∴△=b 2﹣4ac >0,所以④正确.故选B .【点睛】此题主要考查二次函数的图像,解题的关键是熟知各系数所代表的含义. 4.B解析:B【解析】【分析】由题意可知A=111)11x x ++-(,再将括号中两项通分并利用同分母分式的减法法则计算,再用分式的乘法法则计算即可得到结果.【详解】解:A=11111x x ++-=111x x x +-g =21x x - 故选B.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.解析:A【解析】试题分析:根据只有符号不同的两数互为相反数,可知-2的相反数为2.故选:A.点睛:此题考查了相反数的意义,解题关键是明确相反数的概念,只有符号不同的两数互为相反数,可直接求解.6.A解析:A【解析】【分析】本题可以根据三棱柱展开图的三类情况分析解答【详解】三棱柱的展开图大致可分为三类:1.一个三角在中间,每边上一个长方体,另一个在某长方形另一端.2.三个长方形并排,上下各一个三角形.3.中间一个三角形,其中两条边上有长方形,这两个长方形某一个的另一端有三角形,在这三角形的一条(只有一条,否则拼不上)边有剩下的那个长方形.此题目中图形符合第2种情况故本题答案应为:A【点睛】熟练掌握几何体的展开图是解决本题的关键,有时也可以采用排除法.7.B解析:B【解析】【分析】根据一元二次方程的定义、二次根式有意义的条件和判别式的意义得到20m -≠,30m -≥,(()214204m ∆=--⨯≥,然后解不等式组即可. 【详解】解:根据题意得 20m -≠,30m -≥,(()214204m ∆=--⨯≥, 解得m ≤52且m ≠2. 故选B .8.A解析:A【解析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴判定b 与0的关系以及2a+b=0;当x=﹣1时,y=a ﹣b+c ;然后由图象确定当x 取何值时,y >0.【详解】①∵对称轴在y 轴右侧,∴a 、b 异号,∴ab <0,故正确; ②∵对称轴1,2b x a=-= ∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a , ∵当x=﹣1时,y=a ﹣b+c <0,∴a ﹣(﹣2a )+c=3a+c <0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am 2+bm+c≤a+b+c ,所以a+b≥m (am+b )(m 为实数).故正确.⑤如图,当﹣1<x <3时,y 不只是大于0.故错误.故选A .【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a 决定抛物线的开口方向,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异)③常数项c 决定抛物线与y 轴交点,抛物线与y 轴交于(0,c ).9.D解析:D【解析】【分析】a =可确定a 的范围,排除掉在范围内的选项即可.【详解】解:当a ≥0a =,当a <0时,2a a =-,∵a =1>0,故选项A 不符合题意,∵a =0,故选项B 不符合题意,∵a =﹣1﹣k ,当k <﹣1时,a >0,故选项C 不符合题意,∵a =﹣1﹣k 2(k 为实数)<0,故选项D 符合题意,故选:D .【点睛】本题考查了二次根式的性质,200a a a a aa ≥⎧==⎨-≤⎩,正确理解该性质是解题的关键.10.B解析:B【解析】 解:∵3104<<,∴41015<+<.故选B .点睛:此题主要考查了估算无理数的大小,正确得出10 的取值范围是解题关键.11.D解析:D【解析】【分析】根据菱形对角线互相垂直平分的性质,可以求得BO =OD ,AO =OC ,在Rt △AOB 中,根据勾股定理可以求得AB 的长,即可求出菱形ABCD 的周长.【详解】∵四边形ABCD 是菱形,∴AB =BC =CD =AD ,BO =OD =3,AO =OC =4,AC ⊥BD ,∴AB ==5, ∴菱形的周长为4×5=20. 故选D .【点睛】本题考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等和对角线互相垂直且平分的性质,本题中根据勾股定理计算AB 的长是解题的关键. 12.C解析:C【解析】分析:延长GH 交AD 于点P ,先证△APH ≌△FGH 得AP=GF=1,GH=PH=12PG ,再利用勾股定理求得2,从而得出答案.详解:如图,延长GH 交AD 于点P ,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵PAH GFH AH FHAHP FHG∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=12 PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=12PG=12×22PD DG+22,故选:C.点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.二、填空题13.2【解析】分析:利用圆锥的底面周长等于侧面展开图的扇形弧长列出方程进行计算即可详解:扇形的圆心角是120°半径为6则扇形的弧长是:=4π所以圆锥的底面周长等于侧面展开图的扇形弧长是4π设圆锥的底面半解析:2【解析】分析:利用圆锥的底面周长等于侧面展开图的扇形弧长,列出方程进行计算即可.详解:扇形的圆心角是120°,半径为6,则扇形的弧长是:1206180π⋅=4π,所以圆锥的底面周长等于侧面展开图的扇形弧长是4π, 设圆锥的底面半径是r , 则2πr =4π, 解得:r =2.所以圆锥的底面半径是2. 故答案为2.点睛:本题考查了弧长计算公式及圆锥的相关知识.理解圆锥的底面周长等于侧面展开图的扇形弧长是解题的关键.14.【解析】【分析】分别求得a1a2a3…找出数字循环的规律进一步利用规律解决问题【详解】解:…由此可以看出三个数字一循环2014÷3=671…1则a1+a2+a 3+…+a2014=671×(-1++2 解析:20112【解析】 【分析】分别求得a 1、a 2、a 3、…,找出数字循环的规律,进一步利用规律解决问题. 【详解】 解:123412311111,,2,1,1211a a a a a a a =-======----… 由此可以看出三个数字一循环,2014÷3=671…1,则a 1+a 2+a 3+…+a 2014=671×(-1+12+2)+(-1)=20112. 故答案为20112. 考点:规律性:数字的变化类.15.【解析】【分析】根据平方根的定义即可求解【详解】若一个数的平方等于5则这个数等于:故答案为:【点睛】此题主要考查平方根的定义解题的关键是熟知平方根的性质解析:【解析】 【分析】根据平方根的定义即可求解. 【详解】若一个数的平方等于5,则这个数等于:故答案为: 【点睛】此题主要考查平方根的定义,解题的关键是熟知平方根的性质.16.【解析】【分析】根据解分式方程的步骤即可解答【详解】方程两边都乘以得:解得:检验:当时所以分式方程的解为故答案为【点睛】考查了解分式方程解分式方程的基本思想是转化思想把分式方程转化为整式方程求解解分 解析:x 1=【解析】 【分析】根据解分式方程的步骤,即可解答. 【详解】方程两边都乘以x 2-,得:32x 2x 2--=-, 解得:x 1=,检验:当x 1=时,x 21210-=-=-≠, 所以分式方程的解为x 1=, 故答案为x 1=. 【点睛】考查了解分式方程,()1解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解().2解分式方程一定注意要验根.17.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°AF=AD=5根据矩形的性质得到∠EFC=∠BAF 根据余弦的概念计算即可由翻转变换的性质可知∠AFE=∠D=90°AF=AD=5∴∠EF解析:. 【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF ,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5, ∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF ,cos ∠BAF==,∴cos ∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念.18.【解析】分析:先根据题意得出a=2b 再由分式的基本性质把原式进行化简把a=2b 代入进行计算即可详解:∵=2∴a=2b 原式==当a=2b 时原式==故答案为点睛:本题考查的是分式的化简求值熟知分式的基本 解析:32【解析】分析:先根据题意得出a =2b ,再由分式的基本性质把原式进行化简,把a =2b 代入进行计算即可.详解:∵ab=2,∴a=2b,原式=()()() a b a b a a b+--=a b a +当a=2b时,原式=22b bb+=32.故答案为32.点睛:本题考查的是分式的化简求值,熟知分式的基本性质是解答此题的关键.19.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果两名同学的植树总棵数为19的结果有5种结果∴这两名同学的植树总棵数为19的概率为解析:5 16.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果,两名同学的植树总棵数为19的结果有5种结果,∴这两名同学的植树总棵数为19的概率为5 16.20.【解析】【分析】【详解】试题分析:画树状图如下:∴P(两次摸到同一个小球)==故答案为考点:列表法与树状图法;概率公式解析:14.【解析】【分析】【详解】试题分析:画树状图如下:∴P (两次摸到同一个小球)=416=14.故答案为14. 考点:列表法与树状图法;概率公式.三、解答题 21.无22.(1)见解析;(2)ABD ∆,ACD ∆,ACE ∆,ABE ∆ 【解析】 【分析】(1)首先证明△AFE ≌△DFB 可得AE=BD ,进而可证明AE=CD ,再由AE ∥BC 可利用一组对边平行且相等的四边形是平行四边形可得四边形ADCE 是平行四边形; (2)根据面积公式解答即可. 【详解】证明:∵AD 是△ABC 的中线, ∴BD=CD , ∵AE ∥BC , ∴∠AEF=∠DBF , 在△AFE 和△DFB 中,AEF DBFAFE BFD AF DF ===∠∠⎧⎪∠∠⎨⎪⎩, ∴△AFE ≌△DFB (AAS ), ∴AE=BD , ∴AE=CD , ∵AE ∥BC ,∴四边形ADCE 是平行四边形; (2)∵四边形ABCE 的面积为S , ∵BD=DC ,∴四边形ABCE 的面积可以分成三部分,即△ABD 的面积+△ADC 的面积+△AEC 的面积=S ,∴面积是12S 的三角形有△ABD ,△ACD ,△ACE ,△ABE . 【点睛】此题主要考查了平行四边形的判定,全等三角形的判定和性质.等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题. 23.44a -,3-. 【解析】试题分析:根据平方差公式和单项式乘以多项式可以对原式化简,然后将a=14代入化简后的式子,即可解答本题.试题解析:原式=2244a a a -+-=44a -;当a=14时,原式=1444⨯-=14-=3-.考点:整式的混合运算—化简求值.24.11;12x -- 【解析】 【分析】根据分式的运算顺序及运算法则化简所给的分式,化为最简后再代入求值即可. 【详解】原式=()23x 3x 22-)x 2x 1++⨯+-( ,()()22433221x x x x x +--+=⨯+-,()()21221x x x x -+=⨯+-,11x=-, 当x=3时,原式=113-=12- 【点睛】本题主要考查了分式的化简求值,利用分式的运算顺序及运算法则把分式化为最简是解题的关键.25.(1)该旅行团中成人17人,少年5人;(2)①1320元,②最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少. 【解析】【分析】(1)设该旅行团中成人x 人,少年y 人,根据儿童10人,成人比少年多12人列出方程组求解即可;(2)①根据一名成人可以免费携带一名儿童以及少年8折,儿童6折直接列式计算即可; ②分情况讨论,分别求出在a 的不同取值范围内b 的最大值,得到符合题意的方案,并计算出所需费用,比较即可. 【详解】解:(1)设该旅行团中成人x 人,少年y 人,根据题意,得103212x y x y ++=⎧⎨=+⎩,解得175x y =⎧⎨=⎩. 答:该旅行团中成人17人,少年5人. (2)∵①成人8人可免费带8名儿童,∴所需门票的总费用为:()10081000.851000.6108=1320⨯+⨯⨯+⨯⨯-(元).②设可以安排成人a 人、少年b 人带队,则11715a b ,剟剟. 当1017a 剟时, (ⅰ)当10a =时,10010801200b ⨯+„,∴52b „, ∴2b =最大值,此时12a b +=,费用为1160元. (ⅱ)当11a =时,10011801200b ⨯+„,∴54b „, ∴1b =最大值,此时12a b +=,费用为1180元.(ⅲ)当12a …时,1001200a …,即成人门票至少需要1200元,不合题意,舍去. 当110a <„时,(ⅰ)当9a =时,100980601200b ⨯++„,∴3b ≤, ∴3b =最大值,此时12a b +=,费用为1200元.(ⅱ)当8a =时,100880601200b ⨯++„,∴72b ≤, ∴3b =最大值,此时1112a b +=<,不合题意,舍去. (ⅲ)同理,当8a <时,12a b +<,不合题意,舍去.综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少. 【点睛】本题主要考查了二元一次方程组的应用,不等式的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.26.(1)本次调查的学生共有100人;(2)补图见解析;(3)选择“唱歌”的学生有480人;(4)被选取的两人恰好是甲和乙的概率是16.【解析】【分析】(1)根据A项目的人数和所占的百分比求出总人数即可;(2)用总人数减去A、C、D项目的人数,求出B项目的人数,从而补全统计图;(3)用该校的总人数乘以选择“唱歌”的学生所占的百分比即可;(4)根据题意先画出树状图,得出所有等情况数和选取的两人恰好是甲和乙的情况数,然后根据概率公式即可得出答案.【详解】(1)本次调查的学生共有:30÷30%=100(人);(2)喜欢B类项目的人数有:100﹣30﹣10﹣40=20(人),补图如下:(3)选择“唱歌”的学生有:1200×40100=480(人);(4)根据题意画树形图:共有12种情况,被选取的两人恰好是甲和乙有2种情况,则被选取的两人恰好是甲和乙的概率是212=16.【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.。
一、选择题1.下列命题:①任意三点确定一个圆;②平分弦(不是直径)的直径垂直于弦;③相等的圆心角所对的弦相等;④长度相等的弧是等弧.其中真命题的有( )A .0个B .1个C .2个D .3个 2.如图,O 的半径为5,3OP =,则经过点P 的弦长可能是( )A .3B .5C .9D .12 3.如图,AB 是O 的直径,C 、D 分别是O 上的两点.若33BAC ∠=︒,则D ∠的度数等于( )A .57︒B .60︒C .66︒D .67︒4.如图,从一块半径是2米的圆形铁皮(⊙O )上剪出一个圆心角为60°的扇形(点,,A B C 在⊙O 上),将剪下的扇形围成一个圆锥,则这个圆锥的底面圆的半径是( )米.A 3B 3C 3D .25.如图,Rt △ABC 中,AC =BC =2,正方形CDEF 的顶点D 、F 分别在AC 、BC 边上,设CD 的长度为x ,△ABC 与正方形CDEF 重叠部分的面积为y ,则下列图象中能表示y 与x 之间的函数关系的是( )A .B .C .D .6.对于二次函数2y x bx c =++(b ,c 是常数)中自变量x 与函数y 的部分对应值如下表: x1- 0 1 2 3 4 y 10 5 2 1 25 A .函数图像开口向上B .当5x =时,10y =C .当2x >时,y 随x 的增大而增大.D .方程20x bx c ++=有两个不相等的实数根7.如图,二次函数()20y ax bx c a =++≠图象的顶点为D ,其图像与x 轴的交点A 、B 的横坐标分别为-1,3,与y 轴负半轴交于点C .在下面四个结论中:①0a b c ++<; ②13a c =-; ③只有当12a =时,ABD △是等腰直角三角形; ④使ACB △为等腰三角形的a 值可以有两个.其中正确的结论有 A .1个 B .2个 C .3个 D .4个8.如图,已知ABC 中,,120,3AC BC ACB AB =∠=︒=,点D 为边AB 上一点,过点D 作//DE AC ,交BC 于点E ,过点E 作EF DE ⊥,交AB 于点F .设,AD x DEF =的面积为y ,则能大致反映y 与x 函数关系的图象是( )A .B .C .D .9.角α,β满足045αβ<<<︒︒,下列是关于角α,β的命题,其中错误..的是( )A .20sin 2α<<B .0tan 1β<<C .cos sin βα<D .sin cos βα< 10.如图,ABC ∆是等边三角形,点,DE 分别在边,BC AC 上,且,BD CE AD =与BE 相交于点F .若7,1AF DF ==,则ABC ∆的边长等于( )A .572-B .582-C .582+D .572+11.Rt ABC 中,90C ∠=︒,2AC =,1BC =,sin A =( )A .5B .2C .32D .1212.