《高三数学复习课》教学设计 内容:第二节 统计案例
- 格式:doc
- 大小:579.50 KB
- 文档页数:10
最新人教版高中数学选修2-3《统计案例复习》示范教案本章复习本章知识脉络基础知识聚焦1.回归分析是对具有相关关系的两个变量进行统计分析的一种方法,而联系这两个变量之间的关系的方程称为回归方程,下列叙述正确的是( )A .回归方程一定是直线方程B .回归方程一定不是直线方程C .回归方程是变量之间关系的严格刻画D .回归方程是变量之间关系的一种近似刻画 2.在两个变量Y 与X 的回归模型中,选择了4个不同的模型,它们的相关指数R 2如下,其中拟合效果最好的是( )A .R 2=0.98B .R 2=0.80C .R 2=0.50D .R 2=0.25 3.下列关于K 2的说法正确的是( )A .K 2在任何相互独立的问题中都可以用来检验有关还是无关B .K 2的观测值越大,事件相关的可能性就越大C .K 2是用来判断两个分类变量是否有关系的随机变量,只对两个分类变量适合D .当K 2的观测值大于某一数值(比如10.828)时,我们就说两个分类变量X 与Y 一定相关4.当我们建立多个模型拟合某一数据时,为了比较各个模型的拟合效果,我们可通过计算下列哪些量来确定( )①残差平方和;②回归平方和;③相关指数R 2;④相关系数rA .①B .①②C .①②③D .③④5.线性回归方程y ^=b ^x +a ^必经过( )A .(0,0)B .(x ,0)C .(0,y )D .(x ,y ) 学生活动:先用3~5分钟的时间完成上面5个小题,然后再交流答案,相互讨论,并根据题目设计的知识,回顾本章的主要内容.活动结果:1.D 2.A 3.B 4.C 5.D 基础知识回顾:1.回归方程模型及相关检验(1)回归方程中a ^ =y ^ -b ^ x ,b ^=∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2,其中(x ,y )称为样本点的中心.(2)r 具有如下性质:||r ≤1,并且||r 越接近1,线性相关程度越强,||r 越接近0,线性相关程度越弱.(3)为了衡量预报的精确度,我们要进行残差分析,通常σ2越小,预报精度越高. 2.2×2列联表的独立性检验(1)分类变量:变量的不同“值”表示个体所属的不同类别,这类变量称为分类变量.(2)列联表:两个分类变量的频数表称为列联表.有两个分类变量的样本频数列联表称为2×2列联表.(3)独立性检验独立性检验一般采用列联表的形式,每个因素可以分为两个类别.当列联表是2×2列联表的形式时,独立性检验的随机变量K 2的计算公式如下:K 2=n(ac -bd)2(a +b)(c +d)(a +c)(b +d).这里的字母如下表在给定的出错概率上限下,我们可以通过K 的观测值与已知数据的大小关系,来判断分类变量的关系.设计目的:把某一节复习课要复习的基础知识(概念、公式、法则、公理、定理、方法、思想、技能、技巧等)整理成一组问题的形式,通过解答问题,达到引发学生再现某些基础知识,进而牢记某些基础知识的目的,即这里的主要目的是再现本节课所要复习的知识、技能、方法与思想.典型示例类型一:线性回归模型及回归分析例1下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y =b ^x +a ^;(3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤;试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?思路分析:结合统计知识,正确作图和计算.解:(1)散点图如图所示:(2)由系数公式可知,x =4.5,y =3.5,b ^=66.5-4×4.5×3.586-4×4.52=66.5-635=0.7. a ^=3.5-0.7×92=0.35,所以线性回归方程为y =0.7x +0.35;(3)x =100时,y =0.7x +0.35=70.35,所以预测生产100吨甲产品的生产能耗比技术改造前降低19.65吨标准煤.点评:回归分析是对具有相关关系的两个变量进行统计分析的常用方法.采用回归分析基本思想,解决实际问题的基本步骤如下:①明确对象;②画散点图;③选择模型,即通过观察分析散点图确定回归方程的类型,如果观察到数据呈线性关系,则选用线性回归方程y ^=b ^x +a ^;④估算方程,即按一定的规则估计回归方程的参数,如最小二乘法原理;⑤线性相关程度的判定,即通过样本相关系数的大小作出判断:|r|≤1;|r|越接近于1,线性相关程度越强;|r|越接近于0,线性相关程度越弱.变式练习:一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了(1)y 与x 是否具有线性相关关系?(2)如果y 与x 具有线性相关关系,求回归直线方程;(3)根据求出的回归直线方程,预测加工200个零件所用的时间为多少?x =55,y =91.7,∑i =110x 2i =38 500,∑i =110y 2i =87 777,∑i =110x i y i =55 950,因此 r =∑i =110x i y i -10x y(∑i =110x 2i -10x 2)(∑i =110y 2i -10y 2)=55 950-10×55×91.7(38 500-10×552)×(87 777-10×91.72)≈0.999 8,由于r =0.999 8>0.75,因此x 与y 之间有很强的线性相关关系,因而可求回归直线方程. (2)设所求的回归直线方程为y ^=b ^x +a ^,则有b ^=∑i =110x i y i -10x y ∑i =110x 2i -10x2≈0.668,a ^ =y -b ^ x ≈54.96,因此,所求线性回归方程为y ^=0.668x +54.96.(3)这个回归直线方程的意义是当x 每增大1时,y 的值约增加0.668,而54.96是y 不随x 增加而变化的部分,因此,当x =200时,y 的估计值为y ^=0.668×200+54.96=188.56≈189,因此,加工200个零件所用的工时约为189分.类型二:非线性回归模型及回归分析例2在试验中得到变量y 与x 的数据如下:由经验知,y 与1x 之间具有线性相关关系,试求y 与x 之间的回归曲线方程;当x 0=0.038时,预测y 0的值.分析:通过换元转化为线性回归问题.解:令u =1x,由题目所给数据可得下表所示的数据:计算得b ^=0.29,a ^=34.24,∴y ^=34.24+0.29u.故所求回归曲线方程为y ^=34.24+0.29x ,当x 0=0.038时,y ^=34.24+0.290.038≈41.87.点评:非线性回归问题有时并不给出经验公式,此时我们可以由已知的数据画出散点图,并把散点图与已经学习过的各种函数,如幂函数、指数函数、对数函数、二次函数等作比较,挑选出跟这些散点拟合得最好的函数,然后再采用变量的变换,把问题转化为线性回归问题,使问题得以解决.变式练习:某地大气中氰化物浓度测定结果如下:(2)求相关指数.(3)作出残差图,并求残差平方和.解:(1)选取污染源距离为自变量x ,氰化物浓度为因变量y ,作散点图.从表中所给的数据可以看出,氰化物浓度与距离有负的相关关系,用非线性回归方程来拟合,建立y 关于x 的指数回归方程:y ^=0.929 3e-0.009 4x.(2)相关指数R 2=1-∑n i =1(y i -y ^i )2∑ni =1(y i -y )2≈0.991 5.残差平方和∑ni =1 (y i -y ^i )2=0.011 8. 类型三:独立性检验思想例3某些行为在运动员的比赛之间往往被赋予很强的神秘色彩,如有一种说法认为,在进入某乒乓球场比赛前先迈入左脚的运动员就会赢得比赛的胜利.某记者为此追踪了某著名负有关?思路分析:根据列联表,求出K 2的观测值,再进行判断.。
