测井解释与岩石力学
- 格式:ppt
- 大小:184.50 KB
- 文档页数:18
岩石压力波速度测试方法与分析岩石是地球上最基本的构成成分之一,其性质与行为直接影响到地质工程、地震学和石油勘探等领域。
压力波速度是岩石力学研究中重要的参数之一,它能够揭示岩石的变形、破裂和应力状态,并为岩石工程设计和实际施工提供重要参考。
本文将介绍一些常见的岩石压力波速度测试方法,并对其测试结果进行分析。
一、动态弹性参数测试方法1. 声波测井法声波测井法是一种通过测量井中岩石传播声波的速度来揭示岩石性质和结构的方法。
在实际应用中,声波测井设备通过发射声波信号,并记录其传播时间以及到达接收器的信号强度。
根据测量的数据,可以计算出岩石的纵波速度和横波速度,从而推断岩石的力学性质。
2. 超声波检测法超声波检测法是一种利用超声波在岩石中的传播速度来测定岩石性质的方法。
通过在岩石表面或孔洞中放置超声波传感器,并发射高频信号,测量其传播时间和到达接收器的信号强度。
根据测量数据,可以计算出岩石的压力波速度和剪切波速度。
二、静态弹性参数测试方法1. 声速仪测试法声速仪测试法是一种通过测量岩石中声波的传播速度来推断其力学性质的方法。
该测试方法适用于岩石试样,通过固体声波仪器向试样表面或孔洞中发射声波信号,并记录声波波形。
通过计算相位变化,可以得到岩石的纵波速度和横波速度。
2. 拉伸试验法拉伸试验法是一种通过施加拉伸力来测定岩石的弹性模量和压缩强度的方法。
在该方法中,通过施加恒定应变速率的拉伸力,测量岩石试样的应力-应变关系。
通过分析应力-应变曲线,可以得到岩石的压力波速度。
三、岩石压力波速度的分析1. 岩石组分分析岩石的压力波速度与其组分密切相关。
根据各组分的密度和声波传播速度,可以推算出岩石的压力波速度。
例如,石英和长石等硅酸盐矿物对声波的传播起到重要作用,而成分中含量较高的非均质物质则会对声波传播速度产生较大影响。
2. 岩石孔隙率分析岩石中的孔隙率是影响其压力波速度的重要参数之一。
孔隙率越高,岩石内部的孔隙体积越大,并且会导致声波的传播速度降低。
一、名词解释1.测井: 油气田地球物理测井, 简称测井well logging , 是应用物理方法研究油气田钻井地质剖面和井的技术状况, 寻找油气层并监测油气层开发的一门应用技术。
2.电法测井: 是指以研究岩石及其孔隙流体的导电性、电化学性质及介电性为基础的一大类测井方法, 包括以测量岩层电化学特性、导电特性和介电特性为基础的三小类测井方法。
3.声波测井: 是通过研究声波在井下岩层和介质中的传播特性, 来了解岩层的地质特性和井的技术状况的一类测井方法。
4.核测井: 是根据岩石及其孔隙流体的核物理性质, 研究钻井地质剖面, 勘探石油、天然气、煤以及铀等有用矿藏的地球物理方法, 是地球物理测井的重要组成部分。
5、储集层:在石油工业中, 储集层是指具有一定孔隙性和渗透性的岩层。
例如油气水层。
6.高侵: 当地层孔隙中原来含有的流体电阻率较低时, 电阻率较高的钻井液滤液侵入后, 侵入带岩石电阻率升高, 这种钻井液滤液侵入称为钻井液高侵, RXO<Rt多出现在水层。
7、低侵:当地层孔隙中原来含有的流体电阻率比渗入地层的钻井液滤液电阻率高时, 钻井液滤液侵入后, 侵入带岩石电阻率降低, 这种钻井液滤液侵入称为钻井液低侵, 一般多出现在地层水矿化度不很高的油气层8、水淹层: 在油气田的勘探开发后期因注水或地下水动力条件的变化, 油层发生水淹, 称为水淹层, 此时其含水饱和度上升、与原始状态不一致, 在SP、TDT和电阻率等曲线上有明显反映。