如图,等边OAB ∆的边OB 在x 轴的负半轴上,双曲线k y x=过OA 的中点,已知等边三角形的边长是4,则该双曲线的表达式为( )A .3y =B .3y =C .23y =D .23y =二、填空题13.一个边长为4的正多边形的内角和是其外角和的2倍,则这个正多边形的半径_______.14.如图,半径为2的O 中有弦AB ,以AB 为折痕对折,劣弧恰好经过圆心O ,则弦AB 的长度为__________.15.已知抛物线22y x x n =-+与x 轴只有一个公共点,则n =__________.16.如图,抛物线2y ax bx c =++的对称轴是x =1,下列结论:①abc >0;②240b ac ->;③8a+c <0;④5a+b+2c >0,正确的有___(填序号).17.已知二次函数244513y ax ax a ⎛⎫=--<⎪⎝⎭,当34x ≤≤时,对应的y 的整数值有___________个. 18.如图是高铁站自动检票口的双翼闸机,检票后双翼收起,通过闸机的物体的最大宽度为70cm ,检票前双翼展开呈扇形CAP 和扇形DBQ ,若AC =BD =55cm ,∠PCA =∠BDQ =30°,则A 、B 之间的距离为_____cm .19.如图,ABC 的顶点都是正方形网格中的格点,则tan ACB ∠等于________.20.计算:()201232cos 4520212π-⎛⎫---- ⎪⎝⎭=__________ 21.小明为了测量一个小湖泊两岸的两棵树A 、B 之间的距离,在垂直AB 的方向BC 上确定点C ,测得BC =45m ,∠C =40°,从而计算出AB 之间的距离.则AB =_______________.(精确到0.1m )(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)22.如图,在△ABC 中,∠BAC =90°,AB =AC =5,将△ABC 折叠,使点B 落在AC 边上的点D 处,EF 为折痕,若sin ∠CFD 的值为23,则BE =_____.三、解答题23.已知,如图,在ABC 中,90C ∠=︒,D 为BC 边中点.(1)尺规作图:以AC 为直径作O ,交AB 于点E (保留作图痕迹,不需写作法); (2)连接DE ,求证:DE 为O 的切线. 24.如图,AB 是⊙O 的直径,AC 、DC 为弦,∠ACD =60°,P 为AB 延长线上的点,∠APD=30°.(1)求证:DP 是⊙O 的切线; (2)若⊙O 的半径为5,求图中阴影部分的面积.25.已知抛物线2y x bx c =++经过(3,),(2,)A n B n -两点.(1)求b 的值;(2)当11x -<<时,抛物线与x 轴有且只有一个公共点,求c 的取值范围;(3)若方程20x bx c ++=的两实根12,x x 满足2139x x -<,且22123p x x =-,求p 的最大值.26.在平面直角坐标系中,函数2y x bx c =-++图象过点(,0)A m ,(3,0)B m + (1)当1m =时,求该函数的表达式(2)证明该函数的图像必过点(m+1,2)(3)求该函数的最大值【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】依次判断真假命题即可,可以通过找到相应的反例,去论证命题的正确性.【详解】解:①假命题,当三点在同一条直线上时,就不能确定一个圆了,故此项错误; ②真命题,平分弦(不是直径)的直径垂直于弦,故此项正确;③假命题,在同圆或等圆中,相等的圆心角所对的弦相等,故此项错误;④假命题,在同圆或等圆中,长度相等的弧是等弧,故此项错误;综上所述,②正确.故选:B .【点睛】本题主要考查了确定圆的条件,垂径定理及圆周角定理等圆的一些基本的知识,解答此题的关键掌握理解圆的定义及性质.2.C解析:C【分析】当经过点O 、P 的弦是直径时,弦最长为10;当弦与OP 是垂直时,弦最短为8;判断即可.【详解】当经过点O 、P 的弦是直径时,弦最长为10;当弦与OP 垂直时,根据垂径定理,得半弦长,所以最短弦为8;所以符合题意的弦长为8到10,故选C.【点睛】本题考查了直径是最长的弦,垂径定理,熟练运用分类思想,垂径定理,勾股定理是解题的关键.3.A解析:A【分析】连接OC ,根据圆周角定理计算即可;【详解】连接OC ,∵33BAC ∠=︒,∴266BOC AOC ∠=∠=︒,又∵180DOC AOC ∠+∠=︒,∴180114AOC BOC ∠=︒-∠=︒, ∴1572D AOC ∠=∠=︒; 故答案选A .【点睛】本题主要考查了圆周角定理,准确计算是解题的关键.4.B解析:B【分析】连接OA ,作OD ⊥AB 于点D ,利用三角函数即可求得AD 的长,则AB 的长可以求得,然后利用弧长公式即可求得弧长,即底面圆的周长,再利用圆的周长公式即可求得半径.【详解】解:连接OA ,作OD ⊥AB 于点D .在直角△OAD 中,OA =2,∠OAD =12∠BAC =30°, 则AD =OA•cos30°=3,则AB =2AD =23,则扇形的弧长=6023π⨯= 23π, 设圆锥的底面圆的半径是r ,则2π×r =23π,解得:r =3 故选:B .【点睛】 本题考查了垂径定理,锐角三角函数,弧长公式,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.5.A解析:A【分析】分类讨论:当0<x≤1时,根据正方形的面积公式得到2yx ;当1<x≤2时,ED 交AB 于M ,EF 交AB 于N ,利用重叠的面积等于正方形的面积减去△MNE 的面积得到()2221y x x =--,配方得到()222y x =--+,然后根据二次函数的性质对各选项进行分析判断即可.【详解】解:当0<x≤1时,2y x ,当1<x≤2时,ED 交AB 于M ,EF 交AB 于N ,如图,CD=x ,则2AD x =-,∵Rt △ABC 中,AC=BC=2,∴△ADM 为等腰直角三角形,∴2DM x =-,∴()222EM x x x =--=-,∴S △ENM ()()22122212x x =-=-, ()()2222214222y x x x x x =--=-+-=--+∴()()()22012212y x x y x x ⎧=≤⎪⎨=--+≤⎪⎩﹤﹤, 故选:A .【点睛】本题考查动点问题的函数图象:通过看图获取信息,考查学生问题分析能力,解题的关键是分两种情况考虑:当0<x≤1和当1<x≤2.6.D解析:D【分析】根据表格中的数据和二次函数图象具有对称性即可判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:由表格可得,当x <2时,y 随x 的值增大而减小;当x >2时,y 随x 的值增大而增大,该函数开口向上,故选项A 、C 不符合题意;∴点(−1,10)的对称点是(5,10),∴点(5,10)在该函数的图象上,故选项B 不符合题意;由表格可得,该抛物线开口向上,且最小值是1,则该抛物线与x 轴没有交点, ∴方程20x bx c ++=无实数根,故选项D 符合题意.故选:D .【点睛】本题考查二次函数的性质、二次函数的最值、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.7.D解析:D【分析】先根据图象与x 轴的交点A ,B 的横坐标分别为﹣1,3确定出AB 的长及对称轴,再由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:①由抛物线的开口方向向上可推出a >0,∵图像与x 轴的交点A 、B 的横坐标分别为-1,3,∴对称轴x =1,∴当x =1时,y <0,∴a +b +c <0;故①正确;②∵点A 的坐标为(﹣1,0),∴a ﹣b +c =0,又∵b =﹣2a ,∴a ﹣(﹣2a )+c =0,∴c =﹣3a , ∴13a c =-∴结论②正确.③如图1,连接AD ,BD ,作DE ⊥x 轴于点E , ,要使△ABD 是等腰直角三角形,则AD =BD ,∠ADB =90°,∵DE ⊥x 轴,∴点E 是AB 的中点,∴DE =BE ,即|244ac b a -|()312--==2,又∵b =﹣2a ,c =﹣3a ,∴|()()24324a a a a⨯---|=2,a >0, 解得a 12=, ∴只有当a 12=时,△ABD 是等腰直角三角形, 结论③正确④要使△ACB 为等腰三角形,则AB =BC =4,AB =AC =4,或AC =BC ,Ⅰ、当AB =BC =4时,在Rt △OBC 中,∵OB =3,BC =4,∴OC 2=BC 2﹣OB 2=42﹣32=16﹣9=7,即c 2=7,∵抛物线与y 轴负半轴交于点C ,∴c <0,c=,∴a 3c =-=. Ⅱ、当AB =AC =4时,在Rt △OAC 中,∵OA =1,AC =4,∴OC 2=AC 2﹣OA 2=42﹣12=16﹣1=15,即c 2=15,∵抛物线与y 轴负半轴交于点C ,∴c <0,c=,∴a 3c =-= Ⅲ、当AC =BC 时,∵OC ⊥AB ,∴点O 是AB 的中点,∴AO =BO ,这与AO =1,BO =3矛盾,∴AC =BC 不成立.∴使△ACB 为等腰三角形的a . 结论④正确.故答案选:D【点睛】二次函数y =ax 2+bx +c 系数符号的确定:(1)a 由抛物线开口方向确定:开口方向向上,则a >0;否则a <0;(2)b 由对称轴和a 的符号确定:由对称轴公式x 2b a=-判断符,(3)c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >0;否则c <0;(4)b 2﹣4ac 由抛物线与x 轴交点的个数确定:①2个交点,b 2﹣4ac >0;②1个交点,b 2﹣4ac =0;③没有交点,b 2﹣4ac <0.8.B【分析】过点C 作CG ⊥AB ,求出CG 、AC ,证明△ACB ∽△DEB ,求出DE ,再根据直角三角形的性质求出EF ,根据三角形面积公式得到y 关于x 的函数表达式,从而判断图像.【详解】解:∵AC=BC ,∠ACB=120°,∴∠A=∠B=30°,过点C 作CG ⊥AB ,则AG=BG=12AB=32,AC=2CG , 则CG=3=3,AC=3, ∵DE ∥AC ,∴△ACB ∽△DEB ,∴AC AB DE BD =,即333DE x=-, 解得:DE=()333x -, ∵∠DEF=90°,∠EDF=∠A=30°,∴EF=3=33x -, ∴y=S △DEF =12DE EF ⨯⨯=()3313233x x --⨯⨯=()23318x -, 可得:当0<x <3时,图像为抛物线,y 随x 的增大而减小,选项B 中的图像最合适,故选B .【点睛】本题考查了相似三角形的判定和性质,以及直角三角形的性质,二次函数,解题的关键是通过相似三角形的性质得到线段的长,从而得到二次函数表达式.9.C解析:C【分析】由角α,β满足045αβ<<<︒︒,确定锐角三角函数的增减性,sin α随α的增大而增大,cos β随β的增大而减小,tan β随β的增大而增大,利用45°函数值的分点即可确定【详解】解:角α,β满足045αβ<<<︒︒,sin α随α的增大而增大,cos β随β的增大而减小,tan β随β的增大而增大,A.∵sin 45=2︒,∴0<sin α<2,选项A 正确,不合题意; B .∵tan 45=1︒,∴0tan 1β<<,选项B 正确,不合题意;C.sin 45=2︒,cos 45=2︒,cos 22βα><,cos sin βα>,选项C 不正确,符合题意; D.sin 45=2︒,cos 45=2︒,cos 22αβ><,sin cos βα<,选项D 正确,不符合题意.故选择:C .【点睛】本题考查锐角三角函数值的大小比较问题,掌握函数的增减性质利用45°函数值的特殊关系是解题关键.10.C解析:C【分析】先证明△ABD ≅△BCE ,推出∠BDA=∠FDB ,BE= DA=8,再证明△BDA ~△FDB ,利用相似三角形的性质求得BD=CE=,作EG ⊥BC 于G ,根据解直角三角形的知识即可求解【详解】∵ABC ∆是等边三角形,,∴AB=BC ,∠ABD=∠C=60︒,在△ABD 和△BCE 中,60AB BC ABD C BD CE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABD ≅△BCE ,∴∠BAD=∠CBE ,BE= DA=1+7=8,∵∠BDA=∠FDB ,∴△BDA ~△FDB , ∴BD DA FD BD =,即171BD BD+=, ∴BD=,则CE=BD=作EG ⊥BC 于G ,∵∠C=60︒,∴CG=CE ⋅1cos602222︒==EG=CE ⋅3sin 602262︒== 在Rt △BEG 中,()22228658BE EG -=-= ∴582故选:C【点睛】 本题考查了全等三角形的判定和性质,相似三角形的判定和性质,特殊角的三角函数值,等边三角形各边长相等、各内角为60°的性质.关键是利用了等边三角形的性质和相似三角形的判定和性质求解,有一定的综合性.11.A解析:A【分析】求出斜边AB ,再求∠A 的正弦值.【详解】解:∵90C ∠=︒,2AC =,1BC =, ∴2222215AB AC BC +=+= 5sin 5BC A AB ===, 故选:A .【点睛】本题考查了勾股定理和锐角的正弦函数值的求法,解题关键是求出斜边长,熟知正弦的意义.12.B解析:B【分析】如图,过点C 作CD ⊥OB 于点D .根据等边三角形的性质、中点的定义可以求得点C 的坐标,然后把点C 的坐标代入双曲线方程,列出关于系数k 的方程,通过解该方程即可求得k 的值.【详解】解:如图,过点C 作CD ⊥OB 于点D .∵△OAB 是等边三角形,该等边三角形的边长是4,∴OA=4,∠COD=60°,又∵点C 是边OA 的中点,∴OC=2,∴OD=OC•cos60°=2×12=1,33. ∴C (-13 31k -, 解得,3,∴该双曲线的表达式为3y x=-. 故选:B .【解答】本题考查了待定系数法求反比例函数解析式,等边三角形的性质.解题的关键是求得点C 的坐标. 二、填空题13.【分析】先求出正多边形边数为6再根据正六边形性质即可求解【详解】解:设正多边形的边数为n 由题意得解得n=6∴正多边形为正六边形∵边长为4的正六边形可以分成六个边长为4的正三角形∴该正多边形的半径等于 解析:4【分析】先求出正多边形边数为6,再根据正六边形性质即可求解.【详解】解:设正多边形的边数为n ,由题意得()21803602n -︒=︒⨯,解得 n=6∴正多边形为正六边形,∵边长为4的正六边形可以分成六个边长为4的正三角形,∴该正多边形的半径等于4.故答案为:4【点睛】本题考查了正多边形的相关概念,和正六边形的性质,熟知相关概念是解题关键.14.【分析】如果过O作OC⊥AB于D交折叠前的于C根据折叠后劣弧恰好经过圆心O根据垂径定理及勾股定理即可求出AD的长进而求出AB的长【详解】解:如图过O作OC⊥AB于D交折叠前的于C∵的半径为又∵折叠后解析:23【分析】如果过O作OC⊥AB于D,交折叠前的AB于C,根据折叠后劣弧恰好经过圆心O,根据垂径定理及勾股定理即可求出AD的长,进而求出AB的长.【详解】解:如图,过O作OC⊥AB于D,交折叠前的AB于C,∵O的半径为2,又∵折叠后劣弧恰好经过圆心O,∴OA=OC=2,∴OD=CD=1,在Rt△OAD中,∵OA=2,OD=1,∴2222-=-OA OD213AB=2AD=3故答案为:3【点睛】本题考查了垂径定理和勾股定理的综合运用,利用好条件:劣弧折叠后恰好经过圆心O是解题的关键.15.【分析】由抛物线与x轴只有一个公共点可知对应的一元二次方程根的判别式△=b2−4ac=0由此即可得到关于n的方程解方程即可求得n的值【详解】解:∵抛物线与x 轴只有一个公共点∴△=4−4×1×n =0解解析:1【分析】由抛物线22y x x n =-+与x 轴只有一个公共点可知,对应的一元二次方程220x x n -+=根的判别式△=b 2−4ac =0,由此即可得到关于n 的方程,解方程即可求得n 的值.【详解】解:∵抛物线22y x x n =-+与x 轴只有一个公共点,∴△=4−4×1×n =0,解得n =1.故答案为:1.【点睛】此题主要考查了抛物线与x 轴的交点问题,利用二次函数根的判别式的和抛物线与x 轴的交点个数建立方程是解题的关键.16.②③④【分析】由抛物线的性质和对称轴是分别判断abc 的符号即可判断①;抛物线与x 轴有两个交点可判断②;由得令求函数值即可判断③;令时则令时即可判断④;然后得到答案【详解】解:根据题意则∵∴∴故①错误解析:②③④【分析】由抛物线的性质和对称轴是1x =,分别判断a 、b 、c 的符号,即可判断①;抛物线与x轴有两个交点,可判断②;由12b x a=-=,得2b a =-,令2x =-,求函数值,即可判断③;令2x =时,则420y a b c =++>,令1x =-时,0y a b c =-+>,即可判断④;然后得到答案.【详解】解:根据题意,则0a <,0c >, ∵12b x a=-=, ∴20b a =->, ∴0abc <,故①错误;由抛物线与x 轴有两个交点,则240b ac ->,故②正确;∵2b a =-,令2x =-时,420y a b c =-+<,∴80a c +<,故③正确;在2y ax bx c =++中,令2x =时,则420y a b c =++>,令1x =-时,0y a b c =-+>,由两式相加,得520a b c ++>,故④正确;综上,正确的结论有:②③④;故答案为:②③④.【点睛】本题考查了二次函数的图象和性质,解题的关键是熟练掌握二次函数的性质,熟练判断各个式子的符号.17.4【分析】先将抛物线配方化为顶点式由抛物线开口向上当y 随x 的增大而增大当x=3时y=当x=4时y=y 的整数有-6-7-8即可【详解】解:二次函数抛物线开口向上当y 随x 的增大而增大当x=3时y=当x=解析:4【分析】先将抛物线配方化为顶点式,由0a >抛物线开口向上,当34x ≤≤,y 随x 的增大而增大,当x=3时,y=35a --,413a <,-9358a <--≤-,当x=4时,y=5-,y 的整数有-6,-7,-8即可. 