高中数学直线平面平行的性质及判定
- 格式:docx
- 大小:259.96 KB
- 文档页数:9
直线、平面平行的判定及其性质新课讲解:1、直线与平面平行的判定及其性质(1)线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。
线线平行⇒线面平行(2)线面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
线面平行⇒线线平行2、平面与平面平行的判定及其性质(两条相交直线即可代表一个平面)(1)两个平面平行的判定定理①如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行。
线面平行→面面平行②如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。
线线平行→面面平行③垂直于同一条直线的两个平面平行.(2)两个平面平行的性质①如果两个平面平行,那么某一个平面内的直线与另一个平面平行。
面面平行→线面平行②如果两个平行平面都和第三个平面相交,那么它们的交线平行。
面面平行→线线平行题型一:直线与平面平行的判定要点:利用判定定理时关键是找平面内与已知直线平行的直线.可先直观判断平面内是否已有,若没有,则需作出该直线,常考虑三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线。
例1.(2011·天津改编)如图,在四棱锥PABCD 中,底面ABCD 为平行四边形,O 为AC 的中点,M 为PD 的中点。
求证:PB ∥平面ACM 。
变式练习1:如图,正方体ABCD-A 1B 1C 1D 1中,E 为DD 1中点。
求证:BD 1∥平面AEC 。
变式练习2:如图,若PA ⊥平面ABCD ,四边形ABCD 是矩形,E 、F 分别是AB 、PD 的中点,求证:AF ∥平面PCE 。
A B CD A 1B 1C 1D 1E例2.正方体ABCD-A1B1C1D1中,侧面对角线AB1、BC1分别有E、F,且B1E=C1F,求证:EF∥平面ABCD.变式练习1:如图,正方体ABCD-A1B1C1D1中,E在AB1上,F在BD上,且B1E=BF.求证:EF∥平面BB1C1C.题型二:平面与平面平行的判定例3.如图,在正方体ABCDA1B1C1D1中,M、N、P分别为所在边的中点.求证:平面MNP∥平面A1C1B。
平行1.直线与平面平行的判定(1)直线与平面平行的定义:如果一条直线与一个平面没有公共点,我们就说这条直线与这个平面平行.(2)直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.符号表示为:.注意:这个定理是证明直线与平面平行最常用的一个定理,也就是说欲证明一条直线与一个平面平行,一是说明这条直线不在这个平面内,二是要证明已知平面内有一条直线与已知直线平行.2.两个平面平行的判定(1)两个平面平行的定义:两个平面没有公共点,则两个平面平行.(2)平面与平面的平行的判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.符号表示为:.注意:这个定理的另外一种表达方式为“如果一个平面内有两条相交直线和另一个平面内的两条相交直线分别平行,那么这两个平面平行”.(3)平行于同一平面的两个平面互相平行.即.3.直线与平面平行的性质(1) 直线与平面平行的性质定理:一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.符号表示为:.注意:如果一条直线和一个平面平行,那么这条直线和平面内的无数条直线平行,但不能误解为“如果一条直线与一个平面平行,那么这条直线就和平面内的任意一条直线平行”.(2)直线与平面平行的性质:过平面内一点的直线与该平面平行的一条直线平行,则这条直线在这个平面内.符号表示为:若,点,且,则.4.平面与平面平行的性质(1)如果两个平面平行,那么其中一个平面内的任意直线均平行与另一个平面.此结论可以作为定理用,可用来判定线面平行.(2)两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行.(3)夹在两个平行平面间的平行线段相等.垂直1.直线与平面垂直的判定(1)直线与平面垂直的定义如果一条直线和一个平面内的任意一条直线都垂直,我们就说这条直线和这个平面垂直,其中直线叫作平面的垂线,平面叫作直线的垂面.注意:①定义中的“任意一条直线”和“所有直线”是同义语,不能改成“无穷多条直线”.②如果或,那么直线l不可能与平面内的任意一条直线都垂直.由此可知,当时,直线l和一定相交,它们唯一的交点叫做垂足.(2)直线和平面垂直的判定定理如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直与这个平面.