材料力学
- 格式:pdf
- 大小:684.04 KB
- 文档页数:37
一、基本概念1 材料力学的任务是:研究构件的强度、刚度、稳定性的问题,解决安全与经济的矛盾。
2 强度:构件抵抗破坏的能力。
3 刚度:构件抵抗变形的能力。
4 稳定性:构件保持初始直线平衡形式的能力。
5 连续均匀假设:构件内均匀地充满物质。
6 各项同性假设:各个方向力学性质相同。
7 内力:以某个截面为分界,构件一部分与另一部分的相互作用力。
8 截面法:计算内力的方法,共四个步骤:截、留、代、平。
9 应力:在某面积上,内力分布的集度(或单位面积的内力值)、单位Pa。
10 正应力:垂直于截面的应力(σ)11 剪应力:平行于截面的应力()12 弹性变形:去掉外力后,能够恢复的那部分变形。
13 塑性变形:去掉外力后,不能够恢复的那部分变形。
14 四种基本变形:拉伸或压缩、剪切、扭转、弯曲。
二、拉压变形15 当外力的作用线与构件轴线重合时产生拉压变形。
16 轴力:拉压变形时产生的内力。
17 计算某个截面上轴力的方法是:某个截面上轴力的大小等于该截面的一侧各个轴向外力的代数和,其中离开该截面的外力取正。
18 画轴力图的步骤是:①画水平线,为X轴,代表各截面位置;②以外力的作用点为界,将轴线分段;③计算各段上的轴力;④在水平线上画出对应的轴力值。
(包括正负和单位)19 平面假设:变形后横截面仍保持在一个平面上。
20 拉(压)时横截面的应力是正应力,σ=N/A21 斜截面上的正应力:σα=σcos²α22 斜截面上的切应力:α=σSin2α/223 胡克定律:杆件的变形时与其轴力和长度成正比,与其截面面积成反比,计算式△L=NL/EA(适用范围σ≤σp)24 胡克定律的微观表达式是σ=Eε。
25 弹性模量(E)代表材料抵抗变形的能力(单位Pa)。
26 应变:变形量与原长度的比值ε=△L/L(无单位),表示变形的程度。
27 泊松比(横向变形与轴向变形之比)μ=∣ε1/ε∣28 钢(塑)材拉伸试验的四个过程:比例阶段、屈服阶段、强化阶段、劲缩阶段。
材料力学专业材料力学是材料科学与工程中的一门重要学科,它研究材料的力学性能和材料的力学行为。
材料力学专业是材料科学与工程中的一个重要分支,它涉及材料的结构、性能和加工工艺等方面,对于材料的设计、制备和应用具有重要的意义。
在材料力学专业的学习中,学生需要掌握材料的基本力学性质,了解材料的力学行为,掌握材料的力学测试方法,以及掌握材料的力学性能评价方法等内容。
材料力学专业的学习内容主要包括材料的力学基础知识、材料的力学性能测试和评价、材料的力学行为分析、材料的力学性能设计等方面。
在力学基础知识方面,学生需要学习材料的力学性质、材料的应力应变关系、材料的弹性和塑性行为等内容。
在材料的力学性能测试和评价方面,学生需要学习材料的拉伸、压缩、弯曲、扭转等力学性能测试方法,以及材料的硬度、韧性、断裂韧性等力学性能评价方法。
在材料的力学行为分析方面,学生需要学习材料的应力分析、应变分析、应力应变分析等内容。
在材料的力学性能设计方面,学生需要学习材料的力学性能设计原则、材料的力学性能优化方法等内容。
材料力学专业的学习对于学生的综合能力有较高的要求,学生需要具备较强的数学基础和物理基础,具有较强的逻辑思维能力和分析问题的能力,具有较强的实验操作能力和实验数据处理能力,具有较强的工程实践能力和工程设计能力等。
在学习过程中,学生需要通过理论学习和实验实践相结合,培养自己的综合能力,为将来从事材料科学与工程相关领域的科研和工程实践做好准备。