【详解】解:二次函数()2244524513y ax ax a x a a ⎛⎫=--=---< ⎪⎝⎭, 413a <,抛物线开口向上, 当34x ≤≤,y 随x 的增大而增大,当x=3时,y=35a --,413a <,334a ≤<,-9358a <--≤-, 当x=4时, y=5-,y 的整数有-5,-6,-7,-8,对应的y 的整数值,4个.故答案为:4.【点睛】 本题考查二次函数的性质,掌握二次函数的性质,尤其当34x ≤≤时,求出y 的值的范围是解题关键.18.15【分析】如图连接ABCD 过点A 作AE ⊥CD 于E 过点B 作BF ⊥CD 于F 求出CEDF 即可解决问题【详解】解:如图连接ABCD 过点A 作AE ⊥CD 于E 过点B 作BF ⊥CD 于F ∵AB ∥EFAE ∥BF ∴四边形解析:15【分析】如图,连接AB ,CD ,过点A 作AE ⊥CD 于E ,过点B 作BF ⊥CD 于F .求出CE , DF 即可解决问题.【详解】解:如图,连接AB ,CD ,过点A 作AE ⊥CD 于E ,过点B 作BF ⊥CD 于F .∵AB ∥EF ,AE ∥BF ,∴四边形ABFE 是平行四边形,∵∠AEF=90°,∴四边形AEFB 是矩形,∴EF=AB∵AE ∥PC ,∴∠PCA=∠CAE=30°,∴CE=AC•sin30°=27.5(cm ),同法可得DF=27.5(cm ),∴EF= CD-CE-DF=70-27.5-27.5=15(cm ),∴AB=15(cm ),故答案为15.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线面构造直角三角形解决问题.19.3【分析】根据勾股定理以及网格结构可以求得ACABBCCD 的长然后根据等积法求得AE 的长再根据勾股定理可得到CE 的长然后根据正切函数的定义即可得到的值【详解】解:如图作CD ⊥AB 于点D 作AE ⊥BC 于解析:3【分析】根据勾股定理以及网格结构,可以求得AC 、AB 、BC 、CD 的长,然后根据等积法求得AE 的长,再根据勾股定理可得到CE 的长,然后根据正切函数的定义即可得到tan ACB ∠的值.【详解】解:如图,作CD ⊥AB 于点D ,作AE ⊥BC 于点E ,由已知可得,223+1=10,AB=5,223+4=5,CD=3,∵S △ABC =12AB•CD=12BC•AE , ∴AE=5335AB CD BC ⨯==∴CE=2222(10)31AC AE -=-=∴tan ∠ACB=3AE CE=, 故答案为:3.【点睛】本题考查解直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答. 20.0【分析】直接利用负整数指数幂绝对值的性质特殊角的三角函数值及零指数幂分别化简得出答案【详解】解:原式=4-(3-)--1=4-3+--1=0故答案为0【点睛】本题主要考查了实数运算正确化简各数是解解析:0【分析】直接利用负整数指数幂、绝对值的性质、特殊角的三角函数值及零指数幂,分别化简得出答案.【详解】解:原式2222-1=0,故答案为0.【点睛】本题主要考查了实数运算,正确化简各数是解题的关键.21.8m 【分析】根据题意可知在直角三角形ABC 中利用根据已知条件代入从而可以求得AB 的长【详解】由题意知:则为直角三角形在中∵BC =45m ∴∴m 故答案为:378m 【点睛】本题考查解直角三角形的应用解题的解析:8m .【分析】根据题意可知AB BC ⊥,在直角三角形ABC 中,利用tan AB C BC =,根据已知条件代入,从而可以求得AB 的长.【详解】由题意知:AB BC ⊥,则ABC 为直角三角形,在Rt ABC 中,tan AB C BC∠=, ∵BC =45m ,40C ∠=︒,∴·tan 40450.84AB BC =︒≈⨯,∴37.8AB =m ,故答案为:37.8m .【点睛】本题考查解直角三角形的应用,解题的关键是明确题意,利用数形结合的思想解答问题. 22.3【分析】由题意得△BEF ≌△DEF 故∠EDF=∠B ;由三角形的外角性质即可解决【详解】解:∵在△ABC 中∠BAC=90°AB=AC=5∴∠B=∠C 设BE=x ∵AB=5∴AE=AB-BE=5-x ∵将解析:3【分析】由题意得△BEF ≌△DEF ,故∠EDF=∠B ;由三角形的外角性质,即可解决.【详解】解:∵在△ABC 中,∠BAC=90°,AB=AC=5,∴∠B=∠C ,设BE=x ,∵AB=5∴AE=AB-BE=5-x ,∵将△ABC 折叠,使点B 落在AC 边上的点D 处,∴△BEF ≌△DEF∴BE=DE=5-x ,∠B=∠EDF=∠C∵∠ADE+∠EDF=∠C+∠DFC∴∠ADE=∠DFC∴sin ∠CFD=sin ∠ADE=523AE x DE x -==, 解得,x=3,即,BE=3故答案为:3【点睛】主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用全等三角形的性质、三角形外角性质等知识来解决问题. 三、解答题23.(1)作图见解析;(2)见解析.【分析】(1)先作AC 的中垂线,找到AC 的中点O ,然后以AC 为直径作圆,与AB 的交点即为所求;(2)由题意可知DE 为Rt BEC △斜边BC 上的中线,从而得到CD=DE ,即=∠∠ECD DEC ,由OC=OE 得到OEC OCE ∠=∠,再由90ACB ∠=︒即可得到OE ⊥DE ,即可得证.【详解】(1)作图如图所示.(2)证明:如上图,连结OE ,CE , AC 为直径,90AEC ∴∠=︒, D 为BC 边中点,DE ∴为Rt BEC △斜边BC 上的中线,12DE DC DB BC ∴===, ECD DEC ∴∠=∠,OC OE =,OEC OCE ∴∠=∠,90OED OEC CED OCE DCE ACB ∴∠=∠+∠=∠+∠=∠=︒OD DE ∴⊥,DE ∴为O 的切线.【点睛】本题考查了尺规作图以及切线的判定,正确找到垂直条件是判断切线的关键.24.(1)见解析;(2253256π-. 【分析】(1)连接OD ,由圆周角定理可得∠AOD=120°,所以∠DOP=60°,再根据∠APD=30°可得OD ⊥DP ,从而根据切线的判定可得解答;(2)由⊙O 的半径为5可以算得△ODP 与扇形DOB 的面积,求出两者之差即可得到解答.【详解】(1)证明:连接OD ,∵∠ACD =60°,∴∠AOD =2∠ACD =120°,∴∠DOP =180°﹣120°=60°,∵∠APD =30°,∴∠ODP =180°﹣30°﹣60°=90°∴OD ⊥DP ,∵OD 为半径,∴DP 是⊙O 切线;(2)解:∵∠P =30°,∠ODP =90°,OD =5∴OP =10 由勾股定理得:222210553DP OP OD =-=-=∴S 阴=S △ODP ﹣S 扇形DOB =216055532360π⨯⨯⨯ =2532526π-. 【点睛】本题考查圆的综合应用,熟练掌握圆周角定理、切线的判定定理、勾股定理的应用及扇形面积的计算是解题关键.25.(1)1b =;(2)14c =或20c -<;(3)当21x =时,p 最大值为1 【分析】(1)利用抛物线的对称轴为直线12x =-求解即可; (2)分两种情况讨论①当公共点是顶点时,②当公共点不是顶点时,解答即可;(3)根据根与系数的关系得出x 的取值范围,再根据二次函数的增减性求出p 的最大值.【详解】解:(1)∵抛物线经过(3,),(2,)A n B n -两点,∴抛物线的对称轴为直线12x =-. 122b ∴-=-.1b ∴=.(2)由(1)得,抛物线的解析式为2y x x c =++, 对称轴为直线12x =-,且当11x -<<时, 抛物线与x 轴有且只有一个公共点,①当公共点是顶点时,140c ∴=-=,解得14c =. ②当公共点不是顶点时, ∴当1x =-时,110c -+,且当1x =时,110c ++>.解得20c -<.综上所述,c 的取值范围是14c =或20c -<. (3)解法一:由(1)知1b =,设2y x x c =++.方程20x x c ++=的两实根为12x x ,,∴抛物线2y x x c =++与x 轴交点的横坐标为12,x x ,12122x x +∴=-,即121x x +=-. 211x x ∴=--.2139x x -<, ()11319x x ∴---<.152x ∴-<-.22123p x x ∴=-()221131x x =---2133222x ⎛⎫=-++ ⎪⎝⎭. 当152x -<-时,p 随1x 的增大而增大, ∴当12x =-时,p 的最大值为1.解法二:由(1)知1b =.方程20x x c ++=的两实根为12,x x ,2110x x c ∴++=,即211x x c =--,①2220x x c ++=,即222x x c =--②①-②,得()221212x x x x -=--, ()()()121212x x x x x x ∴+-=--.2139x x -<,120x x ∴-≠.121x x ∴+=-.即121x x =--.()22319x x ∴---<214x ∴<22123p x x ∴=-()222213x x =--- 2213222x ⎛⎫=--+ ⎪⎝⎭ 当214x <时,p 随2x 的增大而减少, ∴当21x =时,p 最大值为1.【点睛】本题考查了抛物线与x 轴的交点,二次函数的性质,不等式的性质等知识,解题的关键是能用分类讨论的思想解决问题.26.(1)254y x x =-+-;(2)见解析;(3)94【分析】(1)由已知可得AB 两点坐标,根据待定系数法将点坐标代入解析式中求出bc 即可; (2)由AB 两点坐标可得函数的交点式,再将1x m =+代入可得2y =,即可证明; (3)根据二次函数的顶点坐标公式求出该函数的最大值.【详解】解:(1)把1m =代入得:A (1,0)、B (4,0) ∴2210440b c b c ⎧-++=⎨-++=⎩, 解得 54b c =⎧⎨=-⎩, 故函数表达式为254y x x =-+-,(2)由题意得()(3)y x m x m =----,把1x m =+代入得:(1)(13)2y m m m m =-+-+--=,∴该函数的图像必过点(m+1,2);(3)由(2)知2()(3)(23)(3)y x m x m x m x m m =----=-++-+, 当2322b m x a +=-=时,函数最大值为:23239()(3)224m m y m m ++=----=. 【点睛】本题考查待了定系数法求二次函数解析式;二次函数图象上点的特征.熟练掌握二次函数的性质是解决本题的关键.。
一、选择题1.如图,ABC 是O 的内接三角形,BD 为O 的直径.若10BD =,2ABD C ∠=∠,则AB 的长度为( )A .4B .5C .5.5D .62.下列命题:①任意三点确定一个圆;②平分弦(不是直径)的直径垂直于弦;③相等的圆心角所对的弦相等;④长度相等的弧是等弧.其中真命题的有( ) A .0个 B .1个C .2个D .3个3.如图,O 是正六边形ABCDEF 的外接圆,P 为CAD 上除C ,D 外的任意一点,则cos CPD ∠的值为( )A .12B .1C .3D .324.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =55°,则∠BCD 的度数为( )A .25°B .27.5°C .35°D .45°5.在二次函数2y ax bx c =++中,函数值y 与自变量x 的部分对应值如下表 则m 的值为( ). x-2-11234y72-1-2m27A.1 B.-1 C.2 D.-26.下列函数中,当0x>时,y随x增大而增大的是()A.2yx=B.22y x=+C.1y x=-+D.22y x=--7.已知二次函数y=ax2+bx+c的图象开口向上(如图),它与x轴的两个交点分别为(﹣1,0)、(3,0).对于下列结论:①c<0;②b<0;③4a﹣2b+c>0.其中正确的有()A.3个B.2个C.1个D.0个8.已知二次函数y=ax2+bx+c(a≠0)的图像如图所示,则下列结论:①abc>0;②a﹣b+c>0;③4a﹣2b+c<0,其中结论正确的个数为()A.0个B.1个C.2个D.3个9.在Rt ABC△中,如果各边长度都扩大为原来的2倍,那么锐角A的余弦值()A.扩大2倍B.缩小2倍C.扩大4倍D.没有变化10.如图,AB是斜靠在墙上的长梯,AB与地面夹角为α,当梯顶A下滑1米到A'时,梯脚B滑到B',A B''与地面的夹角为β,若4tan3α=,1BB'=米,则cosβ=()A .35B .45C .34D .2511.在Rt △ABC 中,90︒∠=C ,5AB =,2AC =,则tanB 的值为( ) A .12B .2C .55D .25512.如图,等边OAB ∆的边OB 在x 轴的负半轴上,双曲线ky x=过OA 的中点,已知等边三角形的边长是4,则该双曲线的表达式为( )A .3y x=B .3y =-C .23y =D .23y =-二、填空题13.如图,BAC 是O 的内接三角形,BC 为直径,AD 平分BAC ∠,连接BD 、CD ,若65ACB ∠=︒,则ABD ∠的度数为_________.14.圆锥的母线长为5,圆锥高为3,则该圆锥的侧面积为____.(结果保留π) 15.已知二次函数2(0)y ax bx c a =++≠的自变量x 与函数值y 之间满足下列数量关系:x0 1 2 3 y75713则代数式(42)()a b c a b c ++-+的值为_______.16.用一根长为24cm 的绳子围成一个矩形,则围成矩形的最大面积是_____cm 2. 17.已知抛物线22y x x c =-+与直线y m =相交于,A B 两点,若点A 的横坐标1A x =-,则点B 的横坐标B x 的值为_______.18.如图,在△ABC 中,∠ACB =90º,点D 在边AC 上,AD =4CD ,若∠BAC =2∠CBD ,则tan A = ___.19.已知a 、b 、c 是ABC 的三边长,且a 、b 、c 满足2()()b c a c a =+-,若540b c -=,则sin sin A B +的值为_________.20.如图所示,在四边形ABCD 中,90B ∠=︒,2AB =,8CD =.连接AC ,AC CD ⊥,若1sin 3ACB ∠=,则AD 长度是_________.21.在锐角ABC 中,2232sin cos 2A B ⎛⎫⎛⎫-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=0,则∠C 的度数为____. 22.如图,在一笔直的海岸线l 上有A ,B 两个观测站,AB =2km ,从A 测得灯塔P 在北偏东60°的方向,从B 测得灯塔P 在北偏东45°的方向,则灯塔P 到海岸线l 的距离为_____km .三、解答题23.如图,△ABC 的三个顶点都在⊙O 上,直径AD =6cm ,∠DAC =2∠B .(1)连CO ,证明:△AOC 为等边三角形; (2)求AC 的长.24.如图,正五边形ABCDE 内接于O ,P 为DE 上的一点(点P 不与点,D E 重合),求CPD ∠的余角的度数.25.某箫笛厂设计了一款成本为10元/根的箫笛,并投放市场进行试销.经过调查,发现每天的销售量y (件)与销售单价x (元)存在一次函数关系10700y x =-+. (1)销售单价定为多少时,该厂每天获取的利润最大?最大利润为多少?(2)若物价部门规定,该产品的最高销售价不得超过38元/根,那么销售单价如何定位才能获取最大利润?26.某工艺品厂设计了一款每件成本为11元的工艺品投放市场进行试销,经过市场调查,得出每天销售量y (件)是每件售价x (元)(x 为正整数)的一次函数,其部分对应数据如下表所示:(1)求y 关于x 的函数解析式.(2)该工艺品每件售价为多少元时,工艺品厂试销该工艺品每天获得的利润是900元? 每件售价x /元 … 15 16 17 18 … 每天销售量y /件…150140130120…【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】连接OA ,首先求出∠ACB=30°得∠AOB=60°,从而证得△AOB 是等边三角形,进一步得出结论. 【详解】解:∵BD 是圆O 的直径,且BD=10 ∴OB=5 连接OA ,如图,∵BD 是圆O 的直径, ∴90ACB ABD ∠+∠=︒ 又2ABD C ∠=∠ ∴3∠C=90°,即∠C=30°, ∴∠AOB=60°∴△AOB 是等边三角形, ∴AB=OB=5 故选:B . 【点睛】此题主要考查了圆周角定理,熟练掌握圆周角定理是解答此题的关键.2.B解析:B 【分析】依次判断真假命题即可,可以通过找到相应的反例,去论证命题的正确性. 【详解】解:①假命题,当三点在同一条直线上时,就不能确定一个圆了,故此项错误; ②真命题,平分弦(不是直径)的直径垂直于弦,故此项正确; ③假命题,在同圆或等圆中,相等的圆心角所对的弦相等,故此项错误; ④假命题,在同圆或等圆中,长度相等的弧是等弧,故此项错误; 综上所述,②正确. 故选:B . 【点睛】本题主要考查了确定圆的条件,垂径定理及圆周角定理等圆的一些基本的知识,解答此题的关键掌握理解圆的定义及性质.3.D解析:D 【分析】连接OC 、OD ,利用正六边形的性质得到60COD ∠=︒,根据圆周角定理得到30CPD ∠=︒,即可求解. 【详解】连接OC 、OD ,如图所示:∵O 是正六边形ABCDEF 的外接圆,∴60COD ∠=︒,P 为CAD 上除C ,D 外的任意一点, ∴1302CPD COD ∠=∠∠=︒, ∴3cos CPD ∠=, 故选:D . 