第六章 格林函数法
- 格式:ppt
- 大小:1.82 MB
- 文档页数:5
格林函数方法
1、格林函数
格林函数(Green's function)是指由著名数学家.格林(Green)提出的数学方法,它是一种可以求解各种微分方程的技术。
格林函数的定义是对于任意给定的初值问题,在区间上的解的和等于给定的数值13。
其用法主要有两种:一种是用于求解某些有定型的初值问题;另一种是求解某些微分方程的积分解。
格林函数的结果可以用来解决复杂的初值问题和理解复杂的微分方程以及系统的时间变化。
2、格林函数的原理
格林函数可以用来解决一类有特定初值条件的常微分方程组。
它的原理是基于一种叫做拉普拉斯变换(Laplacetransform)的数学变换理论,它是一种将微分方程组变换成求积分方程组的方法,从而可以使原本困难的初值问题变得容易解决,其在解决物理学中不变解中特别有用。
3、格林函数的计算
对于特定的初值条件,可以使用格林函数计算出拉普拉斯变换得到的积分方程的结果,从而计算得到解析解。
计算过程比较复杂,需要用到积分变换和methods。
总之,格林函数是一种可以求解复杂常微分方程的有效数学方法,它基于拉普拉斯变换的原理,对于特定的初值问题,运用格林函数,可以计算出相应的解析解。
格林函数法
若L 一个带平滑系数的线性微分算子,当求解形如()L u f =的微分方程时,若对于任意的向量y 都存在广义函数()G x,y ,使得
[]()()L G δ=x x,y x-y
(此处下标x 表示L 作用于()G x,y 时将其当做以x 为自变量的广义函数,而y 为参数) 若再令
()()()d u G f =⎰x x,y y y
将上式代入()L u f =则有
[]()()d ()()d ()()d ()L G f L G f f f δ⎡⎤===⎣⎦
⎰⎰⎰x x,y y y x,y y y x -y y y x 故此时()u x 是微分方程()L u f =的解。
采用上述方法求解微分方程的方法称为格林函数法,广义函数()G x,y 也称为格林函数。
数学物理方法知识体系
数学物理方法所要解决的问题:求解(偏)微分方程
本学期学过的求解方法:变量分离法、积分变换法、格林函数法
变量分离法涉及知识点:傅里叶级数、函数的正交系、贝塞尔函数(Chap.2~Chap.5) 积分变换法涉及知识点:傅里叶变换、拉普拉斯变换、广义函数(Chap.7~Chap.9) 格林函数法涉及知识点:格林函数(Chap.10)
例题数量统计。
常微分方程格林函数格林函数(Green's function)是常微分方程理论中的一个重要概念。
格林函数是指线性常微分方程解的特定形式,用于将非齐次方程的解表示为齐次方程的解与一个特定的函数的线性组合。
格林函数的理论有广泛的应用,包括电磁学、量子力学、流体力学等领域。
我们考虑一个形如L[u]=f(某)的一维线性常微分方程,其中L是一个线性微分算子,u是未知函数,f(某)是已知函数。
我们想要找到方程的解u(某)。
为此,我们引入格林函数G(某,t),满足以下两个条件:1. 对于每个固定的t,在某>t的区域内,格林函数满足L[G(某,t)]=δ(某-t),其中δ(某-t)是Diracδ函数。
2.对于边界条件G(a,t)=G(b,t)=0,其中a和b是方程所涉及的区域的边界。
为了求解方程L[u]=f(某),将解表示为u(某)=∫G(某,t)f(t)dt,其中积分是对整个区间进行的。
然后,我们可以利用格林函数的性质来计算系数函数G(某,t)与未知函数u(某)之间的关系,从而得到方程L[u]=f(某)的解u(某)。
对于常微分方程来说,我们可以通过求解格林函数来求解对应的非齐次方程。
具体的求解步骤如下:1.首先,求解齐次方程L[u]=0,并找到其解u_h(某)。
2.接下来,我们需要求解L[G(某,t)]=δ(某-t)的齐次方程,即L[G(某,t)]=0。
3.根据格林函数的边界条件,我们可以得到G(a,t)和G(b,t)的表达式,并利用这些条件分析求解。