总的来说,材料力学专业是材料科学与工程中的一个重要学科,它涉及材料的力学性能和力学行为等方面,对于材料的设计、制备和应用具有重要的意义。
在学习过程中,学生需要掌握材料的力学基础知识、了解材料的力学性能测试和评价方法、掌握材料的力学行为分析方法、掌握材料的力学性能设计方法等内容,培养自己的综合能力,为将来的工作做好准备。
希望学生能够在学习过程中努力学习,提高自己的综合能力,为将来的科研和工程实践做出积极的贡献。
(完整版)材料力学重点总结材料力学阶段总结一. 材料力学的一些基本概念 1. 材料力学的任务:解决安全可靠与经济适用的矛盾. 研究对象:杆件强度:抵抗破坏的能力 刚度:抵抗变形的能力稳定性:细长压杆不失稳。
2. 材料力学中的物性假设连续性:物体内部的各物理量可用连续函数表示。
均匀性:构件内各处的力学性能相同。
各向同性:物体内各方向力学性能相同。
3。
材力与理力的关系, 内力、应力、位移、变形、应变的概念材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。
内力:附加内力。
应指明作用位置、作用截面、作用方向、和符号规定。
应力:正应力、剪应力、一点处的应力。
应了解作用截面、作用位置(点)、作用方向、和符号规定。
正应力⎩⎨⎧拉应力压应力应变:反映杆件的变形程度⎩⎨⎧角应变线应变变形基本形式:拉伸或压缩、剪切、扭转、弯曲。
4. 物理关系、本构关系 虎克定律;剪切虎克定律:⎪⎩⎪⎨⎧==∆=Gr EA Pl l E τεσ夹角的变化。
剪切虎克定律:两线段——拉伸或压缩。
拉压虎克定律:线段的适用条件:应力~应变是线性关系:材料比例极限以内。
5。
材料的力学性能(拉压):一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:b s pσσσ、、,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。
拉压弹性模量E ,剪切弹性模量G ,泊松比v ,)(V EG +=126. 安全系数、 许用应力、工作应力、应力集中系数安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。
过小,使构件安全性下降;过大,浪费材料。
许用应力:极限应力除以安全系数.塑性材料[]ssn σσ=s σσ=0脆性材料[]bbn σσ=b σσ=07. 材料力学的研究方法1) 所用材料的力学性能:通过实验获得。
2) 对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用的未来状态。
3) 截面法:将内力转化成“外力”。
材料力学名词解释弹性模量。
弹性模量是材料的一种力学性能参数,它表示了材料在受力后的变形能力。
弹性模量越大,材料的刚度就越大,即在受力后材料的形变能力越小。
常见的弹性模量有静态弹性模量、剪切模量和体积模量等。
屈服强度。
屈服强度是材料在受力后开始产生塑性变形的临界点。
当材料受到足够大的外力作用时,会超过其屈服强度,从而产生塑性变形。
屈服强度是材料抗拉或抗压的能力的体现。
断裂韧性。
断裂韧性是材料抗断裂的能力。
它表示了材料在受到外力作用下能够抵抗破裂的能力。
断裂韧性越大,材料的抗破裂能力就越强。
蠕变。
蠕变是材料在高温和大应力条件下产生的一种缓慢变形现象。
在高温环境下,材料会逐渐发生形变,这种变形叫做蠕变。
蠕变会导致材料的性能下降,因此在高温环境下需要考虑蠕变对材料性能的影响。