9、周波跳跃(Travel time cycle Skip): 因破碎带、地层发育裂缝、地层含气等引起声波时差测井曲线上反映为时差值周期性跳波增大现象。
10、中子寿命测井: 是一种特别适用于高矿化度地层水油田并且不受套管、油管限制的测井方法, 它通过获得地层中热中子的寿命和宏观俘获截面来研究地层及孔隙流体性质, 常用于套管井中划分油水层、计算地层剩余油饱和度、评价注水效率及油层水淹状况、研究水淹层封堵效果, 为调整生产措施和二、三次采油提供重要依据, 是油田开发中后期的主要测井方法之一。
地球物理测井的基本概念定义简称测井,是在钻孔中使用测量电、声、热、放射性等物理性质的仪器,以辨别地下岩石和流体性质的方法,是勘探和开发油气田的重要手段。
任务在石油的勘探和开发阶段,需要对所钻井眼的垂直剖面进行地球物理测井:划分井剖面的岩性、准确地确定各种不同地质年代的泥岩、砂岩、石灰岩、白云岩的埋藏深度,进而判断有渗透性的含油、气、水的储集层的位置,然后估算储集层的孔隙度、渗透率、含油气饱和度等参数,为探明含油、气层的井下形态,计算储量及制定油气层开采技术措施,提供资料和数据。
测井能够测量的一些性质1)岩石的电子密度(岩石重量的函数);2)岩石的声波传播时间(岩石的压缩技术的函数);3)井眼不同距离处岩石的电阻率(岩石含水量的函数);4)中子吸收率(岩石含氢量的函数);5)岩石或井液界面的自然电位(在岩石或井眼中水的函数);6)在岩石中钻的井眼大小;7)井眼中流体流量与密度;8)与岩石或井眼环境有关的其它性质。
测井方法按研究的物理性质分类电法测井(electrical logging):也称电阻率测井,是在钻孔中采用布置在不同部位的供电电极和测量电极来测定岩石(包括其中的流体)电阻率的方法。
通常所用的三电阻率测井系列是:深侧向、浅侧向和微侧向电阻率测井。
声波测井(acoustic logging):包括声速测井和声幅测井两种方法。
声速测井是利用不同的岩石和流体对声波传播速度不同的特性进行的一种测井方法。
通过在井中放置发射探头和接收探头,记录声波从发射探头经地层传播到接收探头的时间差值,所以声速测井也叫时差测井。
用时差测井曲线可以求出储集层的孔隙度,相应地辨别岩性,特别是易于识别含气的储集层。
声幅测井放射性测井(radioactivel logging):放射性测井即是在钻孔中测量放射性的方法,一般有两大类:中子测井与自然伽马测井。
中子测井是用中子源向地层中发射连续的快中子流,这些中子与地层中的原子核碰撞而损失一部分能量,用深测器(计数器)测定这些能量用以计算地层的孔隙度并辨别其中流体性质。
石油勘探中的岩石物理技术石油是现代社会发展中不可或缺的能源,而石油勘探则是提取这一重要资源的关键步骤。
岩石物理技术在石油勘探过程中起着至关重要的作用。
本文将探讨岩石物理技术在石油勘探中的应用与意义。
岩石物理技术是一种基于地球物理学和岩石力学原理的技术,通过相关的测量和分析手段,以获取关于井口附近地层性质的信息。
这些信息对于判断石油藏区域的储层状况以及油气的分布情况至关重要。
岩石物理技术主要包括测井和地震勘探两大方面。
测井是在井下进行的一项技术,通过测量油井中不同深度的各项物理参数来判断地层的性质。
最常用的测井技术包括测井电阻率测量、自然伽马射线测量、声波测量以及密度测量等。