【点睛】本题考查了正多边形与圆,圆周角定理,熟练掌握正多边形的有关概念和正多边形的性质是解题的关键.4.C解析:C 【分析】首先连接AD ,由直径所对的圆周角是直角,即可求得∠ADB=90°,由直角三角形的性质,求得∠A 的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠BCD 的度数. 【详解】 解:连接AD ,∵AB 是⊙O 的直径, ∴∠ADB=90°, ∵∠ABD=55°, ∴∠A=90°-∠ABD=35°, ∴∠BCD=∠A=35°.【点睛】此题考查了圆周角定理与直角三角形的性质.此题比较简单,注意掌握辅助线的作法,注意直径所对的圆周角是直角与在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用.5.B解析:B 【分析】根据二次函数的性质,结合题意,将0x =、1y =-代入到2y ax bx c =++,得c 的值;将1x =-、2y =和1x =、2y =-代入到21y ax bx =+-,通过求解二元一次方程,即可得到a 、b 的值,从而得到二次函数解析式,经计算即可得到答案. 【详解】根据题意,将0x =、1y =-代入到2y ax bx c =++,得1c =- ∴21y ax bx =+-将1x =-、2y =和1x =、2y =-代入到21y ax bx =+-,得1212a b a b --=⎧⎨+-=-⎩∴1a =,2b =- ∴221y x x =--当2x =时,222211m =-⨯-=- 故选:B . 【点睛】本题考查了二次函数、二元一次方程组的知识;解题的关键是熟练掌握二次函数、二元一次方程组的性质,从而完成求解.6.B解析:B 【分析】根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断. 【详解】解:A 、2y x=,反比例函数,k=2>0,分别在一、三象限,在每一象限内,y 随x 的增大而减小,不符合题意;B 、22y x =+,a=1>0,开口向上,对称轴为y 轴,故当图象在对称轴右侧,y 随着x 的增大而增大,符合题意;C 、1y x =-+,一次函数,k=-1<0,故y 随着x 增大而减小,不符合题意;D 、22y x =--,a=-1<0,开口向下,对称轴为y 轴,故当图象在对称轴右侧,y 随着x 的增大而减小,不符合题意.【点睛】本题考查一次函数,二次函数及反比例函数的增减性,掌握函数图像性质利用数形结合思想解题是本题的解题关键.7.A解析:A 【分析】根据抛物线与y 轴的交点位置可对①进行判断;根据抛物线的对称性得到x =2ba-=1,则b =﹣2a <0,于是可对②进行判断;利用x =﹣2,y >0可对③进行判断. 【详解】解:∵抛物线与y 轴的交点坐标在x 轴下方, ∴c <0,所以①正确; ∵抛物线开口向上, ∴a >0,∵抛物线与x 轴的两个交点分别为(﹣1,0),(3,0), ∴抛物线的对称轴为直线x =1,即2ba-=1, ∴b =﹣2a <0,所以②正确; ∵由图象可知,当x =﹣2时,y >0, ∴4a ﹣2b +c >0,所以③正确. 故选:A . 【点睛】本题考查了二次函数图象与系数的关系,解题关键是树立数形结合思想,准确读取图象信息,认真推理判断.8.D解析:D 【分析】由抛物线开口向下,得到a <0,再由对称轴在y 轴左侧,得到a 与b 同号,可得出b <0,又抛物线与y 轴交于正半轴,得到c >0,可得出abc >0,得到①正确;根据图象知,当x =﹣1时,y >0,即a ﹣b +c >0,得到②正确;根据图象知,当x =﹣2时,y <0,即4a ﹣2b +c <0,得到③正确,从而得出结论. 【详解】解:∵抛物线的开口向下, ∴a <0.∵02ba -<, ∴b <0.∵抛物线与y 轴交于正半轴,∴c>0,∴abc>0,故①正确;根据图象知,当x=﹣1时,y>0,即a﹣b+c>0,故②正确;根据图象知,当x=﹣2时,y<0,即4a﹣2b+c<0,故③正确.则其中正确的有3个,为①②③.故选:D.【点睛】本题考查了二次函数图象与系数的关系,对于二次函数y=ax2+bx+c(a≠0)来说,a的符号由抛物线开口方向决定;b的符号由对称轴的位置及a的符号决定;c的符号由抛物线与y 轴交点的位置决定;此外还要注意利用抛物线的对称性及x=﹣1,﹣2时对应函数值的正负.9.D解析:D【分析】根据三角函数的定义和分数的基本性质联手解答即可.【详解】如图,cosA=BC AB,根据分数的基本性质,得BC AB =22BCAB,∴余弦值不变,故选D.【点睛】本题考查了锐角三角函数的定义及其分数的基本性质,熟练掌握函数的定义,灵活运用分数的基本性质是解题的关键.10.B解析:B【分析】根据4tan3α=设OA=4k,则OB=3k,AB=5k,从而表示OA'=4k-1,OB'=3k+1,在OA B''△中,由勾股定理,求得k值,后根据三角函数的定义计算即可.【详解】∵4tan 3α=,设OA=4k ,则OB=3k ,AB=5k ,∴OA '=4k-1,OB '=3k+1,在OA B ''△中,222OB OA A B ''''+=,∴222(41)(31)(5)k k k -++=,解得k=1,∴31cos 5k k β+==45. 故选B .【点睛】本题考查了勾股定理,锐角三角函数,熟练用未知数表示锐角三角函数中的对应线段是解题的关键. 11.B解析:B【分析】先利用勾股定理求出BC ,再根据正切公式计算即可.【详解】在Rt △ABC 中,90︒∠=C ,5AB =,2AC =,∴BC=221AB AC -=, ∴tanB=2AC BC=, 故选:B ..【点睛】此题考查求角的正切值,勾股定理,熟记计算公式是解题的关键.12.B解析:B【分析】如图,过点C 作CD ⊥OB 于点D .根据等边三角形的性质、中点的定义可以求得点C 的坐标,然后把点C 的坐标代入双曲线方程,列出关于系数k 的方程,通过解该方程即可求得k 的值.【详解】解:如图,过点C 作CD ⊥OB 于点D .∵△OAB 是等边三角形,该等边三角形的边长是4,∴OA=4,∠COD=60°,又∵点C 是边OA 的中点,∴OC=2,∴OD=OC•cos60°=2×12=1,33. ∴C (-13 31k -, 解得,3,∴该双曲线的表达式为3y =. 故选:B .【解答】本题考查了待定系数法求反比例函数解析式,等边三角形的性质.解题的关键是求得点C 的坐标. 二、填空题13.【分析】由为直径可得∠BAC=∠BDC=90°由平分可证BD=DC 可得∠DBC=∠DCB=45°可求∠ABC=90°-∠ACB=25°可求∠ABD=∠ABC+∠DBC=70°即可【详解】解:∵是的内解析:70︒【分析】由BC 为直径,可得∠BAC=∠BDC=90°由AD 平分BAC ∠,可证BD=DC ,可得∠DBC=∠DCB=45°,65ACB ∠=︒,可求∠ABC=90°-∠ACB=25°,可求∠ABD=∠ABC+∠DBC=70°即可.【详解】解:∵BAC 是O 的内接三角形,BC 为直径,∴∠BAC=∠BDC=90°∵AD 平分BAC ∠,∴∠BAD=∠CAD , ∴BD DC =,∴BD=DC ,∴∠DBC=∠DCB=45°,∵65ACB ∠=︒,∴∠ABC=90°-∠ACB=90°-65°=25°,∴∠ABD=∠ABC+∠DBC=25°+45°=70°.故答案为:70°.【点睛】本题考查圆的性质,直径所对圆周角性质,角平分线性质,直角三角形性质,掌握圆的性质,直径所对圆周角性质,角平分线性质,直角三角形性质是解题关键.14.20【分析】先利用勾股定理计算出圆锥的底面圆的半径为4然后利用扇形的面积公式计算该圆锥的侧面积【详解】解:圆锥的底面圆的半径为=4所以该圆锥的侧面积=×2×4×5=20故答案为20【点睛】本题考查了解析:20π【分析】先利用勾股定理计算出圆锥的底面圆的半径为4,然后利用扇形的面积公式计算该圆锥的侧面积.【详解】4, 所以该圆锥的侧面积=12×2π×4×5=20π. 故答案为20π.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长. 15.91【分析】观察表格可知:x=0时y=7x=2时y=7即可求得抛物线的对称轴为直线x==1根据抛物线的对称性求得x=-1时y=13从而求得4a+2b+c=7a-b+c=13【详解】解:观察表格可知:解析:91【分析】观察表格可知:x=0时,y=7,x=2时,y=7,即可求得抛物线的对称轴为直线x=022+=1,根据抛物线的对称性求得x=-1时,y=13,从而求得4a+2b+c=7,a-b+c=13.【详解】解:观察表格可知:x=0时,y=7,x=2时,y=7,∴抛物线的对称轴为直线x=022+=1, ∵x=3时,y=13,∴x=-1时,y=13,∴4a+2b+c=7,a-b+c=13,∴(4a+2b+c )(a-b+c )的值为91,故答案为91.【点睛】 本题考查二次函数图象上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.36【分析】设围成矩形的长为xcm 则宽为=(12﹣x )cm 设围成矩形的面积为Scm2根据矩形的面积公式列出S 关于x 的二次函数将其写成顶点式根据二次函数的性质可得答案【详解】解:设围成矩形的长为xcm解析:36【分析】设围成矩形的长为xcm ,则宽为2422x -=(12﹣x ) cm ,设围成矩形的面积为Scm 2,根据矩形的面积公式列出S 关于x 的二次函数,将其写成顶点式,根据二次函数的性质可得答案.【详解】解:设围成矩形的长为xcm ,则宽为2422x - =(12﹣x ) cm , 设围成矩形的面积为Scm 2,由题意得:S =x (12﹣x )=﹣x 2+12x=﹣(x ﹣6)2+36,∵二次项系数为负,抛物线开口向下,∴当x =6cm 时,S 有最大值,最大值为36cm 2.故答案为:36.【点睛】本题考查了二次函数在几何图形问题中的应用,熟练掌握二次函数的性质是解题的关键; 17.3【分析】根据题意AB 的纵坐标相同先根据A 的横坐标求得纵坐标把纵坐标代入解析式解关于x 的方程即可求得【详解】解:把xA=-1代入y=x2-2x+c 得y=1+2+c=3+c∴A(-13+c)∵抛物线y解析:3【分析】根据题意A、B的纵坐标相同,先根据A的横坐标求得纵坐标,把纵坐标代入解析式,解关于x的方程即可求得.【详解】解:把x A=-1代入y=x2-2x+c得,y=1+2+c=3+c,∴A(-1,3+c),∵抛物线y=x2-2x+c与直线y=m相交于A,B两点,∴B的纵坐标为3+c,把y=3+c代入y=x2-2x+c得,3+c=x2-2x+c,解得x=-1或x=3,∴点B的横坐标x B的值为3,故答案为3.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,明确A、B的纵坐标相同是解题的关键.18.【分析】将沿BC翻折180°得到然后通过轴对称的性质及等量代换得出从而得出然后利用勾股定理求出BC的长度最后利用即可求解【详解】将沿BC翻折180°得到根据轴对称的性质有∴点DCE在同一条直线上故答解析:5【分析】△沿BC翻折180°得到BCE,然后通过轴对称的性质及等量代换得出将BCD=,然后利用勾股定理求出BC的长度,最后利用即∠=∠,从而得出AB AEABE AEB可求解.【详解】△沿BC翻折180°得到BCE,将BCD根据轴对称的性质有,BCD CBE BDC BEC ∠=∠∠=∠,90ACB ∠=︒,∴点D 、C 、E 在同一条直线上,90ABD CBD BAC ∠=︒-∠-∠.2BAC CBD ∠=∠,903ABD CBD ∴∠=︒-∠,290ABE ABD CBD CBD ∴∠=∠+∠=︒-∠.90BEC BDC CBD ∠=∠=︒-∠,ABE AEB ∴∠=∠,AB AE =∴.4AD CD =,6AB AE CD ∴==,2211BC AB AC CD ∴=-=,1111tan BC CD A AC ∴===, 11. 【点睛】本题主要考查了三角函数,勾股定理和轴对称,关键是利用角之间的关系构造出等腰三角形.19.【分析】把所给的式子进行整理判断出三角形的形状进而计算相应角的正弦值的和【详解】解:∵∴b2=c2-a2即:a2+b2=c2∴△ABC 是以c 为斜边的直角三角形∵5b-4c=0∴设b=4kc=5k ∴△ 解析:75【分析】把所给的式子进行整理,判断出三角形的形状,进而计算相应角的正弦值的和.【详解】解:∵2()()b c a c a =+-,∴b 2=c 2-a 2,即:a 2+b 2=c 2,∴△ABC 是以c 为斜边的直角三角形,∵5b-4c=0, ∴45b c =, 设b=4k ,c=5k , ∴△ABC 中,a=()()2254k k -=3k , ∴35a c =, ∴sinA+sinB=347555a b c c +=+=, 故答案为:75. 【点睛】本题主要考查了勾股定理及勾股定理的逆定理,解直角三角形,在直角三角形中,一个角的正弦值等于它的对边与斜边之比.20.10【分析】根据直角三角形的边角间关系先计算再在直角三角形中利用勾股定理即可求出【详解】解:在中∵∴在中故答案为:10【点睛】本题考查了解直角三角形和勾股定理利用直角三角形的边角间关系求出AC 是解决 解析:10【分析】根据直角三角形的边角间关系,先计算AC ,再在直角三角形ACD 中,利用勾股定理即可求出AD .【详解】解:在Rt ABC 中,∵12,sin 3AB AB ACB AC =∠==, ∴1263AC =÷=.在Rt ADC 中,AD=10=.故答案为:10.【点睛】本题考查了解直角三角形和勾股定理,利用直角三角形的边角间关系,求出AC 是解决本题的关键.21.75°【分析】由非负数的性质可得:可求从而利用三角形的内角和可得答案【详解】解:由题意得sinA =cosB =解得∠A =60°∠B =45°∠C =180°﹣∠A ﹣∠B =75°故答案为:75°【点睛】本题解析:75°【分析】由非负数的性质可得:sin 2cos 2A B ⎧=⎪⎪⎨⎪=⎪⎩,可求,A B ∠∠,从而利用三角形的内角和可得答案.【详解】解:由题意,得sinAcosB=2, 解得∠A =60°,∠B =45°,∠C =180°﹣∠A ﹣∠B =75°,故答案为:75°.【点睛】本题考查了非负数的性质:偶次方、三角形的内角和定理,特殊角的三角函数值,掌握以上知识是解题的关键.22.【分析】作PD ⊥AB 设PD=x 根据∠CBP=∠BPD=45°知BD=PD=xAD=AB+BD=2+x 由sin ∠PAD=列出关于x 的方程解之可得答案【详解】如图所示过点P 作PD ⊥AB 交AB 延长线于点D解析:1【分析】作PD ⊥AB ,设PD=x ,根据∠CBP=∠BPD=45°知BD=PD=x 、AD=AB+BD=2+x ,由sin ∠PAD=PD AD列出关于x 的方程,解之可得答案. 【详解】如图所示,过点P 作PD ⊥AB ,交AB 延长线于点D ,设PD =x ,∵∠PBD =∠BPD =45°,∴BD =PD =x ,又∵AB =2,∴AD =AB +BD =2+x ,∵∠PAD =30°,且sin ∠PAD =PD AD , ∴32x x =+, 解得:x =1+3,即船P 离海岸线l 的距离为(1+3)km ,故答案为1+3.【点睛】本题主要考查解直角三角形的应用-方向角问题,解题的关键是根据题意构建合适的直角三角形及三角函数的定义及其应用.三、解答题23.(1)见解析;(2)AC =3cm【分析】(1)根据圆周角定理得到∠AOC =2∠B ,加上∠DAC =2∠B ,所以∠AOC =∠DAC ,然后根据等边三角形的判定方法可得到结论;(2)直接利用等边三角形的性质求解即可.【详解】(1)证明:如图,连接OC ,∵∠AOC =2∠B ,∠DAC =2∠B∴∠AOC =∠DAC ,∴OC =AC ,∵OC =OA ,∴OA =OC =AC ,∴△OAC 为等边三角形;(2)解:∵△OAC 为等边三角形,AD =6cm ,∴AC =OA =12AD =12×6=3(cm ). 【点睛】本题考查了圆周角定理及等边三角形的判定与性质,熟练掌握圆周角定理是解答此题的关键.24.54°【分析】连接OC ,OD .求出∠COD 的度数,再根据圆周角定理即可解决问题.【详解】如图,连接,OC OD .∵五边形ABCDE 是正五边形,∴360725COD ︒∠==︒, ∴1362CPD COD ∠=∠=︒, ∴90°-36°=54°,∴CPD ∠的余角的度数为54°.【点睛】 本题考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.(1)40,9000元;(2)每件售价为38元,才能获取最大利润【分析】(1)首先根据题意得每件产品的利润:()10x -元,再根据二次函数的性质计算,即可得到答案;(2)结合题意,根据二次函数图像的性质计算,即可得到答案.【详解】(1)∵107000y x =-+≥∴70x ≤根据题意得,每件产品的利润:()10x -元∴该厂每天获取的利润为:()()21011070008007000x x x x -=-+--+ 当80040210x =-=⨯时,该厂每天获取的最大利润为:210408004070009000-⨯+⨯-=元;(2)根据(1)的结论,该厂每天获取的利润为:()()21011070008007000x x x x -=-+--+当40x <时,利润随x 的增大而增大;当40x >时,利润随x 的增大而减小; ∴当38x =时,即每件售价为38元,才能获取最大利润.【点睛】本题考查了二次函数、一元一次不等式的知识;解题的关键是熟练掌握二次函数的性质,从而完成求解.26.(1)10300y x =-+;(2)20元或21元.【分析】(1)通过表格的数据,利用待定系数法求一次函数解析式即可;(2)通过题意得到利润和售价之间的关系式,然后当利润为900元时,解方程即可得到结果.【详解】解:(1)设该一次函数的解析式为y kx b =+,由表可知15x =时150y =,16x =时140y =,∴1501514016k b k b =+⎧⎨=+⎩ ∴10300k b =-⎧⎨=⎩ ∴一次函数的解析式为10300y x =-+;(2)设利润为W ,则()()()111110300W x y x x =-=--+,∴2104103300W x x =-+-当900W =时,2900104103300x x =-+-,即2414200x x -+=,解得120x =,221x = ∴每件售价为20元或21元时,工艺品厂试销该工艺品每天获得的利润是900元. 【点睛】本题考查了函数的应用问题,正确列出函数关系式是解题的关键.。
