IGC氧气管道系统
- 格式:pdf
- 大小:727.42 KB
- 文档页数:77
氧气管道及附件安全技术1. 引言氧气是一种常用的工业气体,广泛应用于医疗、制造、化学工程等领域。
然而,由于氧气的特殊性质,其使用和处理过程中存在一定的安全风险。
本文将介绍氧气管道及附件的安全技术,帮助用户了解并正确操作氧气设备,以确保生产环境的安全。
2. 氧气管道的设计与安装氧气管道的设计与安装是确保氧气系统安全运行的重要步骤。
以下是一些相关的安全技术要点:2.1 管道材料的选择氧气在高压下具有较高的活性,容易与其他物质发生激烈的反应,因此在选择氧气管道材料时必须考虑其抗腐蚀性和耐高压性。
常用的材料包括不锈钢、铜和铜合金等。
2.2 管道布局及连接正确的管道布局可以减少管道的阻力和泄漏的可能性。
应避免管道的弯曲和拐角,并确保连接处的密封性。
同时,管道系统应进行严密的焊接和检查,以确保无任何缺陷。
2.3 防止管道冻结由于氧气在常温下为液态,氧气管道可能会冻结。
为防止管道冻结,可采取以下措施:加热管道、提高管道绝缘性能、定期排放水分等。
3. 氧气附件的安全操作氧气附件是连接在氧气管道上的设备,常见的有压力调节器、安全阀、流量计等。
这些附件的操作要求以及相关的安全技术如下:3.1 压力调节器压力调节器用于调节氧气管道内的压力。
在使用压力调节器时,应确保以下几点:先打开气瓶上的阀门,然后缓慢开启压力调节器上的阀门,同时确保调节器的压力表指示在正常范围内。
3.2 安全阀安全阀是一种用于防止氧气管道压力超过额定值的装置。
使用安全阀时,应确保阀门正常工作,阀门的开启压力符合设计要求,并定期检查安全阀的密封性能。
3.3 流量计流量计用于测量和控制氧气流量。
在使用流量计时,应遵循以下操作:先打开气瓶阀门,逐渐开启流量计阀门,使流量计指示在设定范围内,并注意流量计的阀门是否漏气。
4. 氧气设备的日常维护与检查为确保氧气设备的安全性能,必须进行定期的维护和检查。
以下是一些常见的维护和检查要点:4.1 氧气管道的排污定期排污可以有效清除管道内的杂质和水分,防止管道堵塞和腐蚀。
氧气管道标准氧气管道是一种用于输送氧气的系统,广泛应用于医院、工业生产和实验室等领域。
为确保氧气管道的安全运行,需要严格依据相关的标准进行设计、安装和维护。
本文将介绍一些与氧气管道相关的参考内容和标准。
1. GB 12136-2008《危险化学品安全管理规定》该标准是中国关于危险化学品安全管理的法定标准之一,其中包含了对氧气管道的相关规定。
根据该标准,氧气管道的设计、建设、使用和管理都必须符合相应的规范。
2. GB 50058-2014《建筑给水排水工程施工及验收规范》该标准是中国建筑给水排水工程施工和验收的规范,其中包括了氧气管道的设计和施工要求。
根据该标准,氧气管道的规划、布局、管道材料的选择、氧气管道设备的安装和测试等都有详细的规定。
3. NFPA 99《医疗设施氧气管道系统》该标准是美国医疗设施关于氧气管道系统设计和操作的指南。
它包含了氧气管道的设计、维护和操作的各个方面的要求,如氧气管道的布局、材料的选择、安全装置的使用等。
4. EN ISO 7396-1《医院气体拓扑系统.管道系统.分配用的设计、安装、测试、操作和维修》该标准是欧洲关于医院气体拓扑系统的规范,其中包括了关于氧气管道系统设计、安装、测试、操作和维修的要求。
该标准详细规定了氧气管道系统的布局、材料、安全性能、操作程序等。