这些测井数据可以提供油气藏的储集层孔隙度、渗透率、岩性、含油气饱和度等关键参数。
通过对这些参数的评估,勘探人员能够对潜在油气藏的规模和质量进行初步判断,从而为后续工作提供重要参考。
而地震勘探是一种通过分析地震波在地下介质中传播和反射的特性来判断地下结构的技术。
地震勘探技术主要包括震源激发、接收地震波以及对地震数据的处理与解释等环节。
通过分析地震波在地下岩石中传播时所遇到的不同介质的反射、折射和散射等现象,可以推断出地下岩石的分布、类型、裂缝、孔隙度等重要信息。
地震勘探在判断石油藏区的边界、构造、油气运移通道等方面具有重要意义。
岩石物理技术的应用使得石油勘探能够更加准确地判断潜在油气藏的储量和质量。
通过测井和地震勘探技术,勘探人员可以获得地层的物理特征参数,如波速、电阻率、密度等,并结合岩性解释,以获取地层的渗透率、孔隙度和饱和度等关键信息。
这些信息对于评估油田的可开发性和经济性非常重要,为石油企业做出决策提供了可靠的科学依据。
岩石物理技术的发展也为石油勘探带来了更多的机遇。
随着技术的进步,岩石物理技术已经从传统的二维地震勘探发展到了三维地震勘探,为石油藏的细致勘探提供了重要手段。
同时,岩石物理技术在非常规油气资源的勘探开发中也发挥着重要作用。
测井曲线岩石力学参数1. 什么是测井曲线?测井曲线是石油勘探中常用的一种工具。
通过测量地下岩层在电、声、密度、自然伽玛等物理性质上的不同,可以获得地层的结构、组成和性质等信息。
测井曲线是测井技术的结果,具有广泛的应用价值。
2. 测井曲线的种类根据测量的物理量不同,测井曲线分为电测井曲线、声测井曲线、密度测井曲线、自然伽玛测井曲线等。
其中,电测井可以测量地下岩层的电阻率、自然电位和电导率等信息;声测井可以获得井壁反射系数、声波传播速度等信息;密度测井主要测量井内岩层的密度和孔隙度等信息;自然伽玛测井主要测量岩层放射性元素的活度浓度等信息。
3. 测井曲线与岩石力学参数岩石力学参数是描述地层和岩石在外力作用下变形和破裂的性质参数。
这些参数包括岩石的弹性模量、泊松比、抗压强度、抗拉强度、抗剪强度等。
测井曲线中包含的物理量与岩石力学参数之间有密切的关系,因此可以通过分析测井曲线来获得岩石力学参数的信息。
以电测井曲线为例,电阻率与岩石的孔隙度、孔隙结构、岩石组成、地下流体类型和含量等因素有关,孔隙度越大、孔隙结构越复杂、地下流体含量越高,电阻率越低。
而弹性模量与泊松比等力学参数又与电阻率有一定的关系,因此可以通过电测井曲线反演出地下岩石力学参数的信息。
4. 测井曲线在勘探中的应用测井曲线在油气勘探中有着广泛的应用。
首先,测井曲线可以帮助勘探人员了解地下岩层的结构、组成和性质,为勘探方案设计提供重要参考。
其次,测井曲线可以辅助石油工程师地进行井筒完整性评估和油层产能分析,提高油气生产效率。
此外,测井曲线还可以用于岩石工程、地质灾害预测和地质勘探中,具有广泛的应用前景。
5. 测井曲线的未来发展近年来,测井技术不断发展,新的测井曲线也不断涌现。
随着计算机技术和数据处理技术的发展,测井曲线数据处理和解释的精度也将不断提高。
此外,人工智能等新技术的应用也将给测井曲线的分析和解释带来新的可能性。
可以预见,随着技术的不断进步,测井曲线的应用范围和功能将会不断拓展,为石油勘探和生产提供更精准、高效的技术支撑。
测井基础知识概述1. 引言测井是指在钻井过程中利用各种测量方法和设备来获取地层信息的技术手段。