(3)关于垂直的存在唯一性命题1:过一点有且只有一条直线和已知平面垂直.命题2:过一点有且只有一个平面和已知直线垂直.2.平面与平面垂直的判定(1)平面与平面垂直的定义:两个平面相交,如果所成的二面角是直二面角,则称这两个平面互相垂直.(2)两个平面垂直的判定定理如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直. 符号表示为:.3.直线与平面垂直的性质如果两条直线同垂直于一个平面,那么这两条直线平行. 符号表示:. 作用:可作线线平行的判定定理. 4.平面与平面垂直的性质(1)两个平面垂直的性质定理如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面. 符号表示为:.(2)如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面. (3)三个两两垂直的平面的交线两两垂直.(4)如果两个平面垂直,那么经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内.空间几何定理公理总结:1.平面的基本性质公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2 如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线. 公理3 经过不在同一直线上的三个点,有且只有一个平面. 推论1 经过一条直线和这条直线外一点,有且只有一个平面. 推论2 经过两条相交直线,有且只有一个平面. 推论3 经过两条平行直线,有且只有一个平面. 公理4 同平行于一条直线的两条直线互相平行。
直线、平面平行的判定及其性质1.平面与平面的位置关系有相交、平行两种情况.2.直线和平面平行的判定(1)定义:直线和平面没有公共点,则称直线平行于平面;(2)判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
符号语言:b b a a a ααα⊄⎫⎪⊂⇒⎬⎪⎭,,(3)其他判定方法:α∥β;a ⊂α⇒a ∥β.3.直线和平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
符号语言:.a a a l l αβαβ⎫⎪⊂⇒⎬⎪⋂⎭,,=推论:直线与平面平行,则直线上的点到平面的距离都相等。
4.两个平面平行的判定(1)定义:两个平面没有公共点,称这两个平面平行;(2)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
符号语言:b b b a a a αααβββ⊂⊂⎫⎪⋂⇒⎬⎪⎭,,=P ,,;(3)推论:两个平面上分别有两条相交直线分别平行,则这两个平面平行。
符号语言:b M b b M b .b b a a a a a a αβαβ⋂⊂⎫⎪'⋂''''⊂⇒⎬⎪''⎭=,,,=,,,,5.两个平面平行的性质定理:如果两个平面同时和第三个平面相交,那么它们的交线平行。
符号语言:b .a a αβγαγβ⎫⎪⋂⇒⎬⎪⋂⎭,=,=推论:两平面平行,则其中一个平面上的任一条直线都与另一个平面平行。
即,a a αββα⎫⇒⎬⊂⎭,;6.与垂直相关的平行的判定(1)直线平行b b a a αα⊥⊥⇒ ,; (2)平面平行.a a αβαβ⊥⊥⇒ ,7.平行问题的转化关系:8.两个防范(1)在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.(2)把线面平行转化为线线平行时,必须说清经过已知直线的平面与已知平面相交,则直线与交线平行.课后练习:1.下面命题中正确的是( ).①若一个平面内有两条直线与另一个平面平行,则这两个平面平行; ②若一个平面内有无数条直线与另一个平面平行,则这两个平面平行; ③若一个平面内任何一条直线都平行于另一个平面,则这两个平面平行;④若一个平面内的两条相交直线分别与另一个平面平行,则这两个平面平行.A .①③B .②④C .②③④D .③④2.平面α∥平面β,a ⊂α,b ⊂β,则直线a ,b 的位置关系是( ).A .平行B .相交C .异面D .平行或异面3.在空间中,下列命题正确的是( ).A .若a ∥α,b ∥a ,则b ∥αB .若a ∥α,b ∥α,a ⊂β,b ⊂β,则β∥αC .若α∥β,b ∥α,则b ∥βD .若α∥β,a ⊂α,则a ∥β4.已知m、n为两条不同的直线,α、β为两个不同的平面,则下列命题中正确的是().A.m∥n,m⊥α⇒n⊥αB.α∥β,m⊂α,n⊂β⇒m∥nC.m⊥α,m⊥n⇒n∥αD.m⊂α,n⊂α,m∥β,n∥β⇒α∥β5如图,在四棱锥P ABCD中,底面ABCD为平行四边形,O为AC的中点,M 为PD的中点.求证:PB∥平面ACM.【例2】►如图,在正方体ABCDA1B1C1D1中,M、N、P分别为所在边的中点.求证:平面MNP∥平面A1C1B;。