5. ISO 7396-2《医院气体拓扑系统.安全气体管路用户用术语、设计、安装、验收和维修》该标准是国际标准化组织(ISO)发布的关于医院气体拓扑系统的规范,其中包含了氧气管道系统的设计和安装的要求。
根据该标准,氧气管道系统的设计和安装必须符合相关的安全要求,并且需要进行验收和维修。
6. CGA G-4.1《使用气体的标准》该标准由美国气体协会(CGA)发布,其中包含了使用气体过程中的安全规定和指导。
对于氧气管道来说,该标准提供了一些建议,如管道材料的选用、安装和维护的要求。
以上是一些与氧气管道相关的参考内容和标准。
IGCC简介.整体煤⽓联合循环(IGCC)简介1、IGCC的由来和含义整体煤⽓化联合循环(1GCC-Integrated Casification combined Cycle)发电系统,是将煤⽓化技术和⾼效的联合循环发电技术相结合的先进动⼒系统,发电效率⾼,环保性能好,是⼀种有⼴阔前景的洁净煤发电技术。
上世纪70年代初期由中东战争引发的⽯油危机以及不断恶化的环境污染问题,给世界带来巨⼤影响和冲击。
西⽅主要⼯业国家从经济发展和国家安全的战略⾓度考虑,推⾏能源多样化的政策,并⿎励发电⾏业燃料多样化。
根据对世界能源结构的分析,化⽯燃料中煤的储量⼤、价格低廉、供应稳定,但直接燃煤严重污染环境是⼀个不容忽视的问题。
因此,各国政府在考虑利⽤储量丰富的煤炭资源时,特别重视洁净煤技术的研究与开发⼯作。
各种形式的洁净煤发电技术经过⼏⼗年的努⼒得到了很⼤发展, 但从⼤型化和商业化发展来看,近期各国开发研究的重点主要放在IGCC上,投⼊⼈⼒物⼒最多,⼰建和在建的⽰范项⽬也占多数。
越来越多的实践证明:IGCC是最有发展前景的洁净煤发电技术。
美国、西欧、⽇本等国相继提出并推⾏洁净煤计划。
据统计,美国能源部⾃1986年开始实施洁净煤计划以来,经过长达9年,在5轮竞争性的论证后,⽬前共选中43个项⽬,项⽬投资超过70亿元,其中IGCC占的份额最⼤。
IGCC(Integrated Gasification Combined Cycle)整体煤⽓化联合循环,它的设计思想是:使煤在⾼压、⾼强度、⾼效率的⽓化炉中⽓化成为中热值煤⽓或低热值煤⽓,进⽽通过洗涤和脱硫处理,把煤⽓中的微尘、硫化物、碱⾦属等杂质清除⼲净,最后,把洁净的煤⽓输送到燃⽓-蒸汽联合循环中去燃烧做功。
2、IGCC的组成和⼯艺流程整体煤⽓化燃⽓⼀蒸汽联合循环(简称IGCC )是⼀种先进的⾼效低污染的清洁煤发电技术,是多种⾼新技术的合成,由⽓化、动⼒、脱硫、空分四个岛组成。
基本简介IGCC(Integrated Gasification Combined Cycle)即整体煤气化联合循环发电系统,是将煤气化技术和高效的联合循环相结合的先进动力系统。
IGCC由两部分组成,即煤的气化与净化部分和燃气──蒸汽联合循环发电部分。
第一部分的主要设备有气化炉、空分装置、煤气净化设备(包括硫的回收装置);第二部分的主要设备有燃气轮机发电系统、余热锅炉、蒸汽轮机发电系统。
IGCC的工艺过程如下:煤经气化成为中低热值煤气,经过净化,除去煤气中的硫化物、氮化物、粉尘等污染物,变为清洁的气体燃料,然后送入燃气轮机的燃烧室燃烧,加热气体工质以驱动燃气透平做功,燃气轮机排气进入余热锅炉加热给水,产生过热蒸汽驱动蒸汽轮机做功。
IGCCIGCC技术把洁净的煤气化技术与高效的燃气──蒸汽联合循环发电系统结合起来,既有高发电效率,又有极好的环保性能,是一种有发展前景的洁净煤发电技术。