通过测井可以获取地层中的物理、化学和工程性质的参数,对地层进行评价和分析,从而为油气勘探和开发提供重要的参考依据。
本文将概述测井的基础知识,包括测井的意义、测井方法和设备、测井参数解释等内容。
2. 测井的意义测井作为一种获取地层信息的重要手段,具有以下几个方面的意义:2.1. 地层评价通过测井可以获取地层中的物理、化学和工程性质的参数,如孔隙度、渗透率、饱和度等,从而评价地层的含油气能力、储层性质等。
这对于油气勘探和开发来说至关重要,可以指导油气田的选址和开发方案的制定。
2.2. 钻井工艺控制在钻井过程中,测井可以提供有关井眼稳定性、岩石力学性质、井壁质量等信息,指导钻井工艺的控制和井壁的完整性保护,减少钻井事故的发生。
2.3. 油藏管理测井还可以为油气田的开发和管理提供重要的数据支持,如油藏压力分布、水驱效果、油藏动态变化等。
这些数据可以帮助油田管理人员了解油田的生产状况,做出相应的调整和决策。
3. 测井方法和设备测井方法是指测井的具体操作方法,而测井设备是指用于测量的仪器和工具。
常用的测井方法和设备包括:3.1. 电测井电测井是利用测井仪器在井中测量电性参数来获得地层信息的方法。
常用的电测井设备包括电阻率测井、自然电位测井和电导率测井等。
3.2. 孔隙度测井孔隙度测井是利用测井仪器测量地层中的孔隙体积的方法。
常用的孔隙度测井设备包括密度测井和中子测井等。
3.3. 岩性测井岩性测井是通过测井仪器来测量地层岩石的物理性质和组成,从而判断岩石的类型和性质的方法。
常用的岩性测井设备包括声波测井和伽马射线测井等。
3.4. 流体识别测井流体识别测井是用于判断油气层位和识别流体类型的方法。
常用的流体识别测井设备包括声波测井、密度测井和中子测井等。
4. 测井参数解释测井仪器测得的数据需要经过解释和分析,才能得到有意义的地层信息。
地球物理勘探专业软件应用设计和岩石物理实验报告第一部分 常用的地球物理测井解释软件介绍目前国内外用于测井资料处理和解释的软件有很多,比较有影响的测井资料处理和解释软件主要有国外斯伦贝谢公司的GeoFrame、阿特拉斯公司的eXpress、哈里伯顿公司的DPP、以色列帕拉代姆(Paradipm)公司的GeoLog,国内的中石油天然气集团公司勘探部测井软件项目组和中国石油大学(北京)石油勘探数据中心联合研发的Forward、中石油天然气集团公司开发的LEAD,以及最新的由中国石油勘探开发研究院和中油测井公司联合开发的一体化网络测井解释软件平台CIFlog。
下面我将系统地介绍GeoFrame、eXpress、Geolog、Forword 和LEAD的主要特点及功能。
一、GeoFrame测井解释处理系统:测井资料评价系统 GeoFrame包括 P包(岩石物理软件包)、 G包(井眼微地质学软件包)、Geology Office(地质办公室), 能够开展单井测井资料精细分析与多井评价、测井岩相分析、成像测井资料的处理分析、油藏剖面制作等测井解释与地质评价研究。
由于计算机软件的提升,测井评价技术从传统的储层参数分析领域己发展到现代油气藏综合评价阶段。
GeoFrame是斯伦贝谢 GeoQuest处理中心的项目数据库及地学软件平台,它综合集成地球物理、 岩石物理和地质资料为石油勘探和开发中遇到的问题提供了一套完整的解决方法。