芯衣州星海市涌泉学校§1统计〔二〕【复习目的】通过统计案例,会用样本频率分布估计总体分布;理解频率分布表和频率分布直方图的绘制;掌握用样本的平均数去估计总体期望值;理解方差和标准差的意义,会求样本方差和标准差。
【课前预习】在统计中,为了考察一个总体的情况,通常是从总体中抽取一个样本,用样本的有关情况去估计总体的相应情况。
这种估计大体分为两类,一类是,一类是。
总体平均数(又称为总体期望值)描绘了一个总体的平均程度。
对很多总体来说,它的平均数不易求得,常用容易求得的样本平均数:x=对它进展估计。
方差和标准差计算公式:样本方差:2s=;样本标准差:s=。
方差和标准差的意义:描绘一个样本和总体的的特征数。
标准差大说明波动大。
在频率分布直方图中,各个长方形的面积表示〔〕A.落在相应各组的数据的频数B.相应各组的频率C.该样本所分成的组数D.该样本的样本容量一个容量为40的样本,把它分成六组:第一组到第四组的频数分别是:5,6,7,10,第五组的频率是0.2,那么第六组的频数是,频率为。
假设M个数的平均数是X,N个数的平均数是Y,那么这M+N个数的平均数是〔〕A.2X Y+B.X YM N++C.MX NYM N++D.MX NYX Y++下面哪有个数不为总体特征数的是〔〕A.总体平均数B.总体方差C.总体标准差D.总体样本【典型例题】例1某人有资金10万元,准备用于投资经营甲,乙两种商品,根据统计资料:经营甲经营乙问:应该选择经营哪种商品?例2甲、乙两学生连续五次数学测验成绩如下,甲:80、75、80、90、70;乙:70、70、75、80、65。
问哪一位同学的数学成绩比较稳定?【稳固练习】假设样本a1,a2,a3的方差是2,那么样本2a1+3,2a2+3,2a3+3的方差是。
甲、乙两种棉花,各抽取50根棉花纤维检验长度,样本方差分别是s甲=2,s乙=0.93,这两种棉花质量较好的是。
某校要从两名短跑运发动中选拔一名代表去运动会参赛,为此对甲、乙两名运发动进展了6次短跑成绩测验,结果说明两运发动平均成绩一样,但甲成绩的方差为0.008,乙成绩的方差为0.027,由此可以估计______的成绩比______的成绩稳定,应选派______运发动去参加运动会为佳.样本:1086101381012117 8911912910111212那么频率为0.3的范围是〔〕A.5.5~7.5B.7.5~9.5C.9.5~11.5D.11.5~13.5有甲、乙两种水稻,测得每种水稻各10穴的分蘖数后,计算出样本方差分别为s2=11、s2=,由此可以估计〔〕A.甲种水稻比乙种水稻分蘖整齐B.乙种水稻比甲种水稻分蘖整齐C.甲、乙两种水稻分蘖整齐程度一样D.甲、乙两种水稻分蘖整齐程度不能比较27.为了理解某地区高三学生的身体发育情况,抽查了地区内100名年龄为1岁~18岁的男生的体重情况,频率直方图如右图。
舒城中学高三数学专题复习教与学一体化学案课题:统计与统计案例一、有的放矢、复习轻松1.理解用样本估计总体的思想,并会用样本的数字特征对总体进行估计;理解样本平均数和标准差的意义和作用,并会计算数据平均数和标准差。
2.理解独立性检验的基本思想、方法和初步应用。
3.会用简单随机抽样的方法从总体中抽取样本和了解分层抽样方法和系统抽样方法,并了解随机抽样的等可能性。
4.会作“一表三图”,并能利用“一表三图”分析样本的数字特征。
5.了解最小二乘法的思想和利用已知系数公式建立线性回归方程;了解回归分析的基本思想、方法及其简单应用。
二、知识结构,了然于胸三、复习定位,对症下药 1.重点(1)简单随机抽样的基本方法以及操作步骤。
(2)用茎叶图和频率分布直方图分析样本的基本数字特征。
(3)会根据茎叶图计算样本的基本数字特征;会用频率分布直方图估算样本的基本数字特征.2.难点(1)会用茎叶图和频率分布直方图分析样本的基本数字特征。
(2)体会用样本估计总体的思想;会用样本的基本数字特征估计总体的基本数字特征。
四、例题解析,理解深入【例题1】 某省打算对本省现行的高考方案做出优化改革,使之更好的考查考生的能力和素质,为增强改革的有效性,计划向5000名高三学生、3000名高校学生和4000名高中教师发放相关问卷,拟收回1200份做数据分析,请选择恰当的抽样方法收取这1200份问卷。
【解析】 本题适合采用分层抽样方法: 第一步:确定抽样比:1014000300050001200=++==N n k 第二步:确定每一层的子样本容量:4001014000,3001013000,5001015000321=⨯==⨯==⨯=n n n 第三步:在每一层按简单随机抽样的方法或系统抽样方法抽取相应样本。
采集数据处理数据实际应用【例题2】 为了综合分析我市高三理科数学的教学质量,某研究机构从参加“皖西五校联考(理)”的学生中利用电脑随机选择了20名学生成绩作分析,成绩茎叶图如下: 8 6 9 6 8 10 7 9 9 11 0 2 6 7 8 8 8 12 2 4 8 8 13 3 7 14 5(Ⅰ)请由图中给出的数据,求样本的众数、中位数、平均值和方差。
第二章:统计复习课学习目标1.会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的问题;2.能通过对数据的分析,为合理的决策提供一些依据,认识统计的作用,体会统计思维与确定性思维的差.二.知识梳理回顾本章知识共分为三个单元:1.随机抽样:三种方法------简单随机抽样、系统抽样、分层抽样2.用样本估计总体:两种方法------用样本的频率a:分布估计总体分布、用样本的数字特征估计总体的数字特征.①用样本的频率分布估计总体分布:频率分布直方图的特征.画茎叶图的步骤.②用样本的数字特征估计总体的数字特征:利用频率分布直方图估计众数、中位数、平均数.b:标准差,方差.3.变量间的相关关系:变量之间的相关关系:确定性的函数关系.带有随机性的变量间的相关关系.两个变量的线性相关:a、散点图的概念.b、正相关与负相关的概念.c、线性相关关系.d、线性回归方程. ※ 典型例题1.在一次有奖明信片的100 000个有机会中奖的号码(编号00000—99999)中,邮政部门按照随机抽取的方式确定后两位是23的作为中奖号码,这是运用了________抽样方法.2.某单位有500名职工,其中不到35岁的有125人,35岁~49岁的有280人,50岁以上的有95人.为了了解该单位职工与身体状况有关的某项指标,要从中抽取一个容量为100的样本,应该用_______抽样法.3.某社区有500个家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户,为了调查社会购买力的某项指标,要从中抽取1个容量为100户的样本,记做①;某学校高一年级有12名女排运动员,要从中选出3个调查学习负担情况,记做②.那么完成上述2项调查应采用的抽样方法是( )A.①用简单随机抽样法,②用系统抽样法B.①用分层抽样法,②用简单随机抽样法C.①用系统抽样法,②用分层抽样法D.①用分层抽样法,②用系统抽样法4.某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆.为检验该公司的产品质量,现用分层抽样的方法抽取46辆舒畅行检验,这三种型号的轿车依次应抽取______________辆.5.有一个样本容量为50的样本数据分布如下,[)5.15,5.12 3;[)5.18,5.15 8;[)5.21,5.18 9;[)5.24,5.21 11;[)5.27,5.2410;[)5.30,5.27 6;[)5.33,5.30 3.估计小于30的数据大约占有( ) A.9400 B.600 C.8800 D.1200※ 动手试试1.从甲、乙两班分别任意抽出10名学生进行英语口语测验,其测验成绩的方差分别为S12= 13.2,S22=26.26,则( ).A .甲班10名学生的成绩比乙班10名学生的成绩整齐B .乙班10名学生的成绩比甲班10名学生的成绩整齐C .甲、乙两班10名学生的成绩一样整齐D .不能比较甲、乙两班10名学生成绩的整齐程度2.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输人为15,那么由此求出的平均数与实际平均数的差是( ). A .3.5 B .-3 C .3 D .-0.53.如果一组数中每个数减去同一个非零常数,则这一组数的( ).A .平均数不变,方差不变 B .平均数改变,方差改变 C .平均数不变,方差改变D .平均数改变,方差不变三、总结提升本章主要介绍最基本的获取样本数据的方法,以及集中从样本数据中提取信息的统计方法,其中包括用样本估计总体分布、数字特征和线性回归等内容。