在目前技术水平下,IGCC发电的净效率可达43%~45%,今后可望达到更高。
而污染物的排放量仅为常规燃煤电站的1/10,脱硫效率可达99%,二氧化硫排放在25mg/Nm3左右,远低于排放标准1200 mg/Nm3,氮氧化物排放只有常规电站的15%~20%,耗水只有常规电站的1/2~1/3,对于环境保护具有重大意义。
[1]编辑本段分类由图中可以看出IGCC整个系统大致可分为:煤的制备、煤的气化、热量的回收、煤气的净化和燃气轮机及蒸汽轮机发电几个部分。
可能采用的煤的气化炉有喷流床(entrained flow bed)、固定床(fixed bed)和流化床(fluidized bed)三种方案。
在整个IGCC的设备和系统中,燃气轮机、蒸汽轮机和余热锅炉的设备和系统均是已经商业化多年且十分成熟的产品,因此IGCC发电系统能够最终商业化的关键是煤的气化炉及煤气的净化系统。
具体来说,对IGCC气化炉及煤气的净化系统的要求是:a) 气化炉的产气率、煤气的热值和压力及温度等参数能满足设计的要求b) 气化炉有良好的负荷调节性能,能满足发电厂对负荷调节的要求c) 煤气的成分、净化程度等要能满足燃气轮机对负荷调节的要求d) 具有良好的煤种适应性e) 系统简单,设备可靠,易于操作,维修方便,具有电厂长期、安全可靠运行所要求的可用率f) 设备和系统的投资、运行成本低编辑本段喷流床气化炉喷流床是目前IGCC各示范工程中采用最多的一种气化炉。
氧气阀门的选型注意事项一、设计压力对氧气阀门材质的限制《氧气站设计规范》(GB 50030-2013 )中关于氧气阀门形式、材质和压力之间的要求如下:11.0.10 氧气管道的阀门应符合下列规定:1 设计压力大于0.1MPa的氧气管道上,不得采用闸阀;2 设计压力大于或等于1.0MPa且公称直径大于或等于150mm的氧气管道上的手动阀门,宜设旁通阀;3 设计压力大于1.0MPa,公称直径大于或等于150mm的氧气管道上经常操作的阀门,宜采用气动阀门;二、介质流速对氧气阀门材质的限制《氧气站设计规范》(GB 50030-2013 ) 中关于氧气阀门材质和流速之间的要求如下:11.0.8 氧气管道的管径应按下列条件计算确定:1 计算流量应采用该管系最低工作压力、最高工作温度时的实际流量;2 流速应为工作压力下的管内氧气实际流速,氧气管道内的最高流速不得超过表11.0.8的规定。
在氧气流体输送的过程中,氧气在管道系统中流动会发生改变,欧洲工业气体协会(EIGA)制定的标准IGC Doc 13/12E《Oxygen Pipeline and Piping Systems》中将氧气工况划分为“撞击场合”和“非撞击场合”。
同样在《深度冷冻法生产氧气及相关气体安全技术规程》(GB16912-2008)中也参考了EIGA的划分方式。
其定义:使氧气流动方向突然改变或产生旋涡的位置,从而引起氧气中夹带的颗粒对管壁的撞击,这样的位置称为“撞击场合”。
“撞击场合”容易发生激发能源,引起燃烧与爆炸,是危险场合,安全控制要求更加严格。
氧气阀门就是典型的“撞击场合”。
《氧气用阀门技术条件》(JB/T 12955-2016)中给出流速计算的方法:5.2.4 按使用管道的工况条件,应采取适当的措施控制阀门流道内的流速,流速应以阀门内实际截面积进行计算。
对于阀内结构有明显节流的阀门,应以相应开度时,阀前压力下的体积流率与节流口面积作为计算流速的依据,并据此选择阀门内件材质。