高考数学考点归纳之 直线、平面平行的判定与性质一、基础知识1.直线与平面平行的判定定理和性质定理⎣⎢⎡⎦⎥⎤❶应用判定定理时,要注意“内”“外”“平行”三个条件必须都具备,缺一不可. 2.平面与平面平行的判定定理和性质定理⎣⎢⎢⎡⎦⎥⎥⎤❷如果一个平面内的两条相交直线分别平行于另一个平面的两条直线,那么这两个平面互相平行.符号表示:a ⊂α,b ⊂α,a ∩b =O ,a ′⊂β,b ′⊂β,a ∥a ′,b ∥b ′⇒α∥β. 二、常用结论平面与平面平行的三个性质(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面. (2)夹在两个平行平面间的平行线段长度相等.(3)两条直线被三个平行平面所截,截得的对应线段成比例.考点一 直线与平面平行的判定与性质考法(一) 直线与平面平行的判定[典例] 如图,在直三棱柱ABC A 1B 1C 1中,点M ,N 分别为线段A 1B ,AC 1的中点.求证:MN ∥平面BB 1C 1C .[证明] 如图,连接A 1C .在直三棱柱ABC A 1B 1C 1中,侧面AA 1C 1C 为平行四边形.又因为N 为线段AC 1的中点,所以A 1C 与AC 1相交于点N ,即A 1C 经过点N ,且N 为线段A 1C 的中点.因为M 为线段A 1B 的中点,所以MN ∥BC . 又因为MN ⊄平面BB 1C 1C ,BC ⊂平面BB 1C 1C , 所以MN ∥平面BB 1C 1C .考法(二)线面平行性质定理的应用[典例](2018·豫东名校联考)如图,在四棱柱ABCDA1B1C1D1中,E为线段AD上的任意一点(不包括A,D两点),平面CEC1与平面BB1D交于FG.求证:FG∥平面AA1B1B.[证明]在四棱柱ABCDA1B1C1D1中,BB1∥CC1,BB1⊂平面BB1D,CC1⊄平面BB1D,所以CC1∥平面BB1D.又CC1⊂平面CEC1,平面CEC1与平面BB1D交于FG,所以CC1∥FG.因为BB1∥CC1,所以BB1∥FG.因为BB1⊂平面AA1B1B,FG⊄平面AA1B1B,所以FG∥平面AA1B1B.[题组训练]1.(2018·浙江高考)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:选A∵若m⊄α,n⊂α,且m∥n,由线面平行的判定定理知m∥α,但若m⊄α,n⊂α,且m∥α,则m与n有可能异面,∴“m∥n”是“m∥α”的充分不必要条件.2.如图,在四棱锥PABCD中,AB∥CD,AB=2,CD=3,M为PC上一点,且PM =2MC.求证:BM ∥平面P AD .证明:法一:如图,过点M 作MN ∥CD 交PD 于点N ,连接AN . ∵PM =2MC ,∴MN =23CD .又AB =23CD ,且AB ∥CD ,∴AB 綊MN ,∴四边形ABMN 为平行四边形, ∴BM ∥AN .又BM ⊄平面P AD ,AN ⊂平面P AD , ∴BM ∥平面P AD .法二:如图,过点M 作MN ∥PD 交CD 于点N ,连接BN . ∵PM =2MC ,∴DN =2NC , 又AB ∥CD ,AB =23CD ,∴AB 綊DN ,∴四边形ABND 为平行四边形, ∴BN ∥AD .∵BN ⊂平面MBN ,MN ⊂平面MBN ,BN ∩MN =N , AD ⊂平面P AD ,PD ⊂平面P AD ,AD ∩PD =D , ∴平面MBN ∥平面P AD .∵BM ⊂平面MBN ,∴BM ∥平面P AD .3.如图所示,四边形ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和P A 作平面P AHG 交平面BMD 于GH .求证:P A ∥GH .证明:如图所示,连接AC 交BD 于点O ,连接MO , ∵四边形ABCD 是平行四边形, ∴O 是AC 的中点,又M 是PC 的中点,∴P A ∥MO . 又MO ⊂平面BMD ,P A ⊄平面BMD , ∴P A ∥平面BMD .∵平面P AHG ∩平面BMD =GH , P A ⊂平面P AHG , ∴P A ∥GH .考点二平面与平面平行的判定与性质[典例]如图,在三棱柱ABCA1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.[证明](1)∵GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.[变透练清]1.(变结论)在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.证明:如图所示,连接A1C,AC1,设交点为M,∵四边形A1ACC1是平行四边形,∴M是A1C的中点,连接MD,∵D为BC的中点,∴A1B∥DM.