4.最后,将方程的非齐次项f(某)代入到格林函数的表达式中,得到方程的解u(某)。
格林函数的概念和求解方法在物理和工程领域中广泛应用。
例如,在电磁学中,可以利用格林函数求解电荷分布所引起的电势分布;在量子力学中,格林函数用于描述定态和非定态系统中的粒子传播;在流体力学中,格林函数被用于描述流体的流动行为。
总之,格林函数是常微分方程理论中的重要工具,它可以将非齐次方程的解表示为齐次方程的解与一个特定的函数的线性组合。
第六章 格林函数法本章利用高等数学中的格林(Green)公式导出调和函数的积分表达式,引进格林函数(又叫点源函数),它是一种广义函数.利用格林函数求解稳态的边值问题,这种方法叫格林函数法,它是解数学物理问题时常用的方法之一.§2.6.1 格林(Green )公式 调和函数的积分表达式2.6.1.1 格林公式设D 是以分片光滑的曲面S 为其边界的有界区域,函数P (x ,y ,z ), Q (x ,y ,z ), R (x ,y ,z )是在D 上连续,在区域D 内有连续偏导数的任意函数,则成立奥一高公式 V z R y Q x P D d (∂∂+∂∂+∂∂∫∫∫=∫∫++SS z n R y n Q x n P d )],cos(),cos(),cos([,这里d V 是体积元,n 是曲面S 的外法线方向,d S 为S 上的面积元.由此可以导出格林第二公式或格林公式:S nu v n v uV u v v u D S d d )()(∫∫∫∫∫∂∂−∂∂=Δ−Δ. 事实上,设函数u (x ,y ,z ), v (x ,y ,z )以及它们的所有的一阶偏导数在闭区域S D D U =上是连续的,u 、v 在D 内具有连续的二阶偏导数.令 P =x v u ∂∂, Q =yv u ∂∂, R =z v u ∂∂, 代入奥一高公式得到格林第一公式:V z v z u y v y u n v x u S n v uV v u DD S d d d )()(∂∂∂∂+∂∂∂∂+∂∂∂∂−∂∂=Δ∫∫∫∫∫∫∫∫ 这里是三维拉普拉斯(Laplace)算子,Δn∂∂表示曲面S 的外法线方向导数.如果引进梯度算子=∇k j v v v z yi x ∂∂+∂∂+∂∂ ,那么格林第一公式缩写成 ∫∫∫∫∫∫∫∫∇⋅∇−∂∂=ΔDS D V v u s n v uv v u d d d )()(,类似地,如果令 P =x u v ∂∂, Q =y u v ∂∂, R =zu v ∂∂,就有 ∫∫∫∫∫∫∫∫∇⋅∇−∂∂=ΔD D SV u v S n u v V u v d d )()(d 注意到向量的数性积的可交换性,上两式相减,得格林第二公式(又叫格林公式):S nu v n v u V u v v u D S d d )()∂∂−∂∂=Δ−Δ∫∫∫∫∫( . 2.6.1.2拉普拉斯方程的基本解在三维空间内,记),()()()(222N M r z y x r =−+−+−=ςηξ表示点M (x ,y ,z )、)(ςηξ,,N 之间的距离,利用复合函数求导的链式法则,对空间中任意固定的一点N ,函数r1除点N 外关于变量(x , y , z )处处满足拉普拉斯方程0=Δu ;注意到函数r1的特征,同样对于任意固定的一点M (x , y , z ),函数r1除点M 外,关于变量),,(ςηξ处处满足拉普拉斯方程,即0)1(=Δr, (N M ≠). 函数r1在求解拉普拉斯方程和泊松(Poisson)方程时有极重要的作用,通常把函数r1称为三维拉普拉斯方程或者泊松方程的基本解.同样,对于二维空间,函数),(1ln )()(1ln 1ln 22N M r y x r =−+−=ηξ 叫做二维拉普拉斯方程或泊松方程的基本解.2.6.1.3 调和函数的积分表达式仍以三维空间为例,利用格林公式不难得到三维空间调和函数的积分表达式.