【常考题】九年级数学下期末一模试卷(带答案) 一、选择题1.如图所示,已知A(12,y1),B(2,y2)为反比例函数1yx图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(12,0)B.(1,0)C.(32,0)D.(52,0)2.如图A,B,C是上的三个点,若,则等于()A.50°B.80°C.100°D.130°3.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A.B.C.D.4.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是( )A.③④B.②③C.①④D.①②③5.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数01234人数41216171关于这组数据,下列说法正确的是()A.中位数是2 B.众数是17 C.平均数是2 D.方差是26.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD 到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米B.22.4米C.27.4米D.28.8米7.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是()A.783230x yx y+=⎧⎨+=⎩B.782330x yx y+=⎧⎨+=⎩C.302378x yx y+=⎧⎨+=⎩D.303278x yx y+=⎧⎨+=⎩8.已知命题A:“若a为实数,则2a a=”.在下列选项中,可以作为“命题A是假命题”的反例的是()A.a=1B.a=0C.a=﹣1﹣k(k为实数)D.a=﹣1﹣k2(k为实数)9.如图,AB为⊙O直径,已知为∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°10.an30°的值为()A.B.C.D.11.某商店销售富硒农产品,今年1月开始盈利,2月份盈利240000元,4月份盈利290400元,且从2月份到4月份,每月盈利的平均增长率相同,则每月盈利的平均增长率是()A.8%B.9%C.10%D.11%12.如图,在平行四边形ABCD中,M、N是BD上两点,BM DN=,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是( )A.12OM AC=B.MB MO=C.BD AC⊥D.AMB CND∠=∠二、填空题13.如图,在菱形ABCD中,AB=5,AC=8,则菱形的面积是.14.如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,AC与OB交于点D (8,4),反比例函数y=的图象经过点D.若将菱形OABC向左平移n个单位,使点C落在该反比例函数图象上,则n的值为___.15.不等式组125x ax x->⎧⎨->-⎩有3个整数解,则a的取值范围是_____.16.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得如图所放风筝的高度,进行了如下操作:(1)在放风筝的点A处安置测倾器,测得风筝C的仰角∠CBD=60°;(2)根据手中剩余线的长度出风筝线BC的长度为70米;(3)量出测倾器的高度AB=1.5米.根据测量数据,计算出风筝的高度CE约为_____米.(精确到0.1米,3≈1.73).17.正六边形的边长为8cm,则它的面积为____cm2.18.已知(a-4)(a-2)=3,则(a-4)2+(a-2)2的值为__________.19.如图①,在矩形 MNPQ 中,动点 R 从点 N 出发,沿N→P→Q→M 方向运动至点 M 处停止,设点 R 运动的路程为 x,△MNR 的面积为 y,如果 y 关于 x 的函数图象如图②所示,则矩形 MNPQ 的面积是________.20.对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则2☆(﹣3)=_____.三、解答题21.某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y1(元/件),销量y2(件)与第x(1≤x<90)天的函数图象如图所示(销售利润=(售价-成本)×销量).(1)求y1与y2的函数解析式.(2)求每天的销售利润W与x的函数解析式.(3)销售这种文化衫的第多少天,销售利润最大,最大利润是多少?22.为响应珠海环保城市建设,我市某污水处理公司不断改进污水处理设备,新设备每小时处理污水量是原系统的1.5倍,原来处理1200m 3污水所用的时间比现在多用10小时. (1)原来每小时处理污水量是多少m 2?(2)若用新设备处理污水960m 3,需要多长时间?23.先化简,再求值: 233212-),322x x x x x x (其中+-+÷=++ 24.将A B C D ,,,四人随机分成甲、乙两组参加羽毛球比赛,每组两人.(1)A 在甲组的概率是多少?(2)A B ,都在甲组的概率是多少?25.解方程:3x x +﹣1x=1. 26.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,O 为AB 上一点,经过点A ,D 的⊙O 分别交AB ,AC 于点E ,F ,连接OF 交AD 于点G .(1)求证:BC 是⊙O 的切线;(2)设AB =x ,AF =y ,试用含x ,y 的代数式表示线段AD 的长;(3)若BE =8,sinB =513,求DG 的长,【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】求出AB 的坐标,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入求出直线AB 的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【详解】∵把A(12,y1),B(2,y2)代入反比例函数y=1x得:y1=2,y2=12,∴A(12,2),B(2,12),∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=kx+b,把A、B的坐标代入得:122122k bk b⎧+⎪⎪⎨⎪+⎪⎩==,解得:k=-1,b=52,∴直线AB的解析式是y=-x+52,当y=0时,x=52,即P(52,0),故选D.【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.2.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理3.B解析:B【解析】【分析】①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,根据同角的余角相等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解.【详解】①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠APB=∠PAD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴ABDE=APADAB APDE AD=,即34xy=,∴y=12x,纵观各选项,只有B选项图形符合,故选B.4.C解析:C【解析】试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:①当x=1时,y=a+b+c=0,故本选项错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<0,故本选项正确;③由抛物线的开口向下知a<0,∵对称轴为1>x=﹣>0,∴2a+b<0,故本选项正确;④对称轴为x=﹣>0,∴a、b异号,即b>0,∴abc<0,故本选项错误;∴正确结论的序号为②③.故选B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0;(4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.5.A解析:A【解析】试题解析:察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选A.考点:1.方差;2.加权平均数;3.中位数;4.众数.6.A解析:A【解析】【分析】作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°=AMEM,构建方程即可解决问题.【详解】作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵140.753CNDN==,设CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=AM EM,∴0.45=866AB +,∴AB=21.7(米),故选A.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.7.A解析:A【解析】【分析】【详解】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.8.D解析:D【解析】【分析】a=可确定a的范围,排除掉在范围内的选项即可.【详解】解:当a≥0a=,当a<0a=-,∵a=1>0,故选项A不符合题意,∵a=0,故选项B不符合题意,∵a=﹣1﹣k,当k<﹣1时,a>0,故选项C不符合题意,∵a=﹣1﹣k2(k为实数)<0,故选项D符合题意,故选:D .【点睛】 本题考查了二次根式的性质,200a a a a a a ≥⎧==⎨-≤⎩,正确理解该性质是解题的关键.9.D解析:D【解析】题解析:∵AB 为⊙O 直径,∴∠ACB =90°,∴∠ACD =90°-∠DCB =90°-20°=70°,∴∠DBA =∠ACD =70°.故选D .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.10.D解析:D【解析】【分析】直接利用特殊角的三角函数值求解即可.【详解】tan30°=,故选:D .【点睛】本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键. 11.C解析:C【解析】【分析】设月平均增长率为x ,根据等量关系:2月份盈利额×(1+增长率)2=4月份的盈利额列出方程求解即可.【详解】设该商店的每月盈利的平均增长率为x ,根据题意得:240000(1+x )2=290400,解得:x 1=0.1=10%,x 2=-0.21(舍去),故选C.【点睛】此题主要考查了一元二次方程的应用,属于增长率的问题,一般公式为原来的量×(1±x )2=后来的量,其中增长用+,减少用-.12.A解析:A【解析】【分析】由平行四边形的性质可知:OA OC =,OB OD =,再证明OM ON =即可证明四边形AMCN 是平行四边形.【详解】∵四边形ABCD 是平行四边形,∴OA OC =,OB OD =,∵对角线BD 上的两点M 、N 满足BM DN =,∴OB BM OD DN -=-,即OM ON =,∴四边形AMCN 是平行四边形, ∵12OM AC =, ∴MN AC =,∴四边形AMCN 是矩形.故选:A .【点睛】本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题.二、填空题13.【解析】【分析】连接BD 交AC 于点O 由勾股定理可得BO=3根据菱形的性质求出BD 再计算面积【详解】连接BD 交AC 于点O 根据菱形的性质可得AC⊥BDAO =CO=4由勾股定理可得BO=3所以BD=6即可解析:【解析】【分析】连接BD ,交AC 于点O ,由勾股定理可得BO=3,根据菱形的性质求出BD ,再计算面积.【详解】连接BD ,交AC 于点O ,根据菱形的性质可得AC ⊥BD ,AO=CO=4,由勾股定理可得BO=3,所以BD=6,即可得菱形的面积是12×6×8=24.考点:菱形的性质;勾股定理.14.【解析】试题分析根据菱形的性质得出CD=ADBC ∥OA 根据D (84)和反比例函数的图象经过点D求出k=32C点的纵坐标是2×4=8求出C的坐标即可得出答案∵四边形ABCO是菱形∴CD=ADBC∥OA解析:【解析】试题分析根据菱形的性质得出CD=AD,BC∥OA,根据D (8,4)和反比例函数的图象经过点D求出k=32,C点的纵坐标是2×4=8,求出C的坐标,即可得出答案.∵四边形ABCO是菱形,∴CD=AD,BC∥OA,∵D (8,4),反比例函数的图象经过点D,∴k=32,C点的纵坐标是2×4=8,∴,把y=8代入得:x=4,∴n=4﹣2=2,∴向左平移2个单位长度,反比例函数能过C点,故答案为2.15.﹣2≤a<﹣1【解析】【分析】先解不等式组确定不等式组的解集(利用含a的式子表示)根据整数解的个数就可以确定有哪些整数解根据解的情况可以得到关于a的不等式从而求出a的范围【详解】解不等式x﹣a>0得解析:﹣2≤a<﹣1.【解析】【分析】先解不等式组确定不等式组的解集(利用含a的式子表示),根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解不等式x﹣a>0,得:x>a,解不等式1﹣x>2x﹣5,得:x<2,∵不等式组有3个整数解,∴不等式组的整数解为﹣1、 0、1,则﹣2≤a<﹣1,故答案为:﹣2≤a<﹣1.【点睛】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.1【解析】试题分析:在Rt△CBD中知道了斜边求60°角的对边可以用正弦值进行解答试题解析:在Rt△CBD中DC=BC•sin60°=70×≈6055(米)∵AB=15∴CE=6055+15≈621解析:1.【解析】试题分析:在Rt△CBD中,知道了斜边,求60°角的对边,可以用正弦值进行解答.试题解析:在Rt△CBD中,DC=BC•sin60°=70×32≈60.55(米).∵AB=1.5,∴CE=60.55+1.5≈62.1(米).考点:解直角三角形的应用-仰角俯角问题.17.【解析】【分析】【详解】如图所示正六边形ABCD中连接OCOD过O作OE⊥CD;∵此多边形是正六边形∴∠COD=60°;∵OC=OD∴△COD是等边三角形∴OE=CE•tan60°=cm∴S△OCD解析:3【解析】【分析】【详解】如图所示,正六边形ABCD中,连接OC、OD,过O作OE⊥CD;∵此多边形是正六边形,∴∠COD=60°;∵OC=OD,∴△COD是等边三角形,∴OE=CE•tan60°=83432⨯=cm,∴S△OCD=12CD•OE=12×8×43=163cm2.∴S正六边形=6S△OCD=6×163=963cm2.考点:正多边形和圆18.10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体利用完全平方公式求解【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a ﹣4)(a﹣2)+2(a﹣4)(a﹣2)=解析:10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体,利用完全平方公式求解.【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)=[(a﹣4)-(a﹣2)]2+2(a﹣4)(a﹣2)=(-2)2+2×3=10故答案为10【点睛】本题考查了完全平方公式:(a±b)2=a2±2ab+b2求解,整体思想的运用使运算更加简便.19.20【解析】【分析】根据图象横坐标的变化问题可解【详解】由图象可知x=4时点R到达Px=9时点R到Q点则PN=4QP=5∴矩形MNPQ的面积是20【点睛】本题为动点问题的函数图象探究题考查了动点到达解析:20【解析】【分析】根据图象横坐标的变化,问题可解.【详解】由图象可知,x=4时,点R到达P,x=9时,点R到Q点,则PN=4,QP=5∴矩形MNPQ的面积是20.【点睛】本题为动点问题的函数图象探究题,考查了动点到达临界点前后图象趋势的趋势变化.解答时,要注意数形结合.20.1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1故答案为1点睛:此题考查有理数的混合运算掌握规定的运算方法是解决问题的关键解析:1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为1.点睛:此题考查有理数的混合运算,掌握规定的运算方法是解决问题的关键.三、解答题21.(1)y2与x的函数关系式为y2=-2x+200(1≤x<90);(2)W=22x180x2?000(1x50),120?x12?000(50x90).⎧-++≤<⎨-+≤<⎩(3)销售这种文化衫的第45天,销售利润最大,最大利润是6050元.【解析】【分析】(1)待定系数法分别求解可得;(2)根据:销售利润=(售价-成本)×销量,分1≤x<50、50≤x<90两种情况分别列函数关系式可得;(3)当1≤x<50时,将二次函数关系式配方后依据二次函数性质可得此时最值情况,当50≤x<90时,依据一次函数性质可得最值情况,比较后可得答案.