∵DM⊄平面A1BD1,A1B⊂平面A1BD1,∴DM∥平面A1BD1.又由三棱柱的性质知D1C1綊BD,∴四边形BDC1D1为平行四边形,∴DC1∥BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,∴DC1∥平面A1BD1,又∵DC1∩DM=D,DC1⊂平面AC1D,DM⊂平面AC1D,∴平面A1BD1∥平面AC1D.2.如图,四边形ABCD与四边形ADEF为平行四边形,M,N,G分别是AB,AD,EF的中点,求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.证明:(1)如图,连接AE,设DF与GN的交点为O,则AE必过DF与GN的交点O.连接MO,则MO为△ABE的中位线,所以BE∥MO.又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN.又DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.又M为AB中点,所以MN为△ABD的中位线,所以BD∥MN.又BD⊄平面MNG,MN⊂平面MNG,所以BD ∥平面MNG .又DE ⊂平面BDE ,BD ⊂平面BDE ,DE ∩BD =D , 所以平面BDE ∥平面MNG .[课时跟踪检测]A 级1.已知直线a 与直线b 平行,直线a 与平面α平行,则直线b 与α的关系为( ) A .平行 B .相交C .直线b 在平面α内D .平行或直线b 在平面α内解析:选D 依题意,直线a 必与平面α内的某直线平行,又a ∥b ,因此直线b 与平面α的位置关系是平行或直线b 在平面α内.2.若平面α∥平面β,直线a ∥平面α,点B ∈β,则在平面β内且过B 点的所有直线中( )A .不一定存在与a 平行的直线B .只有两条与a 平行的直线C .存在无数条与a 平行的直线D .存在唯一与a 平行的直线解析:选A 当直线a 在平面β内且过B 点时,不存在与a 平行的直线,故选A. 3.在空间四边形ABCD 中,E ,F 分别是AB 和BC 上的点,若AE ∶EB =CF ∶FB =1∶2,则对角线AC 和平面DEF 的位置关系是( )A .平行B .相交C .在平面内D .不能确定解析:选A 如图,由AE EB =CFFB 得AC ∥EF .又因为EF ⊂平面DEF ,AC ⊄平面DEF , 所以AC ∥平面DEF .4.(2019·重庆六校联考)设a ,b 是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是( )A .存在一条直线a ,a ∥α,a ∥βB .存在一条直线a ,a ⊂α,a ∥βC .存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥αD .存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α解析:选D 对于选项A ,若存在一条直线a ,a ∥α,a ∥β,则α∥β或α与β相交,若α∥β,则存在一条直线a ,使得a ∥α,a ∥β,所以选项A 的内容是α∥β的一个必要条件;同理,选项B 、C 的内容也是α∥β的一个必要条件而不是充分条件;对于选项D ,可以通过平移把两条异面直线平移到一个平面中,成为相交直线,则有α∥β,所以选项D 的内容是α∥β的一个充分条件.故选D.5.如图,透明塑料制成的长方体容器ABCD A 1B 1C 1D 1内灌进一些水,固定容器底面一边BC 于地面上,再将容器倾斜,随着倾斜度的不同,有下面四个命题:①没有水的部分始终呈棱柱形;②水面EFGH 所在四边形的面积为定值; ③棱A 1D 1始终与水面所在平面平行; ④当容器倾斜如图所示时,BE ·BF 是定值. 其中正确命题的个数是( ) A .1 B .2 C .3D .4解析:选C 由题图,显然①是正确的,②是错误的; 对于③,∵A 1D 1∥BC ,BC ∥FG ,∴A 1D 1∥FG 且A 1D 1⊄平面EFGH ,FG ⊂平面EFGH , ∴A 1D 1∥平面EFGH (水面). ∴③是正确的;对于④,∵水是定量的(定体积V ), ∴S △BEF ·BC =V ,即12BE ·BF ·BC =V .∴BE ·BF =2VBC(定值),即④是正确的,故选C.6.如图,平面α∥平面β,△P AB 所在的平面与α,β分别交于CD ,AB ,若PC =2,CA =3,CD =1,则AB =________.解析:∵平面α∥平面β,∴CD ∥AB , 则PC P A =CDAB ,∴AB =P A ×CD PC =5×12=52. 答案:527.设α,β,γ是三个平面,a ,b 是两条不同直线,有下列三个条件: ①a ∥γ,b ⊂β;②a ∥γ,b ∥β;③b ∥β,a ⊂γ.