疲劳强度。
疲劳强度是材料在受到交替或循环加载时能够承受的最大应力。
疲劳强度是材料在交替加载下抗疲劳破坏的能力的体现。
塑性变形。
塑性变形是材料在受力后产生的不可逆变形。
当材料受到足够大的外力作用时,会发生塑性变形,即材料的形状和尺寸会发生永久性的改变。
强度。
强度是材料抵抗外力破坏的能力。
它是材料在受力下能够承受的最大应力。
强度是材料力学性能中的重要参数,直接影响着材料的使用寿命和安全性。
延展性。
延展性是材料在受力后产生的变形能力。
它表示了材料在受力后能够发生多大程度的形变。
常见的延展性指标有断面收缩率和伸长率等。
韧性。
韧性是材料在受力下能够吸收能量的能力。
它是材料抵抗断裂的能力的体现。
韧性越大,材料的抗破裂能力就越强。
总结。
材料力学中的这些名词是描述材料力学性能的重要参数,它们直接影响着材料的使用范围和性能。
了解和掌握这些名词的含义,对于材料的选择、设计和使用具有重要的意义。
在实际工程中,需要根据具体的要求和条件选择合适的材料,以确保工程的安全可靠。
《材料力学》课程介绍一、课程简介《材料力学》是一门重要的工程学科,旨在研究材料在承受各种外力作用下的力学性能,以及如何通过合理的结构设计,保证材料的强度、刚度和稳定性。
本课程涵盖了材料力学的基本理论、实验方法和工程应用,是机械、土木、航空航天等工程领域的重要基础课程。
二、课程目标1. 掌握材料力学的基本概念和原理,包括应力、应变、强度、刚度、稳定性等;2. 学会应用基本力学原理分析和解决实际工程问题,包括结构设计、材料选择、工艺优化等;3. 了解现代实验技术和测试方法,如有限元分析、超声波检测等;4. 提高分析和解决问题的能力,为后续专业课程学习和实际工程应用打下基础。
三、课程内容1. 静力学部分:介绍外力、平衡方程、基本变形(拉伸、压缩、弯曲)、应力分析等;2. 材料力学部分:讲解材料的力学性能(强度、刚度、稳定性)、应力应变曲线、胡克定律、超静定问题等;3. 实验部分:学习实验设计、测试方法、数据处理和分析等,了解现代实验技术和测试方法的应用;4. 工程应用部分:结合实际工程案例,分析结构设计、材料选择、工艺优化等方面的力学问题。
四、教学方法本课程采用线上授课与线下实验相结合的方式,注重理论与实践的结合。
学生可以通过视频教程学习基本理论,通过实验操作和案例分析提高解决实际工程问题的能力。
教师会定期组织小组讨论和答疑解惑,帮助学生更好地理解和掌握课程内容。
五、学习资源1. 课程网站提供了丰富的教学资源,包括视频教程、课件、实验指导书等;2. 学生可以参考相关的工程手册和文献,了解材料力学的最新研究成果和应用进展;3. 教师会定期组织课外活动,如学术讲座、实践参观等,帮助学生拓展视野,增强学习兴趣。
六、考试与评估本课程的考试采用平时作业、实验报告、考试相结合的方式。
平时作业考察学生对基本概念和原理的掌握情况,实验报告评估学生实验操作和数据分析的能力,考试则是对学生综合运用知识解决实际工程问题的考核。
材料力学的基本概念
材料力学是一种研究材料承受外力的理论和实验结合的一门工程学科,是力学专业下的一个分支学科。
材料力学研究的内容包括:材料的机械性质、结构的力学参数、材料及其结构的强度和稳定性、受外力作用的断裂、疲劳、振动及其相关数学模型的分析等。
一、材料的机械性质。
材料机械性质是指材料本身的特性,它可以描
述材料在在力学作用下的变形特性和强度特性,其中包括材料的塑性性能、韧性特性及耐久性特性等,这些特性决定了材料和结构在受力作用下的行为。