【详解】(1)当1≤x<50时,设y1=kx+b,将(1,41),(50,90)代入,得k b41,50k b90,+=⎧⎨+=⎩解得k1,b40,=⎧⎨=⎩∴y1=x+40,当50≤x<90时,y1=90,故y1与x的函数解析式为y1=x40(1x50), 90(50x90);+≤<⎧⎨≤<⎩ 设y2与x的函数解析式为y2=mx+n(1≤x<90),将(50,100),(90,20)代入,得50m n100,90m n20,+=⎧⎨+=⎩解得:m2,n200,=-⎧⎨=⎩故y2与x的函数关系式为y2=-2x+200(1≤x<90).(2)由(1)知,当1≤x<50时,W=(x+40-30)(-2x+200)=-2x2+180x+2000;当50≤x<90时,W=(90-30)(-2x+200)=-120x+12000;综上,W=22x180x2?000(1x50), 120?x12?000(50x90).⎧-++≤<⎨-+≤<⎩(3)当1≤x<50时,∵W=-2x2+180x+2000=-2(x-45)2+6050,∴当x=45时,W取得最大值,最大值为6050元;当50≤x<90时,W=-120x+12000,∵-120<0,W随x的增大而减小,∴当x=50时,W取得最大值,最大值为6000元;综上,当x=45时,W取得最大值6050元.答:销售这种文化衫的第45天,销售利润最大,最大利润是6050元.22.(1)原来每小时处理污水量是40m2;(2)需要16小时.【解析】试题分析:()1设原来每小时处理污水量是x m2,新设备每小时处理污水量是1.5x m2,根据原来处理1200m3污水所用的时间比现在多用10小时这个等量关系,列出方程求解即可. ()2根据()960 1.54016÷⨯=即可求出.试题解析:()1设原来每小时处理污水量是x m2,新设备每小时处理污水量是1.5x m2,根据题意得:1200120010,1.5x x-=去分母得:1800120015x,-=解得:40x=,经检验40x=是分式方程的解,且符合题意,则原来每小时处理污水量是40m 2;(2)根据题意得:()960 1.54016÷⨯=(小时),则需要16小时.23.11;12x -- 【解析】【分析】根据分式的运算顺序及运算法则化简所给的分式,化为最简后再代入求值即可.【详解】原式=()23x 3x 22-)x 2x 1++⨯+-( ,()()22433221x x x x x +--+=⨯+-,()()21221x x x x -+=⨯+-,11x =-, 当x=3时,原式=113-=12- 【点睛】 本题主要考查了分式的化简求值,利用分式的运算顺序及运算法则把分式化为最简是解题的关键.24.(1)12(2)16【解析】解:所有可能出现的结果如下:(1)所有的结果中,满足A 在甲组的结果有3种,所以A 在甲组的概率是12,··· 2分 (2)所有的结果中,满足A B ,都在甲组的结果有1种,所以A B ,都在甲组的概率是16. 利用表格表示出所有可能的结果,根据A 在甲组的概率=3162, A B ,都在甲组的概率=1625.分式方程的解为x=﹣34. 【解析】 【分析】方程两边都乘以x (x+3)得出方程x ﹣1+2x=2,求出方程的解,再代入x (x+3)进行检验即可.【详解】两边都乘以x (x+3),得:x 2﹣(x+3)=x (x+3),解得:x=﹣34, 检验:当x=﹣34时,x (x+3)=﹣2716≠0, 所以分式方程的解为x=﹣34. 【点睛】本题考查了解分式方程,熟练掌握解分式方程的方法与注意事项是解题的关键.26.(1)证明见解析; 【解析】【分析】(1)连接OD ,由AD 为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD 与AC 平行,得到OD 与BC 垂直,即可得证; (2)连接DF ,由(1)得到BC 为圆O 的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD 与三角形ADF 相似,由相似得比例,即可表示出AD ;(3)连接EF ,设圆的半径为r ,由sinB 的值,利用锐角三角函数定义求出r 的值,由直径所对的圆周角为直角,得到EF 与BC 平行,得到sin ∠AEF=sinB ,进而求出DG 的长即可.【详解】(1)如图,连接OD ,∵AD 为∠BAC 的角平分线,∴∠BAD=∠CAD ,∵OA=OD ,∴∠ODA=∠OAD ,∴∠ODA=∠CAD ,∴OD ∥AC ,∵∠C=90°,∴∠ODC=90°,∴OD ⊥BC ,∴BC 为圆O 的切线;(2)连接DF ,由(1)知BC 为圆O 的切线,∴∠FDC=∠DAF ,∴∠CDA=∠CFD ,∴∠AFD=∠ADB ,∵∠BAD=∠DAF ,∴△ABD ∽△ADF , ∴AB AD AD AF=,即AD 2=AB•AF=xy ,则;(3)连接EF ,在Rt △BOD 中,sinB=513OD OB =, 设圆的半径为r ,可得5813r r =+, 解得:r=5,∴AE=10,AB=18,∵AE 是直径,∴∠AFE=∠C=90°,∴EF ∥BC ,∴∠AEF=∠B ,∴sin ∠AEF=513AF AE =, ∴AF=AE•sin ∠AEF=10×513=5013,∵AF∥OD,∴501013513AG AFDG OD===,即DG=1323AD,∴AD=503013·1813AB AF=⨯=,则DG=133033013 231323⨯=.【点睛】圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.。
一、选择题1.如图所示,该几何体的主视图为( )A .B .C .D .2.如图是由一些相同的小正方体构成的立体图形的三视图.构成这个立体图形的小正方体的个数是( )A .6B .7C .4D .53.如图,∠APD=90°,AP=PB=BC=CD ,则下列结论成立的是( )A .△PAB ∽△PCA B .△ABC ∽△DBA C .△PAB ∽△PDAD .△ABC ∽△DCA4.如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是( )A .12πB .6πC .12π+D .6π+5.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是( ) A .B .C .D .6.已知,一个小球由桌面沿着斜坡向上前进了10cm ,此时小球距离桌面的高度为5cm ,则这个斜坡的坡度i 为( )A .2B .1:2C .12D .137.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8m ,坡面上的影长为4m .已知斜坡的坡角为30,同一时刻,一根长为2m 且垂直于地面放置的标杆在地面上的影长为4m ,则树的高度为( )A .10mB .12mC .()63m +D .()423m -8.如图,半径为5的O 中, OA BC ⊥,30ADC ∠=︒,则BC 的长为( )A .52B .53C .522D .5329.如图,为一幅重叠放置的三角板,其中∠ABC=∠EDF=90°,BC 与DF 共线,将△DEF 沿CB 方向平移,当EF 经过AC 的中点O 时,直线EF 交AB 于点G ,若BC=3,则此时OG 的长度为( )A 322B 332C .32D 3332210.如图,四边形ABCD 中,AB=AD ,AD ∥BC ,∠ABC=60°,∠BCD=30°,BC=6,那么△ACD 的面积是( )A .3B .3 C .3D .93411.已知P 是线段AB 的黄金分割点,且51AB =+,则AP 的长为( ).A .2B .51-C .2或51-D .35-12.已知点A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3)是函数y =﹣2x图象上的点,且x 1<0<x 2<x 3,则y 1,y 2,y 3的大小关系是( ) A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 1>y 3>y 2D .无法确定二、填空题13.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是_______14.如图,小军、小珠之间的距离为2.8m ,他们在同一盏路灯下的影长分别为1.7m ,1.5m ,已知小军、小珠的身高分别为1.7m ,1.5m ,则路灯的高为________m .15.几个相同的正方体叠合在一起,该组合体的主视图和俯视图如右图所示,那么组合体中正方体的个数至多有________个.16.计算:22303060sin cos tan ︒︒︒+-=__________.17.如图 1 的矩形ABCD 中,有一点E 在AD 上,现以BE 为折线将点A 往右折,如图2所示,再过点A 作 AF CD ⊥于点F ,如图3所示,若123,26,60AB BC BEA︒∠===,则图3中AF的长度为____.18.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=____.19.如图,在ABC∆中,,D E分别是边,AC AB的中点,BD与CE交于点O,连接DE.下列结论:①OE ODOB OC=;②12DEBC=;③12DOEBOCSS∆∆=;④13DOEDBESS∆∆=.其中,正确的有__________.20.如图,反比例函数y=kx(x>0)经过A,B两点,过点A作AC⊥y轴于点C,过点B 作BD⊥y轴于点D,过点B作轴BE⊥x于点E,连接AD,已知AC=2,BE=2,S矩形BEOD=16,则S△ACD=_____.三、解答题21.有若干个完全相同的小正方体堆成一个如图所示几何体.(1)图中共有 个小正方体.(2)画出该几何体的主视图、左视图、俯视图.(3)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加 个小正方体.22.如图1,国庆期间某广场旗杆附近搭建了一座花篮.图2为从该场景抽象出的数学模型,已知花篮高度5=AB m ,某一时刻花篮在阳光下的投影3BC m =.(1)请你用尺规作图法在图2中作出此时旗杆DE 在阳光下的投影EF ;(不写作法,保留作图痕迹)(2)在测量AB 的投影时,同时测出旗杆DE 在阳光下的投影6EF m =,请你计算DE 的长.23.计算:()2tan 451tan 602cos30︒--︒︒ .24.有一只拉杆式旅行箱(图1),其侧面示意图如图2所示,已知箱体长50cm AB =,拉杆BC 的伸长距离最大时可达35cm ,点A 、B 、C 在同一条直线上,在箱体底端装有圆形的滚筒A ,A 与水平地面切于点D ,在拉杆伸长至最大的情况下,当点B 距离水平地面38cm 时,点C 到水平面的距离CE 为59cm ,设AF ∥MN .(1)求A 的半径长;(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,某人将手自然下垂在C 端拉旅行箱时,CE 为80cm ,64CAF ∠=︒,求此时拉杆BC 的伸长距离.(精确到1cm ,参考数据:sin 640.90︒≈,cos640.39︒≈,tan64 2.1︒≈)25.如图,已知在矩形ABCD 中,AD =2,AB =3,点E ,F 分别在边AB ,BC 上,且BF =FC ,连接DE ,EF ,并以DE ,EF 为边作▱DEFG .(1)求▱DEFG 对角线DF 的长; (2)求▱DEFG 周长的最小值;(3)当▱DEFG 为矩形且AE ﹥BE 时,连接BG ,分别交EF ,CD 于点P ,Q ,求BP :QG 的值.26.已知12y y y =-,1y 与x 成正比例,2y 与()2x -成反比例,当2x =-时,7y =-;3x =时,13y =.求:y 关于x 的函数解析式【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】找到从正面看所得到的图形即可. 【详解】从正面看两个矩形,中间的线为虚线,故选B.【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图.2.A解析:A【分析】利用三视图的观察角度不同得出行数与列数,结合主视图得出答案.【详解】解:如图所示:由左视图可得此图形有3行,由俯视图可得此图形有3列,由主视图可得此图形最左边一列有4个小正方体,中间一列有1个小正方体,最右边一列有1个小正方体,故构成这个立体图形的小正方体有6个.故选:A.【点睛】此题主要考查了由三视图判断几何体,利用三视图得出几何体的形状是解题关键.3.B解析:B【解析】【分析】根据相似三角形的判定,采用排除法,逐条分析判断.【详解】∵∠APD=90°,而∠PAB≠∠PCA,∠PBA≠∠PAC,∴无法判定△PAB与△PCA相似,故A错误;同理,无法判定△PAB与△PDA,△ABC与△DCA相似,故C、D错误;∵∠APD=90°,AP=PB=BC=CD,∴AB=PA,AC=PA,AD=PA,BD=2PA,∴=,∴,∴△ABC∽△DBA,故B正确.故选B.【点睛】本题考查了相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.4.B解析:B【解析】【分析】根据三视图确定该几何体是圆柱体,再根据主视图上的数据计算圆柱体的侧面积即可.【详解】解:先由三视图确定该几何体是圆柱体,底面半径是2÷2=1,高是3.所以该几何体的侧面积为2π×1×3=6π.故选:B.【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.5.B解析:B【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依此找到从正面、左面、上面观察都不可能看到长方形的图形.【详解】解:A、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误;B、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;C、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;D、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误.故选B.【点睛】本题重点考查三视图的定义以及考查学生的空间想象能力.6.D解析:D【分析】过B作BC⊥桌面于C,由题意得AB=10cm,BC=5cm,再由勾股定理得AC=53然后由坡度的定义即可得出答案.【详解】解:如图,过B作BC⊥桌面于C,由题意得:AB=10cm,BC=5cm,∴AC=222210553AB BC-=-=,∴这个斜坡的坡度i=BCAC =53=1:3,故选:D.【点睛】本题考查了解直角三角形的应用-坡度坡角问题以及勾股定理;熟练掌握坡度的定义和勾股定理是解题的关键.7.C解析:C【分析】延长AC交BF延长线于D点,则BD即为AB的影长,然后根据物长和影长的比值计算即可.【详解】延长AC交BF延长线于D点,作CE⊥BD于E,则∠CFE=30°,在Rt△CFE中,∠CFE=30°,CF=4m,∴CE=2(m),EF=4cos30°3m),在Rt△CED中,∵同一时刻,一根长为2m、垂直于地面放置的标杆在地面上的影长为4m,CE=2(m),则CE:DE=2:4=1:2,AB:BD=1:2,∴DE=4(m),∴3m),在Rt△ABD中,AB=12BD=1233m),故选:C.【点睛】本题考查了解直角三角形的应用以及相似三角形的性质.解决本题的关键是作出辅助线得到AB的影长.8.B解析:B【分析】连接OC,设BC与OA交于点E,根据圆周角定理即可求出∠AOC,然后根据垂径定理可得BC=2CE,利用锐角三角函数求出CE,即可求出结论.【详解】解:连接OC,设BC与OA交于点E∵30ADC∠=︒∴∠AOC=2∠ADC=60°∵OA BC⊥∴BC=2CE,在Rt△OCE中,CE=OC·sin∠53 2∴BC=53故选B.【点睛】此题考查的是圆周角定理、垂径定理和锐角三角函数,掌握圆周角定理、垂径定理和锐角三角函数是解题关键.9.A解析:A【分析】分别过O作OH⊥BC,过G作GI⊥OH,由O是中点,根据平行线等分线段定理,可得H为BC的中点,则可得BH=32,再由三个角都是直角的四边形是矩形,可得GI=BH=32,在等腰直角三角形OGI中,即可求解.【详解】解:过O作OH⊥BC于H,过G作GI⊥OH于I ∵∠ABC=90°,∴AB⊥BC,∴OH∥AB,又O为中点,∴H为BC的中点,∴BH=12BC=32∵GI⊥OH,∴四边形BHIG为矩形,∴GI∥BH,GI=BH=32,又∠F=45°,∴∠OGI=45°,∴在Rt△OGI中,32cos2GIOGOGI==∠.故选:A【点睛】本题考查了解直角三角形及平行线等分线段定理,构造合适的辅助线是解题关键.10.A解析:A【分析】如图,过点A作AE⊥BC于E,过点D作DF⊥BC于F.构建矩形AEFD和直角三角形,通过含30度角的直角三角形的性质求得AE的长度,然后由三角形的面积公式进行解答即可.【详解】解:如图,过点A作AE⊥BC于E,过点D作DF⊥BC于F.设AB=AD=x.又∵AD∥BC,∴四边形AEFD是矩形,∴AD=EF=x.在Rt△ABE中,∠ABC=60°,则∠BAE=30°,∴BE=12AB=12x , ∴, 在Rt △CDF 中,∠FCD=30°,则CF=DF•cot30°=32x . 又∵BC=6, ∴BE+EF+CF=6,即12x+x+32x=6, 解得 x=2∴△ACD 的面积是:12AD•DF=122故选:A . 【点睛】此题考查了勾股定理,三角形的面积以及含30度角的直角三角形.