如果命题“α∩β=a ,b ⊂γ,且________,则a ∥b ”为真命题,则可以在横线处填入的条件是________(填序号).解析:由面面平行的性质定理可知,①正确;当b ∥β,a ⊂γ时,a 和b 在同一平面内,且没有公共点,所以平行,③正确.故应填入的条件为①或③.答案:①或③8.在三棱锥P ABC 中,PB =6,AC =3,G 为△P AC 的重心,过点G 作三棱锥的一个截面,使截面平行于PB 和AC ,则截面的周长为________.解析:如图,过点G 作EF ∥AC ,分别交P A ,PC 于点E ,F ,过点E 作EN ∥PB 交AB 于点N ,过点F 作FM ∥PB 交BC 于点M ,连接MN ,则四边形EFMN 是平行四边形(平面EFMN 为所求截面),且EF =MN =23AC =2,FM =EN =13PB =2,所以截面的周长为2×4=8.答案:89.如图,E ,F ,G ,H 分别是正方体ABCD A 1B 1C 1D 1的棱BC ,CC 1,C 1D 1,AA 1的中点.求证:(1)EG ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H .证明:(1)如图,取B 1D 1的中点O ,连接GO ,OB , 因为OG 綊12B 1C 1,BE 綊12B 1C 1,所以BE 綊OG ,所以四边形BEGO 为平行四边形, 故OB ∥EG ,因为OB ⊂平面BB 1D 1D , EG ⊄平面BB 1D 1D , 所以EG ∥平面BB 1D 1D . (2)由题意可知BD ∥B 1D 1.连接HB ,D 1F ,因为BH 綊D 1F , 所以四边形HBFD 1是平行四边形, 故HD 1∥BF .又B 1D 1∩HD 1=D 1,BD ∩BF =B , 所以平面BDF ∥平面B 1D 1H .10.(2019·南昌摸底调研)如图,在四棱锥P ABCD 中,∠ABC = ∠ACD =90°,∠BAC =∠CAD =60°,P A ⊥平面ABCD ,P A =2,AB =1.设M ,N 分别为PD ,AD 的中点.(1)求证:平面CMN ∥平面P AB ; (2)求三棱锥P ABM 的体积.解:(1)证明:∵M ,N 分别为PD ,AD 的中点, ∴MN ∥P A ,又MN ⊄平面P AB ,P A ⊂平面P AB , ∴MN ∥平面P AB .在Rt △ACD 中,∠CAD =60°,CN =AN , ∴∠ACN =60°.又∠BAC =60°,∴CN ∥AB . ∵CN ⊄平面P AB ,AB ⊂平面P AB , ∴CN ∥平面P AB . 又CN ∩MN =N , ∴平面CMN ∥平面P AB .(2)由(1)知,平面CMN ∥平面P AB ,∴点M 到平面P AB 的距离等于点C 到平面P AB 的距离. ∵AB =1,∠ABC =90°,∠BAC =60°,∴BC =3,∴三棱锥P ABM 的体积V =V M P AB =V C P AB =V P ABC =13×12×1×3×2=33.B 级1.如图,四棱锥P ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)求证:MN ∥平面P AB ; (2)求四面体N BCM 的体积. 解:(1)证明:由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN , 由N 为PC 的中点知TN ∥BC , TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面P AB ,MN ⊄平面P AB , 所以MN ∥平面P AB .(2)因为P A ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12P A .取BC 的中点E ,连接AE .由AB =AC =3,得AE ⊥BC ,AE =AB 2-BE 2= 5.由AM ∥BC 得M 到BC 的距离为5,故S △BCM =12×4×5=2 5. 所以四面体N BCM 的体积V N BCM =13×S △BCM ×P A 2=453.2.如图所示,几何体E ABCD 是四棱锥,△ABD 为正三角形,CB =CD ,EC ⊥BD .(1)求证:BE =DE ;(2)若∠BCD =120°,M 为线段AE 的中点,求证:DM ∥平面BEC . 证明:(1)如图所示,取BD 的中点O ,连接OC ,OE .∵CB =CD ,∴CO ⊥BD .又∵EC ⊥BD ,EC ∩CO =C ,∴BD ⊥平面OEC ,∴BD ⊥EO .又∵O 为BD 中点.∴OE 为BD 的中垂线,∴BE =DE .(2)取BA 的中点N ,连接DN ,MN .∵M 为AE 的中点,∴MN ∥BE .∵△ABD 为等边三角形,N 为AB 的中点,∴DN ⊥AB .∵∠DCB =120°,DC =BC ,∴∠OBC =30°,∴∠CBN =90°,即BC ⊥AB ,∴DN ∥BC .∵DN ∩MN =N ,BC ∩BE =B ,∴平面MND ∥平面BEC .又∵DM ⊂平面MND ,∴DM ∥平面BEC .。