二、结构的力学参数。
结构的力学参数是指结构系统的一些力学指标,它可以使用材料本身的物理性能、结构的几何形状、材料的实际表现等特
性来描述,例如接缝的连续性、材料的屈服强度和断裂强度的影响、接缝
结构的稳定性等,这些参数将确定结构对外力的响应。
三、材料及其结构的强度和稳定性。
材料及其结构的强度和稳定性是
指结构对外力的响应能力,这些参数将决定结构对外力的强度以及承受这
种外力的稳定性,它们包括材料的强度、结构的几何形状、结构的连续性
和材料的实际表现等方面的参数,其中材料的强度,特殊情况下,设计极
限可以达到材料的理论屈服点延长。
材料力学的基本知识与基本原理材料力学是研究材料在外力作用下的力学性能和力学行为的学科。
它是材料科学与工程中的重要基础学科,对于材料的设计、制备和应用具有重要意义。
本文将介绍材料力学的基本知识与基本原理,帮助读者更好地理解材料的力学性质。
一、材料力学的基本概念材料力学是研究材料在外力作用下的力学行为的学科,它主要包括静力学、动力学和弹性力学等内容。
静力学研究材料在力的作用下的平衡状态,动力学研究材料在力的作用下的运动状态,而弹性力学则研究材料在外力作用下的弹性变形。
二、材料力学的基本原理1. 牛顿第一定律牛顿第一定律也被称为惯性定律,它指出物体在没有外力作用下将保持静止或匀速直线运动。
在材料力学中,这一定律可以解释材料在没有外力作用下的静力平衡状态。
2. 牛顿第二定律牛顿第二定律是描述物体受力后的运动状态的定律,它表明物体所受合力与物体的加速度成正比。
在材料力学中,牛顿第二定律可以用来描述材料在外力作用下的运动状态,从而研究材料的力学性能。
3. 弹性力学原理弹性力学原理是研究材料在外力作用下的弹性变形的原理。
它基于胡克定律,即应力与应变成正比。
应力是单位面积上的力,应变是单位长度上的变形量。
弹性力学原理可以用来计算材料在外力作用下的应力和应变,从而研究材料的弹性性能。
4. 应力与应变的关系应力与应变的关系是材料力学中的重要内容,它可以通过应力-应变曲线来描述。
应力-应变曲线是材料在外力作用下的应力和应变之间的关系曲线,它可以反映材料的力学性能和变形特性。
在应力-应变曲线中,通常有线弹性阶段、屈服阶段、塑性阶段和断裂阶段等不同的阶段。
5. 杨氏模量和泊松比杨氏模量和泊松比是材料力学中的两个重要参数。
杨氏模量是描述材料在拉伸或压缩时的刚度的参数,它越大表示材料越硬。
泊松比是描述材料在拉伸或压缩时的体积变化与形变的比值,它越小表示材料越不易变形。
三、材料力学的应用材料力学的研究成果广泛应用于材料科学与工程领域。
一、概述材料力学作为一门重要的工程学科,对材料的结构、性能和力学行为进行研究,对于工程设计、材料选取和加工工艺具有重要意义。
本篇文章将介绍2024 807材料力学的大纲,包括课程内容、教学目标和教学方法等方面。
二、课程内容1. 材料的基本性能:介绍材料的物理性质、化学性质和机械性能,包括硬度、强度、韧性等指标。
2. 材料的结构与组织:讲述材料的晶体结构、晶粒大小、相变和相图等内容,为后续的力学分析和性能预测提供基础。
3. 材料力学基础:包括受力分析、应力、应变、弹性力学、塑性力学等内容,为学生建立对材料力学的整体认识。
4. 材料的力学行为:介绍材料在外力作用下的力学响应,包括拉伸、压缩、扭转、弯曲等载荷条件下的受力情况。
5. 材料的破坏与损伤:讲解材料的疲劳、断裂、蠕变等破坏机制,帮助学生理解材料在长期使用中可能出现的问题。
三、教学目标1. 建立学生对材料力学基本概念的认识,包括应力、应变、弹性极限、屈服点等概念。