第二章统计本章教材分析现代社会是信息化的社会,数字信息随处可见,因此专门研究如何收集、整理、分析数据的科学——统计学就备受重视.统计学是研究如何收集、整理、分析数据的科学,它可以为人们制定决策提供依据.在客观世界中,需要认识的现象无穷无尽.要认识某现象的第一步就是通过观察或试验取得观测资料,然后通过分析这些资料来认识此现象.如何取得有代表性的观测资料并能够正确地加以分析,是正确地认识未知现象的基础,也是统计所研究的基本问题.本章主要介绍最基本的获取样本数据的方法,以及几种从样本数据中提取信息的统计方法,其中包括用样本估计总体分布、数字特征和线性回归等内容.从义务教育阶段来看,统计知识的教学从小学到初中分为三个阶段,在每个阶段都要学习收集、整理、描述和分析数据等处理数据的基本方法,教学目标随着学段的升高逐渐提高.在义务教育阶段的统计与概率知识的基础上,《课程标准》要求通过实际问题及情境,进一步介绍随机抽样、样本估计总体、线性回归的基本方法,了解用样本估计总体及其特征的思想,体会统计思维与确定性思维的差异;通过实习作业,较为系统地经历数据收集与处理的全过程,进一步体会统计思维与确定性思维的差异.2.1.1 简单随机抽样整体设计教学分析教材是以探究一批小包装饼干的卫生是否达标为问题导向,逐步引入简单随机抽样概念.并通过实例介绍了两种简单随机抽样方法:抽签法和随机数法.值得注意的是为了使学生获得简单随机抽样的经验,教学中要注意增加学生实践的机会.例如,用抽签法决定班里参加某项活动的代表人选,用随机数法从全年级同学中抽取样本计算平均身高等等.三维目标1.能从现实生活或其他学科中推出具有一定价值的统计问题,提高学生分析问题的能力.2.理解随机抽样的必要性和重要性,提高学生学习数学的兴趣.3.学会用抽签法和随机数法抽取样本,培养学生的应用能力.重点难点教学重点:理解随机抽样的必要性和重要性,用抽签法和随机数法抽取样本.教学难点:抽签法和随机数法的实施步骤.课时安排1课时教学过程导入新课抽样的方法很多,某个抽样方法都有各自的优越性与局限性,针对不同的问题应当选择适当的抽样方法.教师点出课题:简单随机抽样.推进新课新知探究提出问题(1)在1936年美国总统选举前,一份颇有名气的杂志(Literary Digest)的工作人员做了一次民意测验.调查兰顿(ndon)(当时任堪萨斯州州长)和罗斯福(F.D.Roosevelt)(当时的总统)中谁将当选下一届总统.为了了解公众意向,调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表(注意在1936年电话和汽车只有少数富人拥有).通过分析收回的调查表,显示兰顿非常受欢迎,于是此杂志预测兰顿将在选举中获胜.(2)假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本.那么,应当怎样获取样本呢?(3)请总结简单随机抽样的定义.讨论结果:(1)预测结果出错的原因是:在民意测验的过程中,即抽取样本时,抽取的样本不具有代表性.1936年拥有电话和汽车的美国人只是一小部分,那时大部分人还很穷.其调查的结果只是富人的意见,不能代表穷人的意见.由此可以看出,抽取样本时,要使抽取出的样本具有代表性,否则调查的结果与实际相差较大.(2)要对这批小包装饼干进行卫生达标检查,只能从中抽取一定数量的饼干作为检验的样本,用样本的卫生情况来估计这批饼干的卫生情况.如果对这批饼干全部检验,那么费时费力,等检查完了,这批饼干可能就超过保质期了,再就是会破坏这批饼干的质量,导致无法出售.获取样本的方法是:将这批小包装饼干,放入一个不透明的袋子中,搅拌均匀,然后不放回地摸取(这样可以保证每一袋饼干被抽到的可能性相等),这样就可以得到一个样本.通过检验样本来估计这批饼干的卫生情况.这种抽样方法称为简单随机抽样.(3)一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.最常用的简单随机抽样方法有两种:抽签法和随机数法.提出问题(1)抽签法是大家最熟悉的,也许同学们在做某种游戏,或者选派一部分人参加某项活动时就用过抽签法.例如,高一(2)班有45名学生,现要从中抽出8名学生去参加一个座谈会,每名学生的机会均等.我们可以把45名学生的学号写在小纸片上,揉成小球,放到一个不透明袋子中,充分搅拌后,再从中逐个抽出8个号签,从而抽出8名参加座谈会的学生.请归纳抽签法的定义.总结抽签法的步骤.(2)你认为抽签法有什么优点和缺点?当总体中的个体数很多时,用抽签法方便吗?(3)随机数法是利用随机数表或随机骰子或计算机产生的随机数进行抽样.我们仅学习随机数表法即利用随机数表产生的随机数进行简单随机抽样的方法.怎样利用随机数表产生样本呢?下面通过例子来说明.假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验.利用随机数表抽取样本时,可以按照下面的步骤进行.第一步,先将800袋牛奶编号,可以编为000,001, (799)第二步,在随机数表中任选一个数.例如选出第8行第7列的数7(为了便于说明,下面摘取了附表1的第6行至第10行.)16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5457 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785<799,说明号码785在总体内,将它取出;继续向右读,得到916,由于916>799,将它去掉.按照这种方法继续向右读,又取出567,199,507,…,依次下去,直到样本的60个号码全部取出.这样我们就得到一个容量为60的样本. 请归纳随机数表法的步骤.(4)当N=100时,分别以0,3,6为起点对总体编号,再利用随机数表抽取10个号码.你能说出从0开始对总体编号的好处吗?(5)请归纳随机数表法的优点和缺点.讨论结果:(1)一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.抽签法的步骤是:1°将总体中个体从1—N编号;2°将所有编号1—N写在形状、大小相同的号签上;3°将号签放在一个不透明的容器中,搅拌均匀;4°从容器中每次抽取一个号签,并记录其编号,连续抽取n次;5°从总体中将与抽取到的签的编号相一致的个体取出.(2)抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,如果标号的签搅拌得不均匀,会导致抽样不公平.因此说当总体中的个体数很多时,用抽签法不方便.这时用随机数法.(3)随机数表法的步骤:1°将总体中个体编号;2°在随机数表中任选一个数作为开始;3°规定从选定的数读取数字的方向;4°开始读取数字,若不在编号中,则跳过,若在编号中则取出,依次取下去,直到取满为止;5°根据选定的号码抽取样本.(4)从0开始编号时,号码是00,01,02,…,99;从3开始编号时,号码是003,004,…,102;从6开始编号时,号码是006,007,…,105.