岩石物理工程师综合运用这些软件能完成以下主要任务: GeoFrame Unix环境下的项目数据库管理;岩石物理处理与分析;井眼地质(倾角与成像)资料处理与分析; 地质资料综合分析;沉积相与沉积环境(井眼附近 )分析; 软件开发工具及常用辅助。
GeoFrame包括岩石物理分析软件包(P包)和井眼地质处理与解释软件包(G包)。
其中,岩石物理分析软件包(P包)主要包括以下一些功能:(1)最优化测井解释分析,可完成单井、多井的特殊复杂岩性、空隙、流体类型的分析和体积计算;(2)交会图和统计直方图分析;(3)曲线环境校正;(4)基于裸眼井测井数据、倾角、成像数据和岩心分析资料的单井、多井岩性、岩相分析;(5)储层参数分析统计及储层厚度的计算;(6)曲线的函数计算、深度匹配归位校正、成像曲线编辑、岩心曲线编辑;(7)岩石机械特性参数、强度分析;(8)各种测井图件的编辑、绘制;(9)井眼设备的描述、绘制。
测井解释本文将详细介绍测井解释的四个主要方面:地质分析、地球物理测井、地球化学测井和工程测井。
1.地质分析地质分析是测井解释的基础,主要包括地层对比、地层年龄、地层温度和地层压力等方面的分析。
地层对比主要是根据地层的岩性、电性和声波等特征,对不同地层进行对比和划分。
地层年龄分析主要是利用放射性同位素测定地层的年龄,以确定地层的形成时间和演化过程。
地层温度分析可以通过测量地层的热流或地温梯度来确定地层的温度,进而推断出地层的埋藏深度和岩石热性质。
地层压力分析则是通过测量地层的压力系数或梯度来确定地层的压力状态,以评估地层的稳定性和潜在的工程风险。
2.地球物理测井地球物理测井是通过测量地球物理参数来推断地层特性的方法。
在测井解释中,常用的地球物理测井方法包括电阻率测井、自然电位测井、孔隙度测井和渗透率测井等。
电阻率测井是通过测量地层的电阻率来判断地层的导电性能,进而推断出地层的岩性和孔隙度。
自然电位测井是通过测量地层的自然电位来推断地层的沉积环境和有机质含量。
孔隙度测井是通过测量地层的声波速度和衰减系数等参数,计算出地层的孔隙度,以评估地层的储油气能力。
渗透率测井则是通过测量地层的渗透率来判断地层的流体流动能力和储油气的渗透性。
3.地球化学测井地球化学测井是通过测量地层中的化学成分来推断地层特性的方法。
在测井解释中,常用的地球化学测井方法包括卤素测井、硫化氢测井、二氧化碳测井和氧测井等。
卤素测井是通过测量地层中氯、溴和碘等元素的含量,推断出地层的含盐度和蒸发岩的分布。
硫化氢测井是通过测量地层中硫化氢的含量,判断出地层中有机质的成熟度和储油气能力。
二氧化碳测井是通过测量地层中二氧化碳的含量,推断出地层的碳储存量和地质构造。
氧测井则是通过测量地层中氧的含量,判断出地层的氧化还原环境和有机质的演化程度。
4.工程测井工程测井是通过测量钻孔和井筒的几何参数和物理参数来评估地质钻探工程的施工质量和岩石力学性质的方法。
测井资料在油气勘探开发中的应用:1。
地层评价以单井裸眼井地层评价形式完成,包括两个层次:(1)单井油气解释:对单井作初步解释与油气分析,划分岩性与储集层,确定油、气、水层及油水分界面,初步估算油气层的产能,尽快为随后的完井与射孔决策提供依据。
(2)储集层精细描述:对储集层的精细描述与油气评价,主要内容有岩性分析,计算地层泥质含量和主要矿物成分;计算储集层参数(孔隙度、渗透率、含油气饱和度和含水饱和度、已开发油层(水淹层)的剩余油饱和度和残余油饱和度,油气层有效厚度等)等,综合评价油、气层及其产能,为油气储量计算提供可靠的基础数据。
2。