定理:(调和函数的积分表达式)设函数u (x , y , z )在闭区域D 上有连续的一阶偏导数,且u (x , y , z )在区域D 内调和(即0=Δu 在D 内成立),那么对于D 内任意固定的一点就有),,(0000z y x M ,])1(1[41)(0S nr u n u r M u S d ∂∂−∂∂=∫∫π D M ∈0 ,这里M 为点(x , y , z ),并有2020200)()()(),(z z y y x x M M r r −+−+−== .事实上,设为区域D 内任意固定的一点,M (x ,y ,z )为),,(0000z y x M D 上的一个动点,动点M 到定点M 0的距离2020200)()()(),(z z y y x x M M r r −+−+−== .注意到函数r 1除点M 0外,处处调和,M 0挖去.以M 0点为球心,充分小的正数(ρ>0),用表示这个小球的球面.记区域D 0M K ρ0M S ρ0M K ρ1=D \ (通常称区域D 内挖去点M 0M K ρ0).这时区域D 1的表面为.U S 0M S ρ于是函数u , v =r1在闭区域011M S S D D ρU U =上可用格林公式,就有∫∫∫∫∫∫∫∂∂−∂∂+∂∂−∂∂=Δ−ΔS S n u r n r u D S n u r n r u V u r r u M S 01)1)1((1)1((]1)1([ρd d d 因为在区域D 1内0)1(,0=Δ=Δru ,上式左边等于零,由此得 01)1()1)1((00=∂∂−∂∂+∂∂−∂∂∫∫∫∫∫∫S S n u r S S n r u S n u r n r u M M S ρρd d d 现在讨论上式左边的后两项积分.注意到,对区域D 1而言,小球面0M S ρ的外法线方向应指向球心M 0 , 与半径r 的方向刚好相反,因此在球面上有0M S ρ2211)1(1(ρ==∂∂−=∂∂rr r n r ,这样上式第二项积分有 )(44)(1)1(1212200M u M u s S u S S n r u M M ππρρρρρ===∂∂∫∫∫∫d d , 这里用到积分中值定理,M 1为球面上的某一点.0M S ρ对于上式第三项积分,用积分中值定理有||22044112M n u M n u S n u r M S ∂∂⋅=∂∂⋅⋅=∂∂∫∫πρπρρρd 这里M 2为上的某一点.0M S ρ 因为nu ∂∂在M 0点的邻域内是有界的,让0→ρ,则M 1、M 2趋于球心M 0 ,所以第三项积分趋于零,由此得0)(4)1)1((0=+∂∂−∂∂∫∫M u S n u r n r u Sπd . 从而得到有界区域D 内调和函数u 的积分表达式:S nr u n u r M u S d )1(1(41)(0∂∂−∂∂=∫∫π, D M ∈0. 这个公式说明,调和函数u 在区域D 内任意一点M 0处的值可以由它的边界S 上的值和它在边界S 上的法向导数nu ∂∂的值来确定,这对解边值问题提供了方便.推论:若u 在有界区域D 内是二阶连续的可微函数,则有积分表达式∫∫∫∫∫Δ−∂∂−∂∂=DS V r u S n r u v u r M u d d ππ41))1(1(41)(0,. D M ∈0这是因为在闭区域1D 上用格林公式,有 S n u r S n r u S n u r n r u V u D r S M d d d )11(()1)1((101∂∂−∂∂+∂∂−∂∂=Δ−∫∫∫∫∫∫∫ρ 类似上述的讨论,上式右端当0→ρ时,区域,其余都一样.D D →1对于二维情形,由于基本解为r1ln ,所以不难得到在二维有界区域D 内调和的函数u 的积分表达式:S nr u n u r M u C d )1(ln )1[ln(21)(0∂∂−∂∂=∫π, D M ∈0. 这里C 为区域D 的边界.对一般的在区域D 内有二阶连续可微函数u ,则积分表达式为S u r l n r u n u r M u DC d d Δ−∂∂−∂∂=∫∫∫)1(ln 21])1(ln )1[ln(21)(0ππ, .D M ∈0这两个公式的证明作为习题留给读者自己去证明.