所以以3,6为起点对总体编号时,所编的号码是三位,而从0开始编号时,所编的号码是两位,在随机数表中读数时,读取两位比读取三位要省时,所以从0开始对总体编号较好.(5)综上所述可知,简单随机抽样有操作简便易行的优点,在总体个数不多的情况下是行之有效的.但是,如果总体中的个体数很多时,对个体编号的工作量太大,即使用随机数表法操作也并不方便快捷.另外,要想“搅拌均匀”也非常困难,这就容易导致样本的代表性差.应用示例例1 某车间工人加工一种轴共100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?分析:简单随机抽样有两种方法:抽签法和随机数表法,所以有两种思路.解法一(抽签法):①将100件轴编号为1,2, (100)②做好大小、形状相同的号签,分别写上这100个号码;③将这些号签放在一个不透明的容器内,搅拌均匀;④逐个抽取10个号签;⑤然后测量这10个号签对应的轴的直径的样本.解法二(随机数表法):①将100件轴编号为00,01,…99;②在随机数表中选定一个起始位置,如取第22行第1个数开始(见教材附录1:随机数表);③规定读数的方向,如向右读;④依次选取10个为68,34,30,13,70,55,74,77,40,44,则这10个号签相应的个体即为所要抽取的样本.点评:本题主要考查简单随机抽样的步骤.抽签法的关键是为了保证每个个体被抽到的可能性相等而必须搅拌均匀,当总体中的个体无差异,并且总体容量较小时,用抽签法;用随机数表法读数时,所编的号码是几位,读数时相应地取连续的几个数字,当总体中的个体无差异,并且总体容量较多时,用抽签法.变式训练1.下列抽样的方式属于简单随机抽样的有____________.(1)从无限多个个体中抽取50个个体作为样本.(2)从1 000个个体中一次性抽取50个个体作为样本.(3)将1 000个个体编号,把号签放在一个足够大的不透明的容器内搅拌均匀,从中逐个抽取50个个体作为样本.(4)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子.(5)福利彩票用摇奖机摇奖.解析:(1)中,很明显简单随机抽样是从有限多个个体中抽取,所以(1)不属于;(2)中,简单随机抽样是逐个抽取,不能是一次性抽取,所以(2)不属于;很明显(3)属于简单随机抽样;(4)中,抽样是放回抽样,但是简单随机抽样是不放回抽样,所以(4)不属于;很明显(5)属于简单随机抽样.答案:(3)(5)2.要从某厂生产的30台机器中随机抽取3台进行测试,写出用抽签法抽样样本的过程.分析:由于总体容量和样本容量都较小,所以用抽签法.解:抽签法,步骤:第一步,将30台机器编号,号码是01,02, (30)第二步,将号码分别写在一张纸条上,揉成团,制成号签.第三步,将得到的号签放入不透明的袋子中,并充分搅匀.第四步,从袋子中依次抽取3个号签,并记录上面的编号.第五步,所得号码对应的3台机器就是要抽取的样本.例 2 人们打桥牌时,将洗好的扑克牌随机确定一张为起始牌,这时按次序搬牌时,对任何一家来说,都是从52张牌中抽取13张牌,问这种抽样方法是否是简单随机抽样?解:简单随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始张,其他各张牌虽然是逐张起牌,但是各张在谁手里已被确定,所以不是简单随机抽样.点评:判断简单随机抽样时,要紧扣简单随机抽样的特征:逐个、不放回抽取且保证每个个体被抽到的可能性相等.变式训练现在有一种“够级”游戏,其用具为四副扑克,包括大小鬼(又称为花)在内共216张牌,参与人数为6人并坐成一圈.“够级”开始时,从这6人中随机指定一人从已经洗好的扑克牌中随机抽取一张牌(这叫开牌),然后按逆时针方向,根据这张牌上的数字来确定谁先抓牌,这6人依次从216张牌中抓取36张牌,问这种抓牌方法是否是简单随机抽样?解:在这里只有抽取的第一张扑克牌是随机抽取的,其他215张牌已经确定,即这215张扑克牌被抽取的可能性与第一张扑克牌可能性不相同,所以不是简单随机抽样.知能训练1.为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是( )A.总体是240B.个体C.样本是40名学生D.样本容量是40答案:D2.为了了解所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是( )A.总体B.个体C.总体的一个样本D.样本容量答案:C3.一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体被抽到的可能性是____________. 答案:101 4.为了检验某种产品的质量,决定从40件产品中抽取10件进行检查,如何用简单随机抽样抽取样本? 解:方法一(抽签法):①将这40件产品编号为1,2, (40)②做好大小、形状相同的号签,分别写上这40个号码;③将这些号签放在一个不透明的容器内,搅拌均匀;④连续抽取10个号签;⑤然后对这10个号签对应的产品检验.方法二(随机数表法):①将40件产品编号,可以编为00,01,02,…,38,39;②在随机数表中任选一个数作为开始,例如从第8行第9列的数5开始,;③从选定的数5开始向右读下去,得到一个两位数字号码59,由于59>39,将它去掉;继续向右读,得到16,将它取出;继续下去,又得到19,10,12,07,39,38,33,21,随后的两位数字号码是12,由于它在前面已经取出,将它去掉,再继续下去,得到34.至此,10个样本号码已经取满,于是,所要抽取的样本号码是16,19,10,12,07,39,38,33,21,34.拓展提升现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数法设计抽样方案?分析:重新编号,使每个号码的位数相同.解:方法一:第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数“9”,向右读. 第三步,从数“9”开始,向右读,每次读取三位,凡不在010—600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.第四步,以上这6个号码所对应的6个元件就是所要抽取的对象.方法二:第一步,将每个元件的编号加100,重新编号为110,111,112,...,199,200, (700)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第8行第1个数“6”,向右读. 第三步,从数“6”开始,向右读,每次读取三位,凡不在110—700中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到630,163,567,199,507,175.第四步,这6个号码分别对应原来的530,63,467,99,407,75.这些号码对应的6个元件就是要抽取的对象.课堂小结1.简单随机抽样是一种最简单、最基本的抽样方法,简单随机抽样有两种选取个体的方法:放回和不放回,我们在抽样调查中用的是不放回抽样,常用的简单随机抽样方法有抽签法和随机数法.2.抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平,随机数表法的优点与抽签法相同,缺点是当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容量较小的抽样类型.3.简单随机抽样每个个体入样的可能性都相等,均为Nn ,但是这里一定要将每个个体入样的可能性、第n 次每个个体入样的可能性、特定的个体在第n 次被抽到的可能性这三种情况区分开来,避免在解题中出现错误.作业课本本节练习2、3.设计感想本节教学设计以课程标准的要求为指导,重视引导学生参与到教学中,体现了学生的主体地位.同时,根据高考的要求,适当拓展了教材,做到了用教材,而不是教教材.