2. 培养学生运用材料力学知识进行工程实际问题分析与解决的能力,包括结构设计、材料选取和加工工艺等方面。
3. 培养学生的实验能力和数据处理能力,让学生能够进行材料性能测试和实验数据分析。
4. 培养学生的创新意识和团队合作能力,通过小组讨论和实践课程,激发学生对材料力学的兴趣和热情。
四、教学方法1. 经典案例分析:通过真实的工程案例,讲解材料力学在实际工程中的应用,激发学生的学习热情,并引导学生将理论知识应用到实际问题中。
2. 实验教学:设置相关的材料力学实验课程,让学生亲自操作设备,进行材料性能测试和数据采集,培养学生的实验能力和数据处理能力。
3. 课堂讨论:鼓励学生在课堂上提出问题和观点,进行案例讨论和知识共享,促进学生之间的思维碰撞和交流。
4. 作业和实践:设置各种形式的作业,包括理论题、实验报告、课程设计等,让学生在实践中巩固和应用所学知识。
五、总结2024 807材料力学大纲的目标是通过系统的课程设置和多种教学方法的组合,培养学生对材料力学的整体认识和工程实际问题分析解决的能力。
材料力学基本概念和公式材料力学是研究材料在受到外力作用下的变形和破坏行为的一门学科。
下面将简要介绍材料力学的基本概念和公式。
1.伸长量(ε):伸长量是材料在受到拉伸力作用下的长度变化与原始长度之比,可以表示为ε=ΔL/L0,其中ΔL是材料受力后的长度变化,L0是材料的原始长度。
2.弹性模量(E):弹性模量是材料表征其抵抗拉伸或压缩变形能力的物理量,定义为材料受应力作用下的应力与应变之比,可以表示为E=σ/ε,其中σ是材料受到的应力。
3.屈服强度(σy):屈服强度是材料在受力过程中产生塑性变形的应力阈值,物理上可以看作是材料从弹性到塑性变形的过程。
屈服强度可以表示为σy=Fy/A,其中Fy是材料引起塑性变形的应力,A是材料的横截面积。
4.断裂强度(σf):断裂强度是材料在受到应力作用下发生破坏的最大阈值,表示材料的抗拉抗压能力。
断裂强度可以表示为σf=Ff/A,其中Ff是材料破坏时受到的应力。
5. 牛顿第二定律(F = ma):材料力学中的牛顿第二定律与经典物理学中的类似,描述了材料在受到外力作用下的加速度与作用力之间的关系。
6.雪松方程(σ=Eε):雪松方程是描述线性弹性材料受力变形关系的基本公式,其中σ为材料受到的应力,E为弹性模量,ε为材料的应变。
7.线性弹性材料的胡克定律(σ=Eε):对于线弹性材料来说,应力和应变之间的关系可以遵循胡克定律。
即材料的应力是弹性模量和应变的乘积。
8.悬臂梁挠度公式(δ=(Fl^3)/(3EI)):悬臂梁的挠度可以通过公式计算,其中F为外力作用在梁上的力,l为悬臂梁的长度,E为横截面的弹性模量,I为横截面关于挠曲轴的转动惯量。
9.铰接梁挠度公式(δ=(Fl^3)/(48EI)):铰接梁的挠度可以通过公式计算,其中F为外力作用在梁上的力,l为铰接梁的长度,E为横截面的弹性模量,I为横截面关于挠曲轴的转动惯量。
10.压缩应力(σc):压缩应力是材料在受到压缩力作用下的应力,可以表示为σc=F/A,其中F为材料受到的压缩力。
材料力学公式完全版材料力学是研究材料内部力学性能的一门学科。
它是工程学中的一个重要分支,广泛应用于机械、土木、航空航天等领域。
在材料力学中,有一些重要的公式和方程式,下面是材料力学公式的完全版,共包含了应力、应变、变形、强度和刚度等方面的内容。
1.应力方面应力(σ):表示单位面积上的内力。
常用的单位是Pa(帕斯卡)。