解题的关键是作出辅助线,构建矩形和直角三角形,目的是求得△ADC 的底边AD 以及该边上的高线DF 的长度.11.C解析:C 【分析】若点P 是靠近点B的黄金分割点,则12AP AB =,然后代入数据计算即可;若点P 是靠近点A 的黄金分割点,先求出BP ,再利用线段的和差即可求出AP . 【详解】解:若P 是靠近点B的黄金分割点,则)111222AP AB ==⨯=;若P 是靠近点A的黄金分割点,则)111222BP AB ==⨯=,∴121AP AB BP =-=-=; 故选:C . 【点睛】本题主要考查了黄金分割,熟练掌握黄金分割比为12是解题的关键. 12.C解析:C 【分析】根据反比例函数图象上点的坐标特征得到y 1=12x -,y 2=22x -,y 3=32x -,然后根据x 1<0<x 2<x 3比较y 1,y 2,y 3的大小.【详解】点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是2y x=-的图象上的点, ∴y 1=12x -,y 2=22x -,y 3=32x -, 而x 1<0<x 2<x 3, ∴y 1>y 3>y 2. 故选:C . 【点睛】本题考查了反比例函数图象上点的坐标特征:熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.二、填空题13.5【解析】试题分析:根据三视图该几何体的主视图以及俯视图可确定该几何体共有两行3列故可得出该几何体的小正方体的个数综合三视图我们可得出这个几何体的底层应该有4个小正方体第二层应该有1个小正方体因此搭解析:5 【解析】试题分析:根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行3列,故可得出该几何体的小正方体的个数.综合三视图,我们可得出,这个几何体的底层应该有4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为4+1=5个 考点:由三视图判断几何体.14.3【分析】如图由题意证明AB =EBAB =BF 推出DB =AB ﹣17BN =AB ﹣15根据DN =28构建方程求解即可【详解】解:如图由题意可得:在Rt △CDE 中CD =DE =17m 在Rt △MNF 中MN =NF解析:3 【分析】如图,由题意证明AB =EB ,AB =BF ,推出DB =AB ﹣1.7,BN =AB ﹣1.5,根据DN =2.8,构建方程求解即可. 【详解】解:如图,由题意可得:在Rt △CDE 中,CD =DE =1.7m , 在Rt △MNF 中,MN =NF =1.5m , ∵∠CDE =∠MNF =90°, ∴∠E =∠F =45°, ∵AB ⊥EF , ∴AB =EB =BF ,∴DB=AB﹣1.7,BN=AB﹣1.5,∵DN=2.8m,∴2AB﹣1.7﹣1.5=2.8,∴AB=3(m),即路灯的高为3米.故答案为:3.【点睛】本题考查了中心投影和等腰直角三角形的判定和性质,属于常考题型,熟练掌握上述知识是解题的关键.15.10【分析】由所给视图可得此几何体有3列3行2层分别找到第二层的最多个数加上第一层的正方体的个数即为所求答案【详解】解:第一层有1+2+3=6个正方体第二层最多有4个正方体所以这个几何体最多有6+4解析:10【分析】由所给视图可得此几何体有3列,3行,2层,分别找到第二层的最多个数,加上第一层的正方体的个数即为所求答案.【详解】解:第一层有1+2+3=6个正方体,第二层最多有4个正方体,所以这个几何体最多有6+4=10个正方体.故答案为:10.【点睛】本题是由三视图判断几何体,考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.16.【分析】先根据特殊角的三角函数值化简然后再计算即可【详解】解:===故答案为【点睛】本题考查了特殊角的三角函数值和实数的运算牢记特殊角的三角函数值是解答本题的关键解析:13【分析】先根据特殊角的三角函数值化简,然后再计算即可.【详解】解:22303060sin cos tan ︒︒︒+-=2213322⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭=13344+- =13-. 故答案为13-. 【点睛】本题考查了特殊角的三角函数值和实数的运算,牢记特殊角的三角函数值是解答本题的关键.17.8【分析】作AH ⊥BC 于H 则四边形AFCH 是矩形AF=CHAH=CF 在Rt △ABH 中解直角三角形即可解决问题【详解】解:作AH ⊥BC 于H 则四边形AFCH 是矩形AF=CH 在Rt △ABE 中∠BAE=90解析:8 【分析】作AH ⊥BC 于H ,则四边形AFCH 是矩形,AF=CH ,AH=CF. 在Rt △ABH 中,解直角三角形即可解决问题. 【详解】解:作AH ⊥BC 于H ,则四边形AFCH 是矩形,AF=CH.在Rt △ABE 中,∠BAE=90°,∠BEA=60° ∴∠ABE=180°-∠A-∠BEA=180°-90°-60°=30° 由题意得∠ABH=90°-2∠ABE=90°-30°×2=30° 在Rt △ABH 中,∠ABH=30°,3,BC=26 ∴BH=AB cos30°332=18 ∴CH=BC-BH=26-18=8. 即AF=8. 故答案为8. 【点睛】本题考查了翻折变换,矩形的性质及解直角三角形等知识.解题的关键是学会添加辅助线,构造直角三角形来解决问题.18.5【分析】过P 作PD ⊥OB 交OB 于点D 在直角三角形POD 中利用锐角三角函数定义求出OD的长再由PM=PN利用三线合一得到D为MN中点根据MN求出MD的长由OD-MD即可求出OM的长【详解】过P作PD解析:5.【分析】过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD-MD 即可求出OM的长.【详解】过P作PD⊥OB,交OB于点D,在Rt△OPD中,cos60°12 OD OP==,OP=12,∴OD=6.∵PM=PN,PD⊥MN,MN=2,∴MD=ND12=MN=1,∴OM=OD﹣MD=6﹣1=5.故答案为:5.【点晴】本题考查的是勾股定理,含30度直角三角形的性质,等腰三角形的性质等知识,熟练掌握直角三角形的性质是解本题的关键.19.②④【分析】由点DE分别是边ACAB的中点知DE是△ABC的中位线据此知DE∥BC且从而得△ODE∽△OBC根据相似三角形的性质逐一判断可得【详解】解:∵点DE分别是边ACAB的中点∴DE是△ABC解析:②④【分析】由点D,E分别是边AC,AB的中点知DE是△ABC的中位线,据此知DE∥BC且1=2 EDBC,从而得△ODE∽△OBC,根据相似三角形的性质逐一判断可得.【详解】解:∵点D,E分别是边AC,AB的中点,∴DE是△ABC的中位线,∴DE ∥BC 且1=2ED BC ,②正确; ∴∠ODE =∠OBC 、∠OED =∠OCB , ∴△ODE ∽△OBC , ∴1=2OE OD ED OC OB BC ==,①错误; 214DOE BOC S DE S BC ∆∆⎛⎫== ⎪⎝⎭,③错误; ∵112122DOE BOEOD hS OD S OB OB h ∆∆===, ∴13DOE BDES S ∆∆=,④正确; 故答案为:②④ 【点睛】本题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的判定与性质.20.6【分析】利用反比例函数比例系数k 的几何意义得到S 矩形BEOD=|k|=16则求出k 得到反比例函数的解析式为y =再利用A 点的横坐标为2可计算出A 点的纵坐标为8从而得到CD=6然后根据三角形面积公式计解析:6 【分析】利用反比例函数比例系数k 的几何意义得到S 矩形BEOD =|k|=16,则求出k 得到反比例函数的解析式为y =16x,再利用A 点的横坐标为2可计算出A 点的纵坐标为8,从而得到CD=6,然后根据三角形面积公式计算S △ACD . 【详解】解:∵BE ⊥x 轴于E ,BD ⊥y 轴于D , ∴S 矩形BEOD =|k |=16,而0k >, ∴k =16,∴反比例函数的解析式为y =16x, ∵AC ⊥y 轴,AC =2, ∴A 点的横坐标为2, 当x =2时,y =16÷2=8, ∴CD =OC ﹣OD =8﹣2=6, ∴S △ACD =12×2×6=6.故答案为6.【点睛】本题考查了反比例函数比例系数k的几何意义:在反比例函数图象y=kx中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.三、解答题21.(1)11;(2)见解析;(3)4【分析】(1)根据图形求解;(2)由已知条件可知,主视图有3列,每列小正方数形数目分别为3,1,2,左视图有3列,每列小正方形数目分别为3,2,2;俯视图有3列,每列小正方数形数目分别为3,2,1,据此可画出图形.(3)可在第二层第二列第二行和第三行各加一个;第三层第二列第三行加一个,第三列第三行加1个,相加即可求解.【详解】解:(1)有图可得,图中共有11个小立方体故答案为:11(2)如图:(3)在第二层第二列第二行和第三行各加一个;第三层第二列第三行加一个,第三列第三行加1个,2+1+1=4(个).故最多可再添加4个小正方体.故答案为:4.【点睛】本题考查几何体的三视图画法.由立体图形,可知主视图、左视图、俯视图,并能得出有几列即每一列上的数字.22.(1)见解析;(2)10m【分析】(1)根据投影定义作图即可;(2)根据(1)的图形,证明△ABC ∽△DEF ,列得AB DEBC EF=,代入数值求解即可. 【详解】解:(1)如图EF 就是DE 的投影.(2)由作图可知//AC DF ,ACB DFE ∴∠=∠,90ABC DEF ∠=∠=︒, ∴△ABC ∽△DEF, AB DE BC EF∴=,即536DE =,10()DE m ∴=.答:DE 的长为10m . 【点睛】此题考查相似三角形的实际应用,相似三角形的判定及性质,平行投影的画法及应用,正确理解平行投影是解题的关键. 23.2. 【分析】由特殊角的三角函数值,二次根式的性质,二次根式的加减乘除混合运算进行化简,即可得到答案. 【详解】 解:()2tan 451tan 602cos30︒-︒︒=3131)2-+ =1313+=2. 【点睛】本题考查了特殊角的三角函数值,二次根式的性质,二次根式的加减乘除混合运算,解题的关键是掌握运算法则进行化简.24.(1)圆形滚轮的半径AD 的长是8cm ;(2)拉杆BC 的伸长距离为30cm . 【分析】(1)作BH ⊥AF 于点K ,交MN 于点H ,则△ABK ∽△ACG ,设圆形滚轮的半径AD 的长是xcm ,根据相似三角形的对应边的比相等,即可列方程求得x 的值; (2)求得CG 的长,然后在直角△ACG 中,求得AC 即可解决问题; 【详解】(1)作BH AF ⊥于点K ,交MN 于点H . 则BKCG ,ABK ACG ∆∆∽.设圆形滚轮的半径AD 的长是cm x .则BK AB CG AC =,即3850595035x x -=-+, 解得:8x =.则圆形滚轮的半径AD 的长是8cm ;(2)在Rt ACG ∆中,80872(cm)CG =-=. 则sin CGCAF AC∠= ∴AC=72=sin 0.9CG CAF ∠=80(cm)∴805030(cm)BC AC AB =-=-=.【点睛】本题考查解直角三角形的应用,相似三角形的判定与性质,锐角三角函数等知识,关键把实际问题转化为数学问题加以计算. 25.(110(2)62(3)35. 【分析】(1)▱DEFG 对角线DF 的长就是Rt △DCF 的斜边的长,由勾股定理求解;(2)▱DEFG 周长的最小值就是求邻边2(DE+EF )最小值,DE+EF 的最小值就是以AB 为对称轴,作点F 的对称点M ,连接DM 交AB 于点N ,点E 与N 点重合时即DE+EF=DM 时有最小值,在Rt △DMC 中由勾股定理求DM 的长;(3)用等腰直角三角形判定与性质,三角形相似的判定与性质和勾股定理求解. 【详解】解:(1)如图1所示:连接DF ,∵四边形ABCD 是矩形,∠C=90°,AD=BC ,AB=DC ,BF=FC ,AD=2,∴FC=1,∵AB=3;∴DC=3,在Rt △DCF 中,由勾股定理得DF=22221310FC DC +=+=,故▱DEFG 对角线DF 的长10.(2)如图2所示:作点F 关直线AB 的对称点M ,连接DM 交AB 于点N ,连接NF ,ME ,点E 在AB 上是一个动点,①当点E 不与点N 重合时点M 、E 、D 可构成一个三角形,∴ME+DE >MD ,②当点E 与点N 重合时点M 、E (N )、D 在同一条直线上,∴ME+DE=MD ,由①和②DE+EF 的值最小时就是点E 与点N 重合时,∵MB=BF ,∴MB=1,∴MC=3,又∵DC=3,∴△MCD 是等腰直角三角形,∴22223332MC DC +=+=∴NF+DN=MD=32∴262DEFG C NF DF =+=()(3)设AE=x ,则BE=3-x ,∵▱DEFG 为矩形,∴∠DEF=90°,∴∠AED+∠BEF=90°,∵∠BEF+∠BFE=90°,∴∠AED=∠BFE ,又∵∠A=∠EBF=90°,∴△DAE ∽△EBF (AA )∴AE AD BF BE =, ∴213x x=-,解得:x=1(舍去),或x=2,即AE=2,BE=1, 过点G 作GH ⊥DC ,如图3所示:∵▱DEFG 为矩形,∴∠A=∠EBF=90°,∵AD=AE=2,BE=BF=1,∴在Rt △ADE 和Rt △EFB 中,由勾股定理得: 22222222AD AE +=+=,2222112BE BF +=+=, ∴∠ADE=45°,又∵四边形DEFG 是矩形,∴EF=DG ,∠EDG=90°,∴2,∠HDG=45°, ∴△DHG 是等腰直角三角形,∴DH=HG=1,在△HGQ 和△BCQ 中有GHQ BCQ HQG CQB ∠∠⎧⎨∠∠⎩==, ∴△HGQ ∽△BCQ (AA ),∴12HG HQ CB CQ ==, ∵HC=HQ+CQ=DC-DH=2,∴HQ=23, 又∵DQ=DH+HQ ,∴DQ=25133+=, ∵AB ∥DC ,EF ∥DG ,∴∠EBP=∠DQG ,∠EPB=∠DGQ ,∴△EBP ∽△DQG (AA ), ∴35BP EB QG DQ ==. 【点睛】本题考查了矩形的性质,轴对称的性质,相似三角形的判定与性质,等腰三角形的判定与性质;重点掌握相似三角形的判定与性质,难点是作辅助线.26.432y x x =+- 【分析】 设1y kx =,()22m y x =-,得到()2m y kx x =--,将x 与y 的两组对应值代入得到二元一次方程组722213332m k m k ⎧-=--⎪⎪--⎨⎪=-⎪-⎩,求出解集即可得到答案. 【详解】解:设1y kx =,()22m y x =-, 则()2my kx x =--, 根据题意得:722213332m k m k ⎧-=--⎪⎪--⎨⎪=-⎪-⎩, 解得:34k m =⎧⎨=-⎩, 则函数解析式是:432y x x =+-. 【点睛】此题考查正比例函数的定义,反比例函数的定义,求出二元一次方程组的解,正确理解正比例函数与反比例函数的定义并正确计算是解题的关键.。
【必考题】九年级数学下期末一模试题及答案(1)一、选择题1.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A.B.C.D.2.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是( )A.abc>0B.b2﹣4ac<0C.9a+3b+c>0D.c+8a<03.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数01234人数41216171关于这组数据,下列说法正确的是()A.中位数是2 B.众数是17 C.平均数是2 D.方差是24.如图抛物线y=ax2+bx+c的对称轴为直线x=1,且过点(3,0),下列结论:①abc>0;②a﹣b+c<0;③2a+b>0;④b2﹣4ac>0;正确的有()个.A.1B.2C.3D.45.三张外观相同的卡片分别标有数字1,2,3,从中随机一次性抽出两张,则这两张卡片上的数字恰好都小于3的概率是()A.19B.16C.13D.236.如图,⊙O的半径为5,AB为弦,点C为»AB的中点,若∠ABC=30°,则弦AB的长为()A.12B.5C.53D.537.如图,直线l1∥l2,将一直角三角尺按如图所示放置,使得直角顶点在直线l1上,两直角边分别与直线l1、l2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为()A.25°B.75°C.65°D.55°8.下列命题中,真命题的是()A.对角线互相垂直的四边形是菱形B.对角线互相垂直平分的四边形是正方形C.对角线相等的四边形是矩形D.对角线互相平分的四边形是平行四边形9.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A .m <92B .m <92且m≠32C .m >﹣94D .m >﹣94且m ≠﹣34 10.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )A .40°B .50°C .60°D .70°11.已知命题A :“若a 为实数,则2a a =”.在下列选项中,可以作为“命题A 是假命题”的反例的是( )A .a =1B .a =0C .a =﹣1﹣k (k 为实数)D .a =﹣1﹣k 2(k 为实数)12.若0xy <,则2x y 化简后为( )A .x y -B .x yC .x y -D .x y -- 二、填空题13.如图,△ABC 的三个顶点均在正方形网格格点上,则tan ∠BAC =_____________.14.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是______元.15.如图,边长为2的正方形ABCD 的顶点A ,B 在x 轴正半轴上,反比例函数k y x =在第一象限的图象经过点D ,交BC 于E ,若点E 是BC 的中点,则OD 的长为_____.16.