油藏静态描述与综合地质研究以多井测井评价形式完成。
以油气藏评价为目标,将多井测井资料同地质、地震、开发等资料结合,做综合分析评价。
提高了对油气藏的三维描述能力,重现了储集体的时空分布原貌与模拟。
主要内容有:进行测井、地质、地震等资料相互深度匹配与刻度进行地层和油气层的对比研究地层的岩性、储集性、含油气性等在纵、横向的变化规律研究地区地质构造、断层和沉积相以及生、储、盖层研究地下储集体几何形态与储集参数的空间分布研究油气藏和油气水布规律计算油气储量,为制定油田开发方案提供详实基础地质参数3。
油井检测与油藏动态描述在油气田开发过程中:a。
研究产层的静态和动态参数(包括孔隙度、渗透率、温度、压力、流赌量、油气饱和度、油气水比等)的变化规律;b。
确定油气层的水淹级别及剩余油气分布;c.确定生产井产液剖面和吸水剖面及它们随时间的变化情况;d.监测产层油水运动及水淹状况及其采出程度;确定挖潜部位、对油气藏进行动态描述、为单井动态模拟和全油田的油藏模拟提供基础数据,以制定最优开发调整方案、达到最大限度地提高最终采收率的目的。
4.钻井采油工程(1)在钻井工程中测量井眼的井斜、方位和井径等几何形态的变化估算地层的孔隙流体压力和岩石的破裂压力、压裂梯度确定下套管的深度和水泥上返高度检查固井质量确定井下落物位置等(2)在采油工程中进行油气井射孔检查射孔质量、酸化和压裂效果确定出水、出砂和串槽层以及压力枯竭层位等等。
岩石裂隙数量大小及连通性的测试方法在地质勘探和石油勘探领域中,岩石裂隙数量、大小及连通性的测试方法是非常重要的。
准确了解岩石的裂隙特征可以帮助地质学家和工程师评估地下储层的性质和可行性。
本文将介绍一些常用的测试方法,以及它们在测量岩石裂隙数量、大小及连通性方面的应用。
一、核磁共振断层扫描(NMR)核磁共振断层扫描(NMR)是一种常用于测量岩石裂隙数量和大小的无损测试方法。
该方法利用物质中的原子核在磁场中的特性,通过对核磁共振信号的分析来确定岩石中裂隙的数量和大小。
使用NMR可以获取裂隙的三维空间分布和大小分布,从而获得岩石的裂隙连通性信息。
二、声波测井声波测井是一种常用的岩石裂隙连通性测试方法。
该方法利用声波在岩石中传播的特性,通过对声波在岩石中的传播速度和衰减程度的测量来推断岩石中的裂隙连通性。
声波测井可以提供关于岩石裂隙的信息,例如裂隙的面积、长度和间距,从而帮助评估储层的渗透性和储存能力。
三、电法测井电法测井是一种常用于测量岩石裂隙连通性的方法。
该方法利用电流在岩石中的传播特性,通过测量电阻率或电导率的变化来推断岩石中的裂隙连通性。
电法测井可以提供有关裂隙数量和大小的信息,帮助地质学家更好地了解储层的粒度、孔隙度和渗透性。
四、岩石力学试验岩石力学试验是一种用于测试岩石裂隙数量、大小及连通性的常用方法。
该方法通过对岩石样本进行拉伸、剪切或压缩等力学试验来测量岩石的力学性质,并推断岩石裂隙的数量和大小。
岩石力学试验可以提供关于岩石裂隙连通性的信息,例如裂隙的开度、排列方式和连通性程度,对于评估岩石的稳定性和渗透性具有重要意义。
综上所述,岩石裂隙数量、大小及连通性的测试方法对于地质勘探和石油勘探具有重要意义。
核磁共振断层扫描、声波测井、电法测井和岩石力学试验等方法在测量岩石裂隙特征方面具有独特的优势,可以提供关于裂隙数量、大小及连通性的准确信息。
地质学家和工程师可以根据这些测试结果评估地下储层的性质、可行性以及在石油勘探和开采过程中的实际应用。