§2.6.2 拉普拉斯(Laplace )方程的狄里克雷问题2.6.2.1 边值问题的提法数学物理的不少问题都会归结为求拉普拉斯方程的解,根据边界条件的不同提法,可以把它的定解问题分为三类:第一边值问题,又称狄里克雷(Dirichlet)问题.求区域D 内调和,而在D 的边界S 上取已知值f 的函数u ,即狄里克雷问题的提法为:0=Δu , 在D 内,|u s =f 1(M ) , 在S 上.第二边值问题,又称诺伊曼(Neumann)问题,它的提法为: 0=Δu , 在D 内,),(|2M f nu S =∂∂ S M ∈. 第三边值问题,又称洛平(Robin)问题,它的提法为:, 在D 内,0=Δu ),(3M f u n u S=⎥⎦⎤⎢⎣⎡+∂∂βα S M ∈. 这里α、β为已知常数,且不同时为零;f 、f 、f 为已知函数.)(1M )(2M )(3M 如果以上的提法,针对求有界区域D 内的解,称为内问题,如果求区域的外部的解,称为外问题.对于狄里克雷问题、诺伊曼问题解的存在性,要用到积分方程的理论,由于已超出本书的范围,这里不再赘述,感兴趣的读者可以查阅相关的书籍,例如由沈乃录主编的《积分方程》一书,将会给你一个满意的解答.2.6.2.2 狄里克雷问题的格林函数 格林函数法我们重点来解狄里克雷问题.从调和函数u 的积分表达式出发,在区域D 内的调和函数u 的积分表达式为:S n r u nu r M u S d ∫∫∂−∂∂=)/1(1(41)(0π, D M ∈0. 这里由于狄里克雷问题0=Δu , 在D 内,|u s =f (M ) , 在∈M S 上.所以,积分表达式中的第二项u 在边界面S 上的值已知,用f (M )代替,就有S n r M f nu r M u S d ∫∫∂−∂∂=))/1()(1(41)(0π, D M ∈0, 这样求解的关键是如何从上式中消去带nu ∂∂(未知的)这一项. 由格林公式出发,要在区域D 内求一个函数g ,它在区域D 内调和(即0=Δg ),则格林公式为:S n u g ng uS d ∫∫∂∂−∂∂=)(0 用π41乘以上式,再和积分表达式相加,就有 S n g r M f n u g r M u S d ∫∫−∂−∂∂−=])/1()()1[(41)(0π, D M ∈0如果上式中在边界面S 上有g r −1=0,即=S g |r1,那末狄里克雷问题的解就是:S ng r M f M u S d ∫∫−∂−=])/1()([41)(0π, D M ∈0. 综上所述,欲解狄里克雷问题:0=Δu , 在D 内,|u s =f(M) , 在∈M S 上就转化为解另一个狄里克雷问题:0=Δg , 在D 内,=S g |r1 , ∈M S, 这里,);(0M M r r =);(0M M g g =,∈M S ,D M ∈0一般说来,函数也不是好求的,它与边界曲面S 的形状有关,但是不管怎么讲,给出了一个解狄里克雷问题的思路,并且对于一些特殊的区域D ,例如球体、半空间、圆域、半平面等可以用初等的方法求出函数g (M ; M );(0M M g 0)来.为了更清楚,我们令函数 );();(1);(000M M g M M r M M G −= 注意到基本解的特征,);(10M M r g (M ;M 0)的要求,对于函数G (M ;M 0)有两个基本性质:(1)除点D M ∈0外,函数G (M ;M 0)在区域D 内调和,即 0);(0=ΔM M G , M , M 0D ∈ 且0M M ≠ ;(2)在边界面S 上, ,0);(0=M M G ∈M ,S D M ∈0 . 通常把函数G (M ;M 0)称为拉普拉斯方程0=Δu 关于区域D 的狄里克雷问题的格林函数.用求格林函数G (M ;M 0)的方法解狄里克雷问题称为格林函数法.如果格林函数G (M ;M 0)求得,那么狄里克雷问题的解也就有了,并且为S M M G nM f M u S d );()(41)(00∫∫∂∂−=π , D M ∈0.