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =_____.17.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.18.对于有理数a 、b ,定义一种新运算,规定a ☆b =a 2﹣|b|,则2☆(﹣3)=_____.19.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.20.计算:21(1)211x x x x ÷-+++=________. 三、解答题 21.计算:219(34)02cos 452-︒⎛⎫-+-- ⎪⎝⎭. 22.今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A ,B ,C ,D 四个等级,并绘制了如下不完整的频数分布表和扇形统计图:等级成绩(s ) 频数(人数) A90<s≤100 4 B80<s≤90 x C70<s≤80 16 D s≤70 6根据以上信息,解答以下问题:(1)表中的x= ;(2)扇形统计图中m= ,n= ,C 等级对应的扇形的圆心角为 度;(3)该校准备从上述获得A 等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a 1,a 2表示)和两名女生(用b 1,b 2表示),请用列表或画树状图的方法求恰好选取的是a 1和b 1的概率.23.解不等式组341 5122x xxx≥-⎧⎪⎨--⎪⎩>,并把它的解集在数轴上表示出来24.计算:()()()21a b a2b(2a b)-+--;()221m4m421m1m m-+⎛⎫-÷⎪--⎝⎭.25.两个全等的直角三角形 ABC 和 DEF 重叠在一起,其中∠A=60°,AC=1.固定△ABC 不动,将△DEF 进行如下操作:(1)如图,△DEF 沿线段 AB 向右平移(即 D 点在线段 AB 内移动),连接 DC、CF、FB,四边形 CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.(2)如图,当 D 点移到 AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.(3)如图,△DEF 的 D 点固定在 AB 的中点,然后绕 D 点按顺时针方向旋转△DEF,使DF 落在 AB 边上,此时 F 点恰好与 B 点重合,连接 AE,请你求出sinα的值.26.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,根据同角的余角相等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解.【详解】①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠APB=∠PAD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴ABDE=APADAB APDE AD=,即34xy=,∴y=12x,纵观各选项,只有B选项图形符合,故选B .2.D解析:D【解析】【分析】【详解】试题分析:根据图象可知抛物线开口向下,抛物线与y 轴交于正半轴,对称轴是x=1>0,所以a <0,c >0,b >0,所以abc <0,所以A 错误;因为抛物线与x 轴有两个交点,所以24b ac ->0,所以B 错误;又抛物线与x 轴的一个交点为(-1,0),对称轴是x=1,所以另一个交点为(3,0),所以930a b c ++=,所以C 错误;因为当x=-2时,42y a b c =-+<0,又12b x a=-=,所以b=-2a ,所以42y a b c =-+8a c =+<0,所以D 正确,故选D. 考点:二次函数的图象及性质.3.A解析:A【解析】试题解析:察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选A .考点:1.方差;2.加权平均数;3.中位数;4.众数.4.B解析:B【解析】【分析】由图像可知a >0,对称轴x=-2b a=1,即2a +b =0,c <0,根据抛物线的对称性得x=-1时y=0,抛物线与x 轴有2个交点,故△=b 2﹣4ac >0,由此即可判断.【详解】 解:∵抛物线开口向上,∴a >0,∵抛物线的对称轴为直线x =﹣2b a=1, ∴b =﹣2a <0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以①正确;∵抛物线与x轴的一个交点为(3,0),而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∵x=﹣1时,y=0,∴a﹣b+c=0,所以②错误;∵b=﹣2a,∴2a+b=0,所以③错误;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以④正确.故选B.【点睛】此题主要考查二次函数的图像,解题的关键是熟知各系数所代表的含义. 5.C解析:C【解析】【分析】画出树状图即可求解.【详解】解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率=13;故选:C.【点睛】本题考查的是概率,熟练掌握树状图是解题的关键.6.D解析:D【解析】【分析】连接OC、OA,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB即可.【详解】连接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB为弦,点C为»AB的中点,∴OC⊥AB,在Rt△OAE中,AE=53,∴AB=53,故选D.【点睛】此题考查圆周角定理,关键是利用圆周角定理得出∠AOC=60°.7.C解析:C【解析】【分析】依据∠1=25°,∠BAC=90°,即可得到∠3=65°,再根据平行线的性质,即可得到∠2=∠3=65°.【详解】如图,∵∠1=25°,∠BAC=90°,∴∠3=180°-90°-25°=65°,∵l1∥l2,∴∠2=∠3=65°,故选C.【点睛】本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.8.D解析:D【解析】【分析】根据平行四边形、矩形、菱形、正方形的判定定理进行判断即可.【详解】对角线互相垂直且平分的四边形是菱形,故A是假命题;对角线互相垂直平分且相等的四边形是正方形,故B是假命题;对角线相等且平分的四边形是矩形,故C是假命题;对角线互相平分的四边形是平行四边形,故D是真命题.故选D.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.B解析:B【解析】【分析】【详解】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.10.D解析:D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键. 11.D解析:D【解析】【分析】a=可确定a的范围,排除掉在范围内的选项即可.【详解】解:当a≥0a=,当a<0a=-,∵a=1>0,故选项A不符合题意,∵a=0,故选项B不符合题意,∵a=﹣1﹣k,当k<﹣1时,a>0,故选项C不符合题意,∵a=﹣1﹣k2(k为实数)<0,故选项D符合题意,故选:D.【点睛】a aaa a≥⎧==⎨-≤⎩,正确理解该性质是解题的关键. 12.A解析:A【解析】【分析】二次根式有意义,隐含条件y>0,又xy<0,可知x<0,根据二次根式的性质化简.解答【详解】y>0,∵xy<0,∴x<0,∴原式=-故选A【点睛】此题考查二次根式的性质与化简,解题关键在于掌握其定义二、填空题13.【解析】分析:在图形左侧添加正方形网格分别延长ABAC 连接它们延长线所经过的格点可构成直角三角形利用正切的定义即可得出答案详解:如图所示由图形可知∴tan∠BAC=故答案为点睛:本题考查了锐角三角函 解析:13【解析】分析:在图形左侧添加正方形网格,分别延长AB 、AC ,连接它们延长线所经过的格点,可构成直角三角形,利用正切的定义即可得出答案.详解:如图所示,由图形可知,90AFE ∠=︒,3AF AC =,EF AC =,∴tan ∠BAC =133EF AC AF AC ==. 故答案为13. 点睛:本题考查了锐角三角函数的定义. 利用网格构建直角三角形进而利用正切的定义进行求解是解题的关键.14.2000【解析】【分析】设这种商品的进价是x 元根据提价之后打八折售价为2240元列方程解答即可【详解】设这种商品的进价是x 元由题意得(1+40)x×08=2240解得:x =2000故答案为:2000解析:2000,【解析】【分析】设这种商品的进价是x 元,根据提价之后打八折,售价为2240元,列方程解答即可.【详解】设这种商品的进价是x 元,由题意得,(1+40%)x×0.8=2240, 解得:x =2000,故答案为:2000.【点睛】本题考查了一元一次方程的应用——销售问题,弄清题意,熟练掌握标价、折扣、实际售价间的关系是解题的关键.15.【解析】【分析】设D (x2)则E (x+21)由反比例函数经过点DE 列出关于x 的方程求得x 的值即可得出答案【详解】解:设D (x2)则E (x+21)∵反比例函数在第一象限的图象经过点D 点E ∴2x =x+2 解析:12x x 【解析】【分析】设D (x ,2)则E (x+2,1),由反比例函数经过点D 、E 列出关于x 的方程,求得x 的值即可得出答案.【详解】解:设D (x ,2)则E (x+2,1), ∵反比例函数k y x=在第一象限的图象经过点D 、点E , ∴2x =x+2,解得x =2,∴D (2,2),∴OA =AD =2,∴OD ==故答案为:【点睛】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D 、E 的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k . 16.6【解析】分析:根据BD=CDAB=CD 可得BD=BA 再根据AM⊥BDDN⊥AB 即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB∠ABD=∠P+∠BAP 即可得到△APM 是等腰直角三角形进而得到解析:6【解析】分析:根据BD=CD ,AB=CD ,可得BD=BA ,再根据AM ⊥BD ,DN ⊥AB ,即可得到,依据∠ABD=∠MAP+∠PAB ,∠ABD=∠P+∠BAP ,即可得到△APM 是等腰直角三角形,进而得到AM=6.详解:∵BD=CD ,AB=CD ,∴BD=BA ,又∵AM ⊥BD ,DN ⊥AB ,∴,又∵∠ABD=∠MAP+∠PAB ,∠ABD=∠P+∠BAP ,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AM=6,故答案为6.点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.17.4×109【解析】【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>10时n是正解析:4×109【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】4400000000的小数点向左移动9位得到4.4,所以4400000000用科学记数法可表示为:4.4×109,故答案为4.4×109.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1故答案为1点睛:此题考查有理数的混合运算掌握规定的运算方法是解决问题的关键解析:1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为1.点睛:此题考查有理数的混合运算,掌握规定的运算方法是解决问题的关键.19.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程通过解关于m的方程求得m的值即可【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=解析:2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,∴m2﹣2m=0且m≠0,解得,m=2,故答案是:2.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.20.【解析】【分析】先对括号内分式的通分并将括号外的分式的分母利用完全平方公式变形得到÷;接下来利用分式的除法法则将除法运算转变为乘法运算然后约分即可得到化简后的结果【详解】原式=÷=·=故答案为【点睛 解析:11x + 【解析】【分析】先对括号内分式的通分,并将括号外的分式的分母利用完全平方公式变形得到()21xx +÷111x x +-+;接下来利用分式的除法法则将除法运算转变为乘法运算,然后约分即可得到化简后的结果.【详解】原式=()21x x +÷111x x +-+ =()21x x +·1x x+ =11x +. 故答案为11x +. 【点睛】 本题考查了公式的混合运算,解题的关键是熟练的掌握分式的混合运算法则.三、解答题21.1【解析】【分析】直接利用零指数幂的性质以及特殊角的三角函数值和负指数幂的性质分别化简得出答案.【详解】解:原式=4﹣3+12=2﹣1=1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.22.(1)14;(2)10、40、144;(3)恰好选取的是a1和b1的概率为16.【解析】【分析】(1)根据D组人数及其所占百分比可得总人数,用总人数减去其他三组人数即可得出x的值;(2)用A、C人数分别除以总人数求得A、C的百分比即可得m、n的值,再用360°乘以C等级百分比可得其度数;(3)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选取的是a1和b1的情况,再利用概率公式即可求得答案.【详解】(1)∵被调查的学生总人数为6÷15%=40人,∴x=40﹣(4+16+6)=14,故答案为14;(2)∵m%=440×100%=10%,n%=1640×10%=40%,∴m=10、n=40,C等级对应的扇形的圆心角为360°×40%=144°,故答案为10、40、144;(3)列表如下:a1和b1的有2种结果,∴恰好选取的是a1和b1的概率为21 126.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,列表法或树状图法求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小;概率=所求情况数与总情况数之比.23.-1<x≤1【解析】【分析】分别解两个不等式,然后根据数轴或“都大取大,都小取小,大小小大取中间,大大小小无解了”求解不等式组.【详解】解:341{5122x x x x ≥--->①② 解不等式①可得x≤1,解不等式②可得x >-1在数轴上表示解集为:所以不等式组的解集为:-1<x≤1.【点睛】本题考查了解不等式组,熟练掌握计算法则是解题关键.24.(1)223a 5ab 3b -+-;(2)m m 2-. 【解析】【分析】 ()1根据多项式乘多项式、完全平方公式展开,然后再合并同类项即可;()2括号内先通分进行分式的减法运算,然后再进行分式的除法运算即可.【详解】()()()21a b a 2b (2a b)-+--=2222a 2ab ab 2b 4a 4ab b +---+-223a 5ab 3b =-+-;(2)221m 4m 41m 1m m -+⎛⎫-÷ ⎪--⎝⎭=()2m m 1m 2m 1(m 2)--⋅-- m m 2=-. 【点睛】 本题考查了整式的混合运算、分式的混合运算,熟练掌握它们的运算法则是解题的关键. 25.(1)过点C 作CG ⊥AB 于G在Rt △ACG 中 ∵∠A =60°∴sin60°=∴……………1分在Rt △ABC 中 ∠ACB =90°∠ABC =30°∴AB=2 …………………………………………2分∴………3分(2)菱形………………………………………4分∵D是AB的中点∴AD=DB=CF=1在Rt△ABC中,CD是斜边中线∴CD=1……5分同理 BF=1 ∴CD=DB=BF=CF∴四边形CDBF是菱形…………………………6分(3)在Rt△ABE中∴……………………………7分过点D作DH⊥AE 垂足为H则△ADH∽△AEB ∴即∴ DH=……8分在Rt△DHE中sinα==…=…………………9分【解析】(1)根据平移的性质得到AD=BE,再结合两条平行线间的距离相等,则三角形ACD的面积等于三角形BEF的面积,所以要求的梯形的面积等于三角形ABC的面积.根据60度的直角三角形ABC中AC=1,即可求得BC的长,从而求得其面积;(2)根据直角三角形斜边上的中线等于斜边的一半和平移的性质,即可得到该四边形的四条边都相等,则它是一个菱形;(3)过D点作DH⊥AE于H,可以把要求的角构造到直角三角形中,根据三角形ADE的面积的不同计算方法,可以求得DH的长,进而求解.26.(1)y=5x+400.(2)乙.【解析】试题分析:(1)利用待定系数法即可解决问题;(2)绿化面积是1200平方米时,求出两家的费用即可判断;试题解析:(1)设y=kx+b,则有400100900bk b=⎧⎨+=⎩,解得5400kb=⎧⎨=⎩,∴y=5x+400.(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元,∵6300<6400∴选择乙公司的服务,每月的绿化养护费用较少.。