同济高等数学第一章第六节课件
- 格式:ppt
- 大小:463.50 KB
- 文档页数:14
第一章函数与极限(考研必考章节,其中求极限是本章最重要的内容,要掌握求极限的集中方法)第一节映射与函数(一般章节)一、集合(不用看)二、映射(不用看)三、函数(了解)注:P1——5 集合部分只需简单了解P5—-7不用看P7-—17 重点看一下函数的四大性态:单调、奇偶、周期、有界P17-—20 不用看P21 习题1.11、2、3大题均不用做4大题只需做(3)(5)(7)(8)5--9 均做10大题只需做(4)(5)(6)11大题只需做(3)(4)(5)12大题只需做(2)(4)(6)13做14不用做15、16重点做17--20应用题均不用做第二节数列的极限(一般章节本章用极限定义证的题目考纲不作要求,可不看)一、数列极限的定义(了解)二、收敛极限的性质(了解)P26--28 例1、2、3均不用证p28——29 定理1、2、3的证明不用自己证但要会理解P30 定理4不用看P30——31 习题1-21大题只需做(4)(6)(8)2—-6均不用做第三节(一般章节)(标题不再写了对应同济六版教材标题)一、(了解)二、(了解)P33—-34 例1、2、3、4、5只需大概了解即可P35 例6 要会做例7 不用做P36—-37 定理2、3证明不用看定理3’4" 完全不用看p37习题1—-31-—4 均做5-—12 均不用做第四节 (重要)一、无穷小(重要)二、无穷大(了解)p40 例2不用做 p41 定理2不用证p42习题1-—41做 2—-5 不全做 6 做 7--8 不用做第五节(注意运算法则的前提条件是各自存在)p43 定理1、2的证明要理解p44推论1、2、3的证明不用看p48 定理6的证明不用看p49 习题1—-51题只需做(3)(6)(7)(8)(10)(11)(13)(14)2、3要做4、5重点做6不做第六节极限存在准则(重要)两个重要极限(重要两个重要极限要会证明p50 准则1的证明要理解p51 重要极限一定要会独立证明(经典重要极限)p53另一个重要极限的证明可以不用看p55-—56柯西极限存在准则不用看p56习题1--71大题只做(1)(4)(6)2全做3不用做4全做,其中(2)(3)(5)重点做第七节(重要)p58—-59 定理1、2的证明要理解p59 习题1——7 全做第八节(基本必考小题)p60--64 要重点看第八节基本必出考题p64 习题1-—81、2、3、4、5要做其中4、5要重点做6--8不用做第九节(了解)p66——67 定理3、4的证明均不用看p69 习题1--91、2要做3大题只做(3)--(6)4大题只做(4)—-(6)5、6均要重点做第十节(重要,不单独考大题,但考大题会用到)一、(重要) 二、(重要)p72三、一致连续性(不用看)p74习题1——101、2、3、5要做,要会用5的结论。
第一章二、收敛数列的性质三、极限存在准则一、数列极限的定义第二节数列的极限∞第一章一、自变量趋于有限值时函数的极限第三节,)(x f y =对0)1(x x →+→0)2(x x -→0)3(x x ∞→x )4(+∞→x )5(-∞→x )6(自变量变化过程的六种形式:二、自变量趋于无穷大时函数的极限本节内容:函数的极限x 0定理2 .若在0x 的某去心邻域内0)(≥x f )0)((≤x f , 且,)(lim 0A x f x x =→则.0≥A )0(≤A 证:用反证法.则由定理1,0x 的某去心邻域,使在该邻域内,0)(<x f 与已知所以假设不真, .0≥A (同样可证0)(≤x f 的情形)思考:若定理2 中的条件改为,0)(>x f 是否必有?0>A 不能!lim 2=→x x 存在如假设A < 0, 条件矛盾,故时,当0)(≥x fyX-xX直线y= A为曲线的水平渐近线.第一章二、无穷大三、无穷小与无穷大的关系一、无穷小第四节无穷小与无穷大第一章二、极限的四则运算法则三、复合函数的极限运算法则一、无穷小运算法则第五节极限运算法则二、极限的四则运算法则,)(lim ,)(lim B x g A x f ==则有=±)]()(lim[x g x f )(lim )(lim x g x f ±证: 因,)(lim ,)(lim B x g A x f ==则有βα+=+=B x g A x f )(,)((其中βα,为无穷小)于是)()()()(βα+±+=±B A x g x f )()(βα±+±=B A 由定理1 可知βα±也是无穷小,再利用极限与无穷小BA ±=的关系定理, 知定理结论成立.定理3 .若推论:若,)(lim ,)(lim B x g A x f ==且),()(x g x f ≥则.B A ≥( P46 定理5 ))()()(x g x f x -=ϕ利用保号性定理证明.说明:定理3 可推广到有限个函数相加、减的情形.提示:令定理4. 若,)(lim ,)(lim B x g A x f ==则有=)]()(lim[x g x f )(lim )(lim x g x f 提示:利用极限与无穷小关系定理及本节定理2 证明.说明:定理4 可推广到有限个函数相乘的情形.推论1 .)(lim )](lim[x f C x f C =( C 为常数)推论2 .nnx f x f ])(lim [)](lim[=( n 为正整数)例2.设n 次多项式,)(10nn n x a x a a x P +++= 试证).()(lim 00x P x P n n x x =→证:=→)(lim 0x P n x x 0a x a x x 0lim 1→+++ nx x n xa 0lim →)(0x P n =BA =。