两个防范(1)在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.答案 A5.(2012·衡阳质检)在正方体________.解析如图.连接AC、BD交于ACE.答案平行在四棱锥PABCD中,底面求证:PB∥平面ACM.[审题视点] 连接MO,证明证明连接BD,MO.中点,所以PB∥MO.利用判定定理时关键是找平面内与已知直线平行的直线.可先直观判断平面内是否已有,若没有,则需作出该直线,常考虑三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.在正方体ABCDA1B1C1D1求证:平面MNP∥平面[审题视点] 证明MNMP∥C1B.(1)面面平行的定义;下面给出证明:如图,取BB1的中点则DF∥B1C1.∵AB的中点为E,连接结论成立的充分条件,规范解答13——怎样证明线线、线面、面面平行与垂直的综合性问题【问题研究】高考对平行、垂直关系的考查主要以线面平行、线面垂直为核心,以多面体为载体结合平面几在四棱台ABCDA1B1C1D1BAD=60°.(1)证明:AA1⊥BD;(2)如图,连结AC,A1C1设AC∩BD=E,连结EA1因为四边形ABCD为平行四边形,明的依据是空间线面关系的判定定理和性质定理.如图,在多面体ABCDEF=FC,H为BC的中点.(1)求证:FH∥平面EDB;(2)求证:AC⊥平面EDB;β=b)平行的直线②④β=则,bm不平行于平面又∵AE∥CD且∴FM綉AE,即四边形证明如下:如图,取。
直线、平面平行的判定及其性质一、线线平行的证明方法(一)利用平行四边形;(二)利用三角形或梯形的中位线或平移;(三)如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行;(线面平行的性质定理)(四)如果两个平行平面同时和第三个平面相交,那么它们的交线平行;(面面平行的性质定理)(五)如果两条直线垂直于同一个平面,那么这两条直线平行;(线面垂直的性质定理)(六)平行于同一条直线的两条直线平行;(七)夹在两个平行平面之间的平行线段相等。
(需证明)二、线面平行的证明方法(一)定义法:直线与平面没有公共点;(二)如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行;(线面平行的判定定理)(三)两个平面平行,其中一个平面内的任何一条直线必平行于另一个平面。
三、面面平行的证明方法(一)定义法:两平面没有公共点;(二)如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(面面平行的判定定理)(三)平行于同一平面的两个平面平行;(四)经过平面外一点,有且只有一个平面和已知平面平行;(五)垂直于同一直线的两个平面平行。
相关例题1.通过“平移”再利用平行四边形的性质① 如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ;② 如图,已知直角梯形ABCD 中,AB ∥CD,AB ⊥BC,AB =1,BC =2,CD =1+3,过A 作AE ⊥CD,垂足为E,G 、F分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC.(Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ;③ 已知直三棱柱ABC -A1B1C1中,D, E, F 分别为AA1, CC1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证:(Ⅰ)C1D ⊥BC ; (Ⅱ)C1D ∥平面B1FM.DA 1AF(第1题图)④如图所示, 四棱锥P-ABCD底面是直角梯形,,,ADCDADBA⊥⊥CD=2AB, E为PC的中点, 证明://EB PAD平面;【相关点拨】①取PC的中点G,连EG.,FG,则易证AEGF是平行四边形;②取DB的中点H,连GH,HC则易证FGHC是平行四边形;③连EA,易证C1EAD是平行四边形,于是MF//EA;④取PD的中点F,连EF,AF则易证ABEF是平行四边形2.利用三角形、梯形中位线的性质①如图,已知E、F、G、M分别是四面体的棱AD、CD、BD、BC的中点,求证:AM∥平面EFG。