对于二维的情形,完全类似地,可以得到 S nG M f M u C d ∫∂∂−=)(21)(0π , D M ∈0 为狄里克雷问题 C D M M f u D M u C=∂∈=∈=Δ),(,0| 的解,这里格林函数 );(1ln );(00M M g rM M G −=,作为习题留给读者自己去证明.例1. 球的狄里克雷问题和球的格林函数 球内狄里克雷问题的提法: , 在球内 0=Δu 2222R z y x <++ u=f (M ) , 在球面 上 2222R z y x =++这里 M =(x , y , z ).解: 先求球 的格林函数 2222R z y x <++ 设球内任一点,由此求满足另一个球狄里克雷问题:),(00,00z y x M );(0M M g 0);(0=ΔM M g , 在球内);(1);(00M M r M M g = , 在球面上 对于球而 2222R z y x <++M 1言,函数可以用初等的方 );(0M M g 法求得.记202020z y x ++=ρ,点 M 0的对称点为M 0R S 1,显然点M 1在球外,并在OM 0的延长线上(如图),由对称点的定义知:21R =ρρ⋅其中1ρ为OM 1的长,即 2121211z y x ++=ρ ,),,(1111z y x M =,由调和函数的基本解,这个应该是);(0M M g 1r A这种形式,这里 2121211)()()(z z y y x x r −+−+−= ,A 为待定常数.显然函数1r A在球内是调和的.问题是怎样确定常数A .由的第二个条件在球面上应为);(0M M g r 1.为区别起见,球面上的点记为),,(z y x M ′′′′.由于,所以在21R =⋅ρρM OM ′Δ0与中,是公共角,且夹这角的两边成比例1M M O ′ΔO ∠10OM M O M O OM ′=′,因此M OM ′Δ0与1M M O ′Δ相似,从而有M O OM M M M M ′=′′010,亦即R r r ρ=1,这样在球面上有OR S rr R 111=⋅ρ , 可见常数202020z y x RRA ++==ρ,所求的101);(r R M M g ⋅=ρ,因此球的格林函数为2121212020202020201100)()()(1)()()(1);(1);(1);(z z y y x x z y x Rz z y y x x M M r R M M r M M G −+−+−⋅++−−+−+−=⋅−=ρ得球内狄里克雷问题的解为S nG M f M u RS d ∂∂′−=∫∫)(41)(00π,().球∈0M 2222R z y x <++为了计算,还须将这公式化成便于积分的形式.采用球面坐标系.设点M ′的球坐标为),,(ϕθ′′R ,点M 0的球坐标为),,(00ϕθρ,将记为O∠α,于是在球面上,ORS nr nr ∂∂∂∂1(,)1(1有 02022)(1grad 11)1()1(n n ⋅∂∂+∂∂+∂∂−=⋅−=∂∂−=∂∂⋅∂∂=∂∂k zr j y r i x r r r r n r r n r r r n r 其中n 0是球面的外法线单位向量.O R S 在球面上, OR S M ′点的坐标为),,(z y x ′′′,由此r x x x r 0−′=∂∂ , r y y y r 0−′=∂∂ , rz z z r 0−′=∂∂ , 设r 0是r 方向上的单位向量,由此),cos(1)(1)1(200002n r r k r z z j r y y i r x x r n r −=⋅−′+−′+−′−=∂∂n , 同理 ),cos(1)1(1211n r r nr −=∂∂,这样),cos(),cos(1)1()1(12121n r r Rn r rn r n r R n G ρρ−=∂∂−∂∂=∂∂−为了简化上式,在与M OM ′Δ01M M O ′Δ中用余弦定理得Rr r R n r 2),cos(222ρ−+=, 12121212),cos(Rr r R n r ρ−+= , 注意到在球面上有OR S rr R 11=ρ,并且,于是有 21R =⋅ρρ3221212),cos(),cos(1Rr R n r r R n r rn G ρρ−=−=∂∂−, 从而球内狄里克雷问题的解化简为ϕθθραρρϕθπρπππ′′′+−−′′=−′=∫∫∫∫d d d sin ]cos 2[),(4)(41)(2322222003220R R R f RS rR M f R M u O RS这也叫球的泊松积分.