整体设计教学分析教材通过探究“学生对教师教学的意见”过程,介绍了一种最简单的系统抽样——等距抽样,并给出实施等距抽样的步骤.值得注意的是在教学过程中,适当介绍当n N 不是整数时,应如何实施系统抽样. 三维目标1.理解系统抽样,会用系统抽样从总体中抽取样本,了解系统抽样在实际生活中的应用,提高学生学习数学的兴趣.2.通过自学课后“阅读与思考”,让学生进一步了解虚假广告是淡化总体和抽样方法、强化统计结果来夸大产品的有效性,以提高学生理论联系实际的能力.重点难点教学重点:实施系统抽样的步骤.教学难点:当nN 不是整数,如何实施系统抽样. 课时安排1课时教学过程导入新课思路1上一节我们学习了简单随机抽样,那么简单随机抽样的特点是什么?简单随机抽样是最简单和最基本的抽样方法,当总体中的个体较少时,常采用简单随机抽样.但是如果总体中的个体较多时,怎样抽取样本呢?教师点出课题:系统抽样.思路2某中学有5 000名学生,打算抽取200名学生,调查他们对奥运会的看法,采用简单随机抽样时,无论是抽签法还是随机数法,实施过程很复杂,需要大量的人力和物力,那么有没有更为方便可行的抽样方法呢?这就是今天我们学习的内容:系统抽样.推进新课新知探究提出问题(1)某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?(2)请归纳系统抽样的定义和步骤.(3)系统抽样有什么特点?讨论结果:(1)可以将这500名学生随机编号1—500,分成50组,每组10人,第1组是1—10,第二组11—20,依次分下去,然后用简单随机抽样在第1组抽取1人,比如号码是2,然后每隔10个号抽取一个,得到2,12,22, (492)这样就得到一个容量为50的样本.这种抽样方法称为系统抽样.(2)一般地,要从容量为N 的总体中抽取容量为n 的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样.其步骤是:1°采用随机抽样的方法将总体中的N 个个体编号;2°将整体按编号进行分段,确定分段间隔k(k ∈N ,l ≤k);3°在第1段用简单随机抽样确定起始个体的编号l (l ∈N ,l ≤k );4°按照一定的规则抽取样本.通常是将起始编号l 加上间隔k 得到第2个个体编号(l+k),再加上k 得到第3个个体编号(l+2k),这样继续下去,直到获取整个样本.说明:从系统抽样的步骤可以看出,系统抽样是把一个问题划分成若干部分分块解决,从而把复杂问题简单化,体现了数学转化思想.(3)系统抽样的特点是:1°当总体容量N 较大时,采用系统抽样;2°将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,这时间隔一般为k =[n N ]. 3°预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号.应用示例例1 为了了解参加某种知识竞赛的1 000名学生的成绩,应采用什么抽样方法较恰当?简述抽样过程. 解:适宜选用系统抽样,抽样过程如下:(1)随机地将这1 000名学生编号为1,2 ,3, (1000)(2)将总体按编号顺序均分成50部分,每部分包括20个个体.(3)在第一部分的个体编号1,2,3,…,20中,利用简单随机抽样抽取一个号码,比如18.(4)以18为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:18,38,58,…,978,998.点评:系统抽样与简单随机抽样一样,每个个体被抽到的概率都相等,从而说明系统抽样是等概率抽样,它是公平的.系统抽样是建立在简单随机抽样的基础之上的,当将总体均分后对每一部分进行抽样时,采用的是简单随机抽样.变式训练1.下列抽样不是系统抽样的是( )A.从标有1—15号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样B.工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验C.搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止D.电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈分析:C 中,因为事先不知道总体,抽样方法不能保证每个个体按事先规定的概率入样,所以不是系统抽样. 答案:C2.某校高中三年级的295名学生已经编号为1,2,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程.分析:按1∶5分段,每段5人,共分59段,每段抽取一人,关键是确定第1段的编号.解:抽样过程是:(1)按照1∶5的比例,应该抽取的样本容量为295÷5=59,我们把259名同学分成59组,每组5人,第一组是编号为1—5的5名学生,第2组是编号为6—10的5名学生,依次下去,59组是编号为291—295的5名学生;(2)采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为l(l ≤5);(3)按照一定的规则抽取样本.抽取的学生编号为l+5k(k=0,1,2,…,58),得到59个个体作为样本,如当k=3时的样本编号为3,8,13,…,288,293.例2 为了了解参加某种知识竞赛的1 003名学生的成绩,请用系统抽样抽取一个容量为50的样本. 分析:由于501003不是整数,所以先从总体中随机剔除3个个体. 步骤:(1)随机地将这1003个个体编号为1,2,3, (1003)(2)利用简单随机抽样,先从总体中剔除3个个体(可利用随机数表),剩下的个体数 1 000能被样本容量50整除,然后再重新编号为1,2,3, (1000)(3)确定分段间隔.501000=20,则将这1 000名学生分成50组,每组20人,第1组是1,2,3,...,20;第2组是21,22,23,...,40;依次下去,第50组是981,982, (1000)(4)在第1组用简单随机抽样确定第一个个体编号l(l ≤20).(5)按照一定的规则抽取样本.抽取的学生编号为l+20k (k=0,1,2,...,19),得到50个个体作为样本,如当k=2时的样本编号为2,22,42, (982)点评:如果遇到nN 不是整数的情况,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除.变式训练1.某校高中三年级有1 242名学生,为了了解他们的身体状况,准备按1∶40的比例抽取一个样本,那么( )A.剔除指定的4名学生B.剔除指定的2名学生C.随机剔除4名学生D.随机剔除2名学生分析:为了保证每名学生被抽到的可能性相等,必须是随机剔除学生,由于401242的余数是2,所以要剔除2名学生.答案:D2.从2 005个编号中抽取20个号码,采用系统抽样的方法,则抽样的分段间隔为( )A.99B.99.5C.100D.100.5答案:C例3 从已编号为1—50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是( )A.5,10,15,20,25B.3,13,23,33,43C.1,2,3,4,5D.2,4,6,16,32分析:用系统抽样的方法抽取到的导弹编号应该为k,k+d,k+2d,k+3d,k+4d,其中d=50/5=10,k 是1到10中用简单随机抽样方法得到的数,因此只有选项B 满足要求.答案:B点评:利用系统抽样抽取的样本的个体编号按从小到大的顺序排起来,从第2个号码开始,每一个号码与前一个号码的差都等于同一个常数,这个常数就是分段间隔.变式训练某小礼堂有25排座位,每排20个座位,一次心理学讲座,礼堂中坐满了学生,会后为了了解有关情况,留下座位号是15的所有25名学生进行测试,这里运用的是_________抽样方法.