一、空间几何体的表面积1棱柱、棱锥的表面积:各个面面积之和2 圆柱的表面积3 圆锥的表面积2r rl S ππ+=4 圆台的表面积22R Rl r rl S ππππ+++=5 球的表面积24R S π=二、空间几何体的体积1柱体的体积 hS V ⨯=底2锥体的体积 hS V ⨯=底313台体的体积 hS S S S V ⨯++=)31下下上上( 4球体的体积 334R V π=三、直线、平面平行的判定与性质 1、直线与平面平行的判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行, 用符号表示为a ⊄α,b ⊂α,且a ∥b ⇒a ∥α。
(1)运用直线与平面平行的判定定理时,必须具备三个条件: ①平面外一条直线;②平面内一条直线;③两条直线相互平行.(2)直线与平面平行的判定定理的关键是证明两直线平行,证两直线平行是平面几何的问题,所以该判定定理体现了空间问题平面化的思想.(3)判定直线与平面平行有以下方法:一是判定定理;二是线面平行定义;三是面面平行的性质定理.【例1】 如右图所示,已知P 、Q 是单位正方体ABCD —A 1B 1C 1D 1的面A 1B 1BA 和面ABCD 的中心.求证:PQ ∥平面BCC 1B 1.证:如右图,取B 1B 中点E ,BC 中点F ,连结PE 、QF 、EF , ∵△A 1B 1B 中,P 、E 分别是A 1B 和B 1B 的中点, ∴PE12A 1B 1.同理QF 12AB .又A 1B 1AB ,∴PE QF .∴四边形PEFQ 是平行四边形. ∴PQ ∥EF .又PQ ⊄平面BCC 1B 1,EF ⊂平面BCC 1B 1, ∴PQ ∥平面BCC 1B 1.222r rl S ππ+=2、平面与平面平行的判定定理一个平面内的两条相交直线与另一个平面相交直线,则这两个平面平行.用符号表示为:a ⊂β,b ⊂β,a∩b=P ,a ∥α,b ∥α⇒β∥α(1)运用判定定理证明平面与平面平行时,两直线是相交直线这一条件是关键,缺少这一条件则定理不一定成立.(2)证明面与面平行常转化为证明线面平行,而证线面平行又转化为证线线平行,逐步由空间转化到平面.(3)证明平面与平面平行的方法有:判定定理、线面垂直的性质定理、定义. (4)平面与平面的平行也具有传递性.【例2】 如右图所示,正三棱柱ABC —A 1B 1C 1各棱长为4,E 、F 、G 、H 分别是AB 、AC 、A 1C 1、A 1B 1的中点, 求证:平面A 1EF ∥平面BCGH .思晨分析:本题证面面平行,可证明平面A 1EF 内的两条相交直线分别与平面BCGH 平行,然后根据面面平行的判定定理即可证明. 证明:△ABC 中,E 、F 分别为AB 、AC 的中点, ∴EF ∥BC .又∵EF ⊄ 平面BCGH ,BC ⊂平面BCGH , ∴EF ∥平面BCGH .又∵G 、F 分别为A 1C 1,AC 的中点,∴A 1G FC .∴四边形A 1FCG 为平行四边形. ∴A 1F ∥GC .又∵A 1F ⊄平面BCGH ,CG ⊂平面BCGH , ∴A 1F ∥平面BCGH . 又∵A 1F ∩EF =F ,∴平面A 1EF ∥平面BCGH .3、直线与平面平行的性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线 与该直线平行。
用图形表示为:用符号表示为:a ∥α,a ⊂β,α∩β=b ⇒a ∥b .(1)线面平行的性质定理是证线线平行的一个途径.(2)证线线平行的途径还有:三角形的中位线、梯形的中位线、线面垂直的性质定理、平面内平行线的判定定理、平行公理、平面与平面平行的性质定理等. 【例3】如右图,P为平行四边形ABCD所在平面外一点,M、N分别为AB、PC的中点,平面PAD∩平面PBC=l.(1)判断BC与l的位置关系,并证明你的结论.(2)判断MN与平面PAD的位置关系并证明你的结论.解:(1)BC∥l.证明:∵四边形ABCD为平行四边形,∴BC∥AD.又BC⊄平面PAD,AD⊂平面PAD,∴BC∥平面PAD.又BC⊂平面PBC,平面PBC∩平面PAD=l.∴BC∥l.(2)MN∥平面PAD.证明:取CD的中点E,连结ME、NE.∵M、N分别为AB、PC的中点,∴ME∥AD,NE∥PD.又ME⊄平面PAD,NE⊄平面PAD,∴ME∥平面PAD,NE∥平面PAD,又ME∩NE=E,∴平面MNE∥平面PAD.而MN⊂平面MNE.∴MN∥平面PAD.4.平面与平面平行的性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行.用图形表示为:用符号表示为:α∥β,α∩γ=a,β∩γ=b⇒a∥b【例4】如下图,已知平面α∥平面β∥平面γ,且β位于α与γ之间,点A、D∈α,C、F∈γ,AC∩β=B,DF∩β=E.(1)求证:ABBC=DEEF;(2)设AF交β于M,AD与CF不平行,α与β间的距离为h′,α与γ之间的距离为h,当h′h的值是多少时,S△BEM的面积最大?有关平行的经验总结:(1)经过平面外一点有且只有一个平面和已知平面平行.