利用M 0的对称点M 1构造格林函数的方法,叫做镜像法,物理学中又叫静电源象法.例 2. 半空间的狄里克雷问题.半空间的狄里克雷问题就是求一个在上半空间内的调和函数u (x , y, z ),且在边界面z =0上满足u (x , y , 0)=f (x , y ),即0>z⎪⎩⎪⎨⎧=>=Δ=),(0,0|0y x f u z u z解:设在半空间在z >0内任意一点,这里z ),(00,00z y x M 0>0,那么M 0关于平面的对称点M 0=z 1就是 ),(00,0z y x −.所以函 数2020201)()()(11z z y y x x r ++−+−=是半空间内的调和函数,并且在边界面z =0上,显然有0>z rr 111=,因此半空间z >0内的格林函数为20202020202010)()()(1)()()(111);(z z y y x x z z y y x x r r M M G ++−+−−−+−+−=−=对于半空间z >0,边界面z =0的外法线方向与z 轴的正向相反,于是z G nG ∂∂−=∂∂,这个半空间z >0的狄里克雷问题的解为S n G y x f z y x u z d ∫∫=∂∂−=0000),(41),,(π =S zG y x f z d ∫∫=∂∂0),(41π=y x z y y x x y x f z d d ∫∫+∞∞−+∞∞−+−+−232020200])()[(),(2π.§2.6.3 泊松方程的狄里克雷问题在研究有外力作用下的薄膜平衡和有热流的热平衡以及稳定电场的静电势等问题时,都会导出称谓泊松方程的数学物理方程.泊松方程的一般形式是),,(z y x F u u u u zz yy xx =++≡Δ,其中F (x , y , z )为已知函数.泊松方程的狄里克雷问题的提法是),,(z y x F u =Δ (x , y , z )D ∈, )(|M f u S= M 在D 的边界面S 上.对于在有界区域D 内有二阶连续的可微函数u (M ),有积分表达式V r uS n r u n u r M u DSd d ∫∫∫∫∫Δ−∂∂−∂∂=ππ41))1(1(41)(0, . D M ∈0设是区域);(0M M G D 的格林函数,就有);();(1);(000M M g M M r M M G −=这里函数为区域);(0M M g D 内的调和函数,在边界面S 上有r g S1|=,对格林公式S n u v n v u V u v v u D Sd d ()(∂∂−∂∂=Δ−Δ∫∫∫∫∫中用函数替代v ,再两边乘以);(0M M g π41得∫∫∫∫∫Δ+∂∂−∂∂=DSV u g S n u r n g ud d ππ41)1(410将以上两等式相加,消去S n ur Sd ∂∂∫∫141π项就得泊松方程狄里克雷问题的解为∫∫∫∫∫+∂∂−=DSV FG S n G fM u d d ππ4141)(0显然,上式第一项是定解问题0=Δu 在D 内,的解;第二项是定解问题的解f u S=|0,|==ΔSu F u 对于二维泊松方程的狄里克雷问题可以类似地求解.。