答案:系统知能训练1.从学号为0—50的高一某班50名学生中随机选取5名同学参加数学竞赛,采用系统抽样的方法,则所选5名学生的学号不可能是( )A.1,2,3,4,5B.5,15,25,35,45C.2, 12, 22, 32, 42D.9,19,29,39,49答案:A2.采用系统抽样从个体数为83的总体中抽取一个样本容量为10的样本,那么每个个体入样的可能性为( ) A.831 B.801 C.101 D.不相等 答案:A3.某单位的在岗工人为624人,为了调查工作上班时从家到单位的路上平均所用的时间,决定抽取10%的工人调查这一情况,如何采用系统抽样的方法完成这一抽样?答案:先随机剔除4人,再按系统抽样抽取样本.4.某学校有学生3 000人,现在要抽取100人组成夏令营,怎样抽取样本?分析:由于总体人数较多,且无差异,所以按系统抽样的步骤来进行抽样.解:按系统抽样抽取样本,其步骤是:①将3 000名学生随机编号1,2, (3000)②确定分段间隔k =1003000=30,将整体按编号进行分100组,第1组1—30,第2组31—60,依次分下去,第100组2971—3000;③在第1段用简单随机抽样确定起始个体的编号l (l ∈N ,0≤l ≤30);④按照一定的规则抽取样本,通常是将起始编号l 加上间隔30得到第2个个体编号l+30,再加上30,得到第3个个体编号l+60,这样继续下去,直到获取整个样本.比如l =15,则抽取的编号为:15,45,75, (2985)这些号码对应的学生组成样本.拓展提升将参加数学竞赛的1 000名学生编号如下000,001,002,…,999,打算从中抽取一个容量为50的样本,按系统抽样方法分成50个部分,第一组编号为000,002,…,019,如果在第一组随机抽取的一个号码为015,则抽取的第40个号码为_____________.分析:利用系统抽样抽取样本,在第一组抽取号码为l =015,分段间隔为k =501000=20,则在第i 组中抽取的号码为015+20(i -1).则抽取的第40个号码为015+(40-1)×20=795.。
某某省赣马高级中学高三数学统计初步复习学案002班级某某● 知识梳理1.频率分布:用样本估计总体,是研究统计问题的基本思想方法,样本中所有数据(或数据组)的频数和样本容量的比,就是该数据的频率.所有数据(或数据组)的频率的分布变化规律叫做样本的频率分布.可以用样本频率表、样本频率分布条形图或频率分布直方图来表示.2.总体分布:从总体中抽取一个个体,就是一次随机试验,从总体中抽取一个容量为n 的样本,就是进行了n 次试验,试验连同所出现的结果叫随机事件,所有这些事件的概率分布规律称为总体分布.3.解决总体分布估计问题的一般程序如下:(1)先确定分组的组数(最大数据与最小数据之差除以组距得组数);(2)分别计算各组的频数及频率(频率=总数频数);(3)画出频率分布直方图,并作出相应的估计.4.条形图是用其高度表示取各值的频率;直方图是用图形面积的大小表示在各区间内取值的频率;累积频率分布图是一条折线,利用任意两端值的累积频率之差表示样本数据在这两点值之间的频率.5.平均数的计算方法(1)如果有n 个数据x 1,x 2,…,x n ,那么x =n1(x 1+x 2+…+x n )叫做这n 个数据的平均数,x 读作“x 拔”.(2)当一组数据x 1,x 2,…,x n 的各个数值较大时,可将各数据同时减去一个适当的常数a ,得到x 1′=x 1-a ,x 2′=x 2-a ,…,x n ′=x n -a ,那么,x =x ' +a .(3)加权平均数:如果在n 个数据中,x 1出现f 1次,x 2出现f 2次,…,x k 出现f k 次(f 1+f 2+…+f k =n ),那么x =nf x f x f x k k +++ 2211.6.方差的计算方法(1)对于一组数据x 1,x 2,…,x n ,s 2=n 1[(x 1-x )2+(x 2-x )2+…+(x n -x )2]叫做这组数据的方差,而s 叫做标准差.(2)公式s 2=n1[(x 12+x 22+…+x n 2)-n x 2]. (3)当一组数据x 1,x 2,…,x n 中的各数较大时,可以将各数据减去一个适当的常数a ,得到x 1′=x 1-a ,x 2′=x 2-a ,…,x n ′=x n -a .则s 2=n1[(x 1′2+x 2′2+…+x n ′2)-n 2x '].7.总体平均值和方差的估计人类的长期实践和理论研究都充分证明了用样本的平均数估计总体平均值,用样本方差估计总体方差是可行的,而且样本容量越大,估计就越准确.●典型例题例1:有一个容量为100的样本,数据的分组及各组的频数如下:[);6,5.15,5.12[);16,5.18,5.15[);18,5.21,5.18[);22,5.24,5.21[);20,5.27,5.24[);10,5.30,5.27[)8,5.33,5.30(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)估计数据小于30.5的概率。
复习课(二) 统计抽样方法高考对抽样方法的考查主要是基础题,难度不大.系统抽样和分层抽样是考查的热点,考查形式以填空题为主.[考点精要]1.简单随机抽样(1)特征:①一个一个不放回的抽取.②每个个体被抽到可能性相等.(2)常用方法:①抽签法.②随机数表法.2.系统抽样(1)适用环境:当总体中个数较多时,可用系统抽样.(2)操作步骤:将总体平均分成几个部分,再按照一定方法从每个部分抽取一个个体作为样本.3.分层抽样(1)适用范围:当总体由差异明显的几个部分组成时可用分层抽样.(2)操作步骤:将总体中的个体按不同特点分成层次比较分明的几部分,然后按各部分在总体中所占的比实施抽样.[典例](1)(山东高考改编)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷B的人数为________.(2)(江苏高考)某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.(3)已知某地区中小学生人数和近视情况分别如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为______.[解析] (1)抽取号码的间隔为96032=30,抽取的号码依次为9,39,69,…,939,落入区间[451,750]的有459,489,…,729共10人,即做B 卷的有10人.(2)设应从高二年级抽取x 名学生,则x 50=310,∴x =15.(3)该地区中小学生人数为3 500+2 000+4 500=10 000,则样本容量为10 000×2%=200,其中抽取高中生近视眼人数为2 000×2%×50%=20. [答案] (1)10 (2)15 (3)200,20 [类题通法](1)系统抽样中,易忽视抽取的样本数也就是分段的段数,当Nn 不是整数时,注意剔除.(2)分层抽样中,易忽视每层抽取的个体的比例是相同的.[题组训练]1.为了解1 000名学生的学习情况,采用系统抽样的方法从中抽取容量为40的样本,则分段的间隔为________.解析:根据系统抽样的特点可知,分段间隔为1 00040=25.答案:252.某高校甲、乙、丙、丁四个专业分别有150,150,400,300名学生.为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为________.解析:抽样比为40150+150+400+300=4100.因此丙专业应抽取4100×400=16(人).答案:163.(北京高考)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为______.类别 人数 老年教师 900 中年教师 1 800 青年教师 1 600 合计4 300解析:设该样本中老年教师人数为x ,则有x 900=3201 600,故x =180.答案:180高考对各种统计图表的考查主要是基础题,频率分布条形图和直方图是考查的热点,但也要注意关注茎叶图。