(2)两个平面平行,其中一个平面内的直线必平行于另一个平面.(3)已知平面外的两条平行线中的一条平行于这个平面,则另一条也平行于这个平面.(4)如果一条直线与两个平行平面中的一个相交,那么它与另一个也相交.(5)一条直线垂直于两个平行平面中的一个平面,那么这条直线必垂直于另一个平面.(6)平行于同一个平面的两个平面平行.(7)平行于同一条直线的两条直线平行.由两个平面平行来推证两条直线平行,则这两条直线必须是这两个平行平面与第三个平面的交线.实战演练1、直线a∥α,则 ( )A.平面α内有且只有一条直线与直线a平行B.平面α内有无数条直线与直线a平行C.平面α内不存在与直线a垂直的直线D.平面α内有且只有一条直线与直线a垂直解析:如右图,在正方体中,直线BC∥平面A′C′,但是平面A′C′内的直线B′C′和A′D′均平行于直线BC,所以A错;直线A′B′⊥BC,直线C′D′⊥BC,即平面A′C′内有两条直线垂直于BC,所以C和D错,应选B.2、已知直线a,b,c及平面α,β,下列条件中,能使a∥b成立的是( ) A.a∥α,b⊂αB.a∥α,b∥αC.a∥c,b∥c D.a∥α,α∩β=b解析:a∥α,b⊂α,则a∥b或a,b异面,A错;a∥α,b∥α,则a∥b或a,b异面或a,b相交,B错;a∥α,α∩β=b,则a∥b或a,b异面,D错;事实上,a∥c,b∥c,则a∥b,这是公理4,所以C正确.3、设l,m,n是三条不同的直线,α,β,γ是三个不同的平面,给出下列命题:①若l∥n且m∥n,则l∥m;②若l∥α且m∥α,则l∥m;③若n∥α且n∥β,则α∥β;④若α∥γ且β∥γ,则α∥β;其中正确命题的序号是________.(把正确命题的序号都填上)解析:根据平行的传递性,显然①④正确;如右图所示,长方体ABCD-A′B′C′D′中,直线AD∥平面A′C′,直线AB∥平面A′C′,但是直线AD与直线AB相交,所以②错;直线AB∥平面A′C′,直线AB∥平面C′D,但是平面A′C′∩平面C′D于直线C′D′,所以③错.答案:①④4、如右图所示,在三棱柱ABC—A1B1C1中,M、N分别是BC和A1B1的中点.求证:MN∥平面AA1C1.证明:设A1C1中点为F,连接NF,FC,∵N为A1B1中点,∴NF∥B1C1,且NF=B1C1,又由棱柱性质知B1C1BC,又M是BC的中点,∴NF MC,∴四边形NFCM为平行四边形.∴MN∥CF,又CF⊂平面AA1C1,MN ⊄平面AA1C1,∴MN∥平面AA1C1.四、直线与平面垂直的判定与性质1.直线与平面垂直2.平面与平面垂直3.直线与平面所成的角4.二面角的有关概念证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面).Array注:线线垂直⇒线面垂直1.线面所成的角:∠叫做这条PA是平面α的一条斜线,AO是PA在平面α内的射影,则锐角PAO直线和这个平面所成的角2.三垂线定理及其逆定理:跟斜线垂直的直线必定与斜线的射影垂直跟斜线射影垂直的直线必定与此斜线垂直:性质定理:垂直于同一平面的两条直线平行。
注:线面垂直⇒线线平行【例1】如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.实战演练1、若平面α外一条直线l 与α内两条直线都垂直,则l 与α的位置关系为( )l C l B l A ..//.αα⊥与α相交 D 。
无法确定2、“直线与平面α内无数条直线垂直”是“直线与平面α垂直”的( ) A .充分不必要条件 B 。
必要不充分条件 C .充分必要条件 D 。
不充分也不必要条件3、判断下列命题是否正确(1) 垂直于同一条直线的两个平面互相平行; (2) 垂直于同一平面的两条直线相互平行; (3) 一条直线在平面内,另一条直线与这个平面垂直,则这两条直线相互垂直。
(4) 已知直线b a ,和平面α,且α⊥⊥a b a ,,则α//b4、对于任意直线l 与平面α,在平面α内必有直线m ,使m 与l ( ) A. 平行 B 。
垂直 C 。
相交 D 。
互为异面直线 5.正方体1111D C B A ABCD -中,求证:(1)⊥AC 平面D D BB 11,(2)⊥D B 1平面B C A 116.已知α⊥a b a ,//,求证α⊥b7.如图,已知PA ⊥平面ABC ,AC ⊥BC ,O 、D 分别为AB 、AC 的中点,求证:OD ⊥平面PAC 。
CBP8.如图,已知PA ⊥矩形ABCD 所在的平面,M 、N 分别是AB 、PC 的中点,求证:MN ⊥CD 。
9.在正方体1111D C B A ABCD -中,证明()111112)1(BC C A B D C A ⊥⊥10.在斜边为AB 的ABC RT ∆中,过点A 作⊥PA 平面PB AE ABC ⊥,于E ,PC AF ⊥于F ,(1)求证:⊥BC 平面PAC ;(2)求证:⊥PB 平面AEF 。
DCBCP。