σ=F/A其中,F为受力,A为受力面积。
2.应变方面线性弹性应变(ε):表示材料由于受力而发生的形变。
ε=ΔL/L其中,ΔL为长度变化,L为初始长度。
3.变形方面胀缩变形(ΔL):表示材料由于受热导致的体积变化。
ΔL=α×L×ΔT其中,α为热膨胀系数,ΔT为温度变化。
4.应力-应变关系钢材的Hooke定律:描述材料的线性弹性行为。
σ=E×ε其中,E为弹性模量。
5.弯曲方面梁的弯曲应变(ε):表示材料在弯曲时发生的形变。
ε=M/(E×I)其中,M为弯矩,E为弹性模量,I为截面转动惯量。
6.胀缩方面热膨胀(ΔL):表示材料在受热时的线膨胀。
ΔL=α×L×ΔT其中,α为热膨胀系数,L为初始长度,ΔT为温度变化。
7.强度方面拉伸强度(σt):表示材料在拉伸过程中能承受的最大应力。
σt=F/A其中,F为拉伸力,A为受力面积。
8.刚度方面弹性模量(E):表示材料在受力后发生弹性变形的能力。
E=σ/ε其中,σ为应力,ε为应变。
9.复合材料方面拉伸强度(σt):表示复合材料在拉伸过程中能承受的最大应力。
σt=F/A其中,F为拉伸力,A为受力面积。
10.断裂方面断裂强度(σf):表示材料在断裂前能承受的最大应力。
σf=F/A其中,F为断裂力,A为受力面积。
11.龙骨方面龙骨截面面积(A):表示材料的截面面积。
A=b×h其中,b为龙骨宽度,h为龙骨高度。
12.塑性方面屈服强度(σy):表示材料开始产生塑性变形的最大应力。
σy=F/A其中,F为受力,A为受力面积。
材料力学手册材料力学是研究材料在外力作用下的力学性能和变形规律的学科,是材料科学的重要组成部分。
材料力学的研究对象包括金属材料、非金属材料、复合材料等各种材料的结构、性能和变形规律。
本手册将介绍材料力学的基本原理、应力分析、应变分析、弹性力学、塑性力学、断裂力学等内容,帮助读者全面了解材料力学的基本知识和理论。
1. 材料力学基本原理。
材料力学的基本原理是研究材料在外力作用下的力学性能和变形规律。
材料的力学性能包括强度、韧性、硬度、塑性等指标,而变形规律则包括材料的拉伸、压缩、弯曲、扭转等变形形式。
了解材料力学的基本原理对于材料的设计、加工、应用具有重要意义。
2. 应力分析。
应力是材料在外力作用下的内部反抗力,是描述材料抵抗外力破坏的能力。
应力分析是研究材料在受力状态下的应力分布规律,包括正应力、剪应力、主应力、主应力方向等内容。
通过应力分析可以了解材料在受力状态下的强度和稳定性,为材料的设计和选用提供依据。
3. 应变分析。
应变是材料在外力作用下的形变量,是描述材料变形程度的指标。
应变分析是研究材料在受力状态下的应变分布规律,包括线性弹性应变、非线性塑性应变、剪切应变等内容。
通过应变分析可以了解材料在受力状态下的变形特点和变形规律,为材料的加工和成形提供依据。
4. 弹性力学。
弹性力学是研究材料在受力状态下的弹性变形规律,包括胡克定律、泊松比、杨氏模量等内容。
了解材料的弹性力学特性对于材料的设计和使用具有重要意义,可以预测材料在受力状态下的变形程度和变形形式。
5. 塑性力学。
塑性力学是研究材料在受力状态下的塑性变形规律,包括屈服点、应力应变曲线、硬化规律等内容。
了解材料的塑性力学特性对于材料的加工和成形具有重要意义,可以预测材料在受力状态下的变形特点和变形规律。
6. 断裂力学。
断裂力学是研究材料在受力状态下的断裂规律,包括断裂韧性、断裂强度、断裂形式等内容。
了解材料的断裂力学特性对于材料的设计和安全具有重要意义,可以预测材料在受力状态下的断裂特点和断裂规律。