【摘要】欢迎来到查字典数学网高三数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习习惯和能力。
因此小编在此为您编辑了此文:高三数学理科复习教案:统计案例复习教学案希望能为您的提供到帮助。
本文题目:高三数学理科复习教案:统计案例复习教学案高考导航考试要求重难点击命题展望1.理解随机抽样的必要性和重要性,会用简单随机抽样方法从总体中抽取样本,了解分层抽样和系统抽样方法.2.了解分布的意义和作用,会列频率分布表,会画频率分布直方图、茎叶图,理解它们各自的特点,理解样本数据标准差的意义和作用,会计算数据标准差,能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释,会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想,会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.3.会作两个有关联变量的散点图,会利用散点图认识变量间的相关关系,了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程,了解回归的基本思想、方法及其简单应用.4.了解独立性检验(只要求22列联表)的基本思想、方法及其简单应用. 本章重点:1.三种抽样方法的区别、联系及操作步骤.2.样本频率分布直方图和茎叶图.3.用样本估计总体的思想.本章难点:回归直线方程与独立性检验. 统计多数以选择题和填空题形式考查,大题只在个别省的考题中出现过.难度属于基础题和中档题.考点往往集中体现在抽样方法、频率分布图表这两个方面.另外,应注意统计题反映出来的综合性与应用性,如与数列、概率等的综合,用统计方法提供决策、制定方案等,以此考查学生搜集处理信息及分析解决问题的能力.知识网络13.1 抽样方法与用样本估计总体典例精析题型一抽样方法【例1】某校有教师200人,男学生1 200人,女学生1 000人,用分层抽样的方法从所有师生中抽取一个容量为n的样本,已知女学生抽取的人数为80人,则n的值为 .【解析】根据分层抽样的意义,n200+1 200+1 000=801 000,解得n=192.【点拨】现实中正确的分层抽样一般有三个步骤:首先,辨明突出的统计特征和分类.其次,确定每个分层在总体上的比例.利用这个比例,可计算出样本中每组(层)应抽取的人数.最后,必须从每层中抽取独立简单随机样本.【变式训练1】从某厂生产的802辆轿车中随机抽取80辆测试某项性能.请合理选择抽样方法进行抽样,并写出抽样过程.【解析】第一步,将802辆轿车用随机方式编号.第二步,从总体中剔除2辆(剔除方法可用随机数表法),将剩余的800辆轿车重新编号(分别为001,002,003,,800),并分成80段.第三步,在第一段001,002,,010这十个编号中用简单随机抽样抽出一个(如005)作为起始号码.第四步,将编号为005,015,025,,795的个体抽出,组成样本.题型二频率分布直方图【例2】(2 010湖南)如图是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图.(1)求直方图中x的值;(2)若将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用水量在3至4吨的居民数X的分布列和数学期望.【解析】(1)依题意及频率分布直方图知0 .02+0.1+x+0.37+0.39=1,解得x=0.12.(2)由题意知X~B(3,0.1),因此P(X=0)=C030.93=0.729,P(X=1)=C130.10.92=0.243,P(X=2)=C230.120.9 =0.027,P(X=3)=C330.13=0.001,故随机变量X的分布列为X 0 1 2 3P 0.729 0.243 0.027 0. 001X 的数学期望为E(X)=30.1=0.3.(或E(X)=10.243+20.027+30.001=0.3)【点拨】从频率分布直方图读取数据时,要特别重视组距,纵坐标是频率除以组距,故长方形的面积之和为1.【变式训练2】如图是容量为100的样本的频率分布直方图,试根据数据填空:(1)样本数据落在[10,14)内的频数为 ;(2)样本数据落在[6,10)内的频率为 ;(3)总体落在[2,6)内的频率为 .【解析】(1)样本落在[10,14)内的频数为0.094100=36.(2)样本落在[6,10)内的频率为0.084=0.32.(3)样本落在[2,6)内的频率为0.024=0.08,所以总体落在[2,6)内的频率约为0.08.题型三平均数、方差的计算【例3】甲、乙两人在相同条件下各射靶10次,每次命中环数如下:甲 4 7 10 9 5 6 8 6 8 8乙 7 8 6 8 6 7 8 7 5 9试问谁10次射靶的情况较稳定?【解析】本题要计算两样本的方差,当样本平均数不是整数,且样本数据不大时,可用简化公式计算方差.=110(4+7++8)=7.1,=110(7+8++9)=7.1,s2甲=110(42+72++82-107.12)=3.09,s2乙=110(72+82++92-107.12)=1.29,因为s2甲s2乙,所以乙10次射靶比甲10次射靶情况稳定.【点拨】平均数反映了数据取值的平均水平;标准差、方差描述了一组数据围绕平均数波动的大小,标准差、方差越大,数据的离散程度就越大,越不稳定;标准差、方差越小,数据的离散程度越小,越稳定.【变式训练3】(2010北京市东城区)在一次数学统考后,某班随机抽取10名同学的成绩进行样本分析,获得成绩数据的茎叶图如右图.(1)计算此样本的平均成绩及方差;(2)现从此样本中随机抽出2名学生的成绩,设抽出分数为90分以上的人数为X,求随机变量X的分布列和均值.【解析】(1)样本的平均成绩=80;方差为s2=110[(92-80)2+(98-80)2+(98-80)2+(85-80)2+(85-80)2+(74-80)2+(74-80)2+(74-80)2 +(60-80)2+(60-80)2]=175.(2)由题意,随机变量X=0,1,2.P(X=0)=C27C210=715,P(X=1)=C13C17C210=715,P(X=2)=115.随机变量X的分布列为X 0 1 2PE(X)=0715+1715+2115=35.总结提高1.统计的基本思想是用样本估计总体.这就要求样本具有很好的代表性,而样本良好客观的代表性,则完全依赖抽样方法.2.三种抽样方法中简单随机抽样是最基本的抽样方法,是其他两种方法的基础,它们的共同点都是等概率抽样.适用范围不同,要根据总体的具体情况选用不同的方法.3.对于总体分布,总是用样本的频率分布对它进行估计.4.用样本估计总体,一般分成以下几个步骤:先求样本数据中的最大值和最小值(称为极值),再确定合适的组数和组距,确定分点(每个分点只属于一组,故一般采用半开半闭区间),然后列出频率分布表(准确,查数据容易),画频率分布直方图.13.2 两变量间的相关性、回归分析和独立性检验典例精析题型一求回归直线方程【例1】下表是关于某设备的使用年限(年)和所需要的维修费用(万元)的几组统计数据:x 2 3 4 5 6y 2.2 3.8 5.5 6.5 7.0(1)若y对x呈线性相关关系,求出y关于x的线性回归方程y= x+ ;(2)估计使用年限为10年时,维修费用为多少?【解析】(1)因为 xiyi=112.3, x2i=4+9+16+25+36=90,且 =4,=5,n=5,所以 =112.3-54590-516=12.310=1.23, =5-1.234=0.08,所以回归直线方程为y=1.23x+0.08.