第6章 拉普拉斯方程的格林函数法在第4、5两章,我们较系统地介绍了求解数学物理方程的三种常用方法——分离变量法、行波法与积分变换法.本章我们来介绍拉普拉斯方程的格林函数法.先讨论此方程解的一些重要性质,再建立格林函数的概念,然后通过格林函数建立拉普拉斯方程第一边值问题解的积分表达式.6.1 拉普拉斯方程边值问题的提法在第3章,我们已从无源静电场的电位分布及稳恒温度场的温度分布两个问题推导出了三维拉普拉斯方程22222220.u u uu x y z∂∂∂∇≡++=∂∂∂作为描述稳定和平衡等物理现象的拉普拉斯方程,它不能提初始条件.至于边界条件,如第一章所述有三种类型,应用得较多的是如下两种边值问题.(1)第一边值问题 在空间(,,)x y z 中某一区域Ω的边界Γ上给定了连续函数f ,要求这样一个函数(,,)u x y z ,它在闭域Ω+Γ (或记作Ω)上连续,在Ω内存在二阶偏导数且满足拉普拉斯方程,在Γ上与已知函数f 相重合,即.u f Γ= (6.1)第一边值问题也称为狄利克莱(Dirichlet)问题,或简称狄氏问题.4.3中所讨论过的问题就是圆域内的狄氏问题.拉普拉斯方程的连续解称为调和函数.所以,狄氏问题也可以换一种说法:在区域Ω内找一个调和函数,它在边界Γ上的值为已知.(2)第二边值问题 在某光滑的闭曲面Γ上给出连续函数f ,要求寻找这样一个函数(,,)u x y z ,它在Γ内部的区域Ω中是调和函数,在Ω+Γ上连续,在Γ上任一点处法向导数un∂∂存在,并且等于已知函数f 在该点的值: .uf n Γ∂=∂ (6.2) 这里n 是Γ的外法向矢量.第二边值值问题也称牛曼(Neumann )问题.以上两个边值问题都是在边界Γ上给定某些边界条件,在区域内部求拉普拉斯方程的解.这样的问题称为内问题.在应用中我们还会遇到狄氏问题和牛曼问题的另一种提法.例如,当确定某物体外部的稳恒温度场时,就归结为在区域Ω的外部求调和函数u ,使满足边界条件,u f Γ=这里Γ是Ω的边界,f 表示物体表面的温度分布,象这样的定解解问题称为拉普拉斯方程的外问题.由于拉普拉斯方程的外问题是在无穷区域上给出的,定解问题的解是否应加以一定的限制?基于在电学上总是假定在无穷远处的电位为零,所以在外问题中常常要求附加一个条件*)lim (,,)0(r u x y z r →∞==(6.3)(3)狄氏外问题 在空间(,,)x y z 的某一闭曲面Γ上给定连续函数f ,要找出这样一个函数(,,)u x y z ,它在Γ的外部区域'Ω内调和,在'Ω+Γ上连续,当点(,,)x y z 趋于无穷远时,(,,)u x y z 满足条件(6.3),并且它在边界Γ上取所给的函数值.u f Γ= (6.4)(4)牛曼外问题 在光滑的闭曲面Γ上给定连续函数f ,要找出这样一个函数(,,)u x y z ,它的闭曲面Γ的外面部区域'Ω内调和,在'Ω+Γ上连续,在无穷远处满足条件(6.3),而且它在Γ上任一点的法向导数'un ∂∂存在,并满足 ,'uf n Γ∂=∂ (6.5) 这里n '是边界曲面Γ的内法向矢量.下面我们重点讨论内问题,所用的方法也可以用于外问题.6.2 格林公式为了建立拉普拉斯方程解的积分表达式,需要先推导出格林公式,而格林公式则线面积分中奥-高公式的直接推论.设Ω是以足够光滑的曲面Γ为边界的有界区域,(,,),(,,),(,,)P x y z Q x y z R x y z 是在Ω+Γ上连续的,在Ω内具有一阶连续偏导数的任意函数,则成立如下的奥-高公式*)从数学角度讲,补充了这个条件就能保证外问题的解是唯一的,如果不具有这个条件,外问题的解可能不唯一.例如,在单位圆Γ外求调和函数,在边界上满足1=Γu.容易看出,及1),,(1≡z y x u22221),,(zy x z y x u ++=都在单位圆外满足拉普拉斯方程,并且在单位圆Γ上满足上述边界条件.P Q R d x y z Ω⎛⎫∂∂∂++Ω ⎪∂∂∂⎝⎭⎰⎰⎰ [cos(,)cos(,)cos(,)],P n x Q n y R n z dS Γ=++⎰⎰ (6.6)其中d Ω是体积元素,n 是Γ的外法向矢量,dS 是Γ上的面积元素.下面来推导公式(6.6)的两个推论.设函数(,,)u x y z 和(,,)v x y z 在Ω+Γ上具有一阶连续偏导数,在Ω内具有连续的二阶偏导数.在(6.6)中令,,,v v v P uQ u R u x y z∂∂∂===∂∂∂ 则有2()u v u v u v u v d d x x y y z z ΩΩ⎛⎫∂∂∂∂∂∂∇Ω+++Ω ⎪∂∂∂∂∂∂⎝⎭⎰⎰⎰⎰⎰⎰ ,vudS nΓ∂=∂⎰⎰ 或2().vu v d u dS grad u grad v d n ΩΓΩ∂∇Ω=-⋅Ω∂⎰⎰⎰⎰⎰⎰⎰⎰ (6.7) (6.7)式称为第一格林(Green)公式.在公式(6.7)中交换,u v 位置,则得2().uv u d v dS grad u grad v d n ΩΓΩ∂∇Ω=-⋅Ω∂⎰⎰⎰⎰⎰⎰⎰⎰ (6.8) 将(6.7)与(6.8)式相减得到22().v u u v v u d u v dS n n ΩΓ∂∂⎛⎫∇-∇Ω=- ⎪∂∂⎝⎭⎰⎰⎰⎰⎰ (6.9) (6.9)式称为第二格林公式.利用格林公式我们可以推出调和函数的一些基本性质. (i)调和函数的积分表达式所谓调和函数的积分表达式,就是用调和函数及其在区域边界Γ上的法向导数沿Γ的积分来表达调和函数在Ω内任一点的值.设0000(,,)M x y z 是Ω内某一固定点,现在我们就来求调和函数在这点的值,为此,构造一个函数1v r == (6.10)函数1r除点0M 外处处满足拉普拉斯方程,这函数在研究三维拉普拉斯方程中起着重要的作用,通常称它为三维拉普拉斯方程的基本解.由于1v r=在Ω内有奇异点0M ,我们作一个以0M 为中心,以充分小的正数ε为半径的球面,εΓ在Ω内挖去,εΓ所包围的球域K ε得到区域K εΩ-(图6-1),在K εΩ-内1v r=是连续可微的.在公式(4.9)中取u 为调和函数,而图6-1取1v r=,并以K εΩ-代替该公式中的Ω,得 221111(),K u r u u d u dS r r n r n εεΩ-Γ+Γ⎡⎤⎛⎫∂ ⎪⎢⎥∂⎝⎭⎢⎥∇-∇Ω=-∂∂⎢⎥⎢⎥⎣⎦⎰⎰⎰⎰⎰ (6.11) 因为在K εΩ-内2210,0.u r∇=∇=而在球面εΓ上221111,r r n r r ε⎛⎫⎛⎫∂∂ ⎪ ⎪⎝⎭⎝⎭=-==∂∂ 因此22211144,r u dS udS u u n εεπεπεεΓΓ⎛⎫∂ ⎪⎝⎭==⋅=∂⎰⎰⎰⎰其中u 是函数u 在球面εΓ上的平均值.同理可得22211144,r u dS udS u u n εεπεπεεΓΓ⎛⎫∂ ⎪⎝⎭==⋅=∂⎰⎰⎰⎰ 此外u n ⎛⎫∂ ⎪∂⎝⎭是un ∂∂在球面εΓ上的平均值,将此两式代入(6.11)可得 11440.u u u dS u n r r n n εππεΓ⎛⎫⎛⎫∂∂∂⎛⎫-+-= ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭⎰⎰ 现在令0,ε→由于00lim ()u u M ε→=(因为(,,)u x y z 是连续函数),0lim 40u n επε→⎛⎫∂=⎪∂⎝⎭(因为(,,)u x y z 是一阶连续可微的,故un∂∂有界)则得 000111()()(),4MM MM u M u M u M dS n r r n πΓ⎡⎤⎛⎫∂∂⎢⎥=--⎪ ⎪∂∂⎢⎥⎝⎭⎣⎦⎰⎰ (6.12)此外为明确起见,我们将r =记成0MM r .(6.12)说明,对于在Ω+Γ上有连续一阶偏导数的调和函数u ,它在区域Ω内任一点0M 的值,可通过积分表达式(6.12)用这个函数在区域边界Γ上的值及其在Γ上的法向导数来表示*).(ii)牛曼内问题有解的必要条件设u 是在以Γ为边界的区域Ω内的调和函数,在Ω+Γ上有一阶连续偏导数,则在公式(6.9)中取u 为所给的调和函数,取1v =,就得到0udS nΓ∂=∂⎰⎰(6.13) 由(6.13)可得牛曼内问题u f nΓ⎛⎫∂=⎪∂⎝⎭有解的必要条件为函数f 满足*)上面的推导是假定点),,(0000z y x M 在区域Ω内,如果0M 在Ω外或0M 在边界Γ上,我们也可用同样方法推得另外两个式子,把它们合并在一起可得⎰⎰Γ⎪⎩⎪⎨⎧ΩΓΩ=⎪⎪⎭⎫ ⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂-。