(2)当x=10时,y=1.2310+0.08=12.38,所以估计当使用10年时,维修费用约为12.38万元.【点拨】当x与y呈线性相关关系时,可直接求出回归直线方程,再利用回归直线方程进行计算和预测.【变式训练1】某工厂经过技术改造后,生产某种产品的产量(吨)与相应的生产能耗(吨标准煤)有如下几组样本数据.x 3 4 5 6y 2.5 3 4 4.5据相关性检验,y与x具有线性相关关系,通过线性回归分析,求得回归直线的斜率为0.7,那么y关于x 的回归直线方程是.【解析】先求得 =4.5, =3.5,由 =0.7x+a过点( , ),则a=0.35,所以回归直线方程是 =0.7x+0.35.题型二独立性检验【例2】研究小麦种子经灭菌与否跟发生黑穗病的关系,经试验观察,得到数据如下表所示:种子灭菌种子未灭菌合计黑穗病 26 184 210无黑穗病 50 200 250合计 76 384 460试按照原试验目的作统计分析推断.【解析】由列联表得:a=26,b=1 84,c=50,d=200,a+b=210,c+d=250,a+c=76,b+d=384,n=460.所以K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)=460(26200-18450)2210250763844.804,由于K24.8043.841,所以有95%的把握认为种子灭菌与否与小麦发生黑穗病是有关系的.【变式训练2】(2010东北三省三校模拟)某研究小组为了研究中学生的身体发育情况,在某学校随机抽出20名15至16周岁的男生,将他们的身高和体重制成22的列联表,根据列联表的数据,可以有 %的把握认为该学校15至16周岁的男生的身高和体重之间有关系.超重不超重合计偏高 4 1 5不偏高 3 12 15合计 7 13 20附:独立性检验临界值表P(K2k0) 0.025 0.010 0.005 0.001k0 5.024 6.635 7.879 10.828(独立性检验随机变量K2值的计算公式:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d))【解析】由表可得a+b=5,c+d=1 5,a+c=7,b+d=13,ad=48,bc=3,n=20,运用独立性检验随机变量K2值的计算公式得K2=20(48-3)2515713=540915.934,由于K25.9345.024,所以有97.5%的把握认为该学校15至16周岁的男生的身高和体重之间有关系.总结提高1.在研究两个变量之间是否存在某种关系时,必须从散点图入手.2.样本的随机性导致由线性回归方程所作出的预报也具有随机性.。
《高三数学复习课》教学设计
内容:第二节统计案例
辅助工具: ppt课件
(一)循纲忆知
1.理解随机抽样的必要性和重要性.
2.会用简单随机抽样方法从总体中抽取样本(抽签法、随机数表法).
(二)小题查验
1.判断正误
(1)在简单随机抽样中,某一个个体被抽到的可能性与第几次抽取有关,第一次抽到的可能性最大()
(2)从100件玩具中随机拿出一件,放回后再拿出一件,连续拿5次,是简单随机抽样()
答案:(1)×(2)×
2.(2015·广东七校联考)假设要考察某公司生产的500克袋装牛奶的三聚氰胺是否超标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第7行第8列的数开始向右读,则得到的第4个样本个体的编号是________.(下面摘取了随机数表第7行至第9行)
87 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
解析:由随机数表,可以看出前4个样本的个体的编号是331,572,455,068.于是,第4个样本个体的编号是068.
答案:068
基础盘查二系统抽样
(一)循纲忆知
了解系统抽样方法(编号、分组抽取).
(二)小题查验
1.判断正误
(1)系统抽样适用于元素个数较多且分布均衡的总体()
(2)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平()
答案:(1)√(2)×
2.(人教B版教材习题改编)某工厂平均每天生产某种机器零件大约10 000件,要求产品检验员每天抽取50件零件,检查其质量状况,采用系统抽样方法抽取,若抽取的第一组中的号码为0010,则第三组抽取的号码为________.
答案:0410
3.用系统抽样法(按等距离的规则)要从160名学生中抽取容量为20的样本,将160名学生从1~160编号.按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组应抽出的号码为125,则第一组中按此抽签方法确定的号码是________.答案:5
基础盘查三分层抽样
(一)循纲忆知
了解分层抽样的方法(计算抽样比、分层抽取样本).
(二)小题查验
1.判断正误
(1)分层抽样中,每个个体被抽到的可能性与层数及分层有关()
(2)分层抽样时,为了保证每个个体等可能入样,所有层中每个个体被抽到的可能性相同()
答案:(1)×(2)√
2.(人教B版教材例题改编)某校高中生有900名,其中高一有400名,高二有300名,高三有200名,打算抽取容量为45的一个样本,则高三学生应抽取________人.答案:10
3.某单位有职工480人,其中青年职工210人,中年职工150人,老年职工120人.为了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为________.
解析:设样本容量为n,则
7
210=
n
480,解得n=16.
答案:16
考点一简单随机抽样|(基础送分型考点——自主练透)
[必备知识]
(1)抽取方式:逐个不放回抽取;
(2)每个个体被抽到的概率相等;
(3)常用方法:抽签法和随机数法.
[提醒]简单随机抽样中易忽视样本是从总体中逐个抽取,是不放回抽样,且每个个体被抽到的概率相等.
[题组练透]
1.下列抽取样本的方式是简单随机抽样的有()
①从无限多个个体中抽取50个个体作为样本;
②箱子里有100支铅笔,今从中选取10支进行检验.在抽样操作时,从中任意拿出一支检测后再放回箱子里;
③从50个个体中一次性抽取5个个体作为样本.
A.0个B.1个
C.2个D.3个
解析:选A①不满足样本的总体数较少的特点;②不满足不放回抽取的特点;③不满足逐个抽取的特点.
2.某公司在甲、乙、丙、丁四个地区分别有150,120,180,150个销售点.公司为了调查产品销售情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区有20个大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②,则完成①,②这两项调查宜采用的抽样方法依次是()
A.分层抽样法,系统抽样法
B.分层抽样法,简单随机抽样法
C.系统抽样法,分层抽样法
D.简单随机抽样法,分层抽样法
解析:选B一般甲、乙、丙、丁四个地区会存在差异,采用分层抽样法较好.在丙地区中抽取的样本个数较少,易采用简单随机抽样法.
3.(2013·江西高考)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()
A.08B.07
C.02 D.01
解析:选D从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出的数字为08,02,14,07,01,…,故选出的第5个个体的编号为01.
[类题通法]
抽签法适用于总体中个体数较少的情况,随机数法适用于总体中个体数较多的情况.
考点二系统抽样|(重点保分型考点——师生共研)
[必备知识]。