七年级数学消元
- 格式:pdf
- 大小:1.37 MB
- 文档页数:10
初中数学消元法中的消元步骤如何进行消元法是一种解决线性方程组的方法,通过消去方程组中的某个变量,将方程组转化为一个更简单的形式。
下面我将详细介绍消元法的步骤。
假设我们有一个线性方程组:a₁x + b₁y + c₁z = d₁a₂x + b₂y + c₂z = d₂a₃x + b₃y + c₃z = d₃1. 选择基准方程:首先,我们需要选择一个基准方程。
通常情况下,我们会选择系数不为零的方程作为基准方程。
假设我们选择第一个方程a₁x + b₁y + c₁z = d₁ 作为基准方程。
2. 通过基准方程消去其他方程中的同名变量:我们需要通过基准方程消去其他方程中的同名变量,使得方程组中只剩下一个变量。
具体操作如下:-选择一个需要消去的方程,假设为第二个方程a₂x + b₂y + c₂z = d₂。
-利用基准方程和需要消去的方程之间的系数关系,将需要消去的方程变形为a₂x + b₂y + c₂z = d₂ - (a₂/a₁)(a₁x + b₁y + c₁z)。
-将消去变量的系数相同的项相加或相减,使得该变量在需要消去的方程中消失。
-重复以上步骤,将其他方程中的同名变量都消去。
3. 通过消元得到新的方程组:通过消元操作,我们可以得到一个新的方程组,其中只剩下一个变量。
假设我们消去了变量y 和z,得到新的方程组:a'x = d'b'x = d''c'x = d'''4. 求解新的方程组:现在,我们得到了一个只包含一个变量的方程组。
我们可以通过求解这个方程组,得到该变量的值。
将这个值代入到原始的方程组中,即可求解出其他变量的值。
需要注意的是,消元法中的消元步骤是迭代的,需要多次进行消元操作,直到得到只剩下一个变量的方程组。
在消元的过程中,我们需要谨慎处理小数和分数的运算,以免引入计算错误。
总之,消元法是解决线性方程组的一种常用方法。
通过选择基准方程,通过消元操作逐步消除其他方程中的同名变量,最终得到只包含一个变量的方程组。
《消元——解二元一次方程组》教案2江西师大附中荣齐辉教学设计说明:本课以贴近学生生活实际的问题为情境,引导学生分别列二元一次方程组和一元一次方程解决问题,通过观察、对比,发现二元一次方程组和一元一次方程的联系,思考如何将二元一次方程组转化为一元一次方程,实现消元,渗透化归的数学思想.通过丰富的例题和问题,使学生熟练掌握二元一次方程组的解法,并能运用二元一次方程组解决一些实际问题,体会方程思想.(1)教材分析二元一次方程组是在《一元一次方程》的基础之上学习的,它是解决含有两个未知数的问题的有力工具,同时,二元一次方程组也是解决后续一些问题的基础,其解法将为解决这些问题提供运算的工具,如用待定系数法求一次函数解析式,在平面直角坐标系中求两条直线的交点等.解二元一次方程组就是要通过代入法和加减法把“二元”化归为“一元”,这也是解三元(多元)一次方程组的基本思路,是通法.(2)学情分析学生的知识技能基础:学生已学过一元一次方程的解法,经历过由具体问题抽象出一元一次方程的过程,具备了学习二元一次方程的基本技能.学生活动经验基础:在相关知识的学习过程中,学生已经经历了很多观察、对比、发现的学习程,具有了一定的发现式学习的经验和数学思考,具备了一定的合作与交流的能力.教学目标1.用代入法、加减法解二元一次方程组.2.了解解二元一次方程组时的“消元思想”,“化未知为已知”的化归思想.3.会用二元一次方程组解决实际问题.4.在列方程组的建模过程中,强化方程的模型思想,培养学生列方程解决实际问题的意识和能力.教学重点、难点重点:会用代入法和加减法解简单的二元一次方程组,会用二元一次方程组解决简单的实际问题,体会消元思想和方程思想.难点:理解“二元”向“一元”的转化,掌握代入法和加减法解二元一次方程组的一般步骤.课时设计四课时.教学策略本节课主要通过创设问题情境,引导学生观察迁移、采用发现法、探究法、练习法为辅的教学方法.教学过程一、创设问题情境,引入课题问题1 篮球联赛中每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.某队10场比赛中得到16分,那么这个队胜、负场数应分别是多少?你能根据问题中的等量关系列出二元一次方程组吗?师生活动:学生回答:设胜x 场,负y 场.根据题意,得⎩⎨⎧=+=+16210y x y x ,教师引出本节课内容:这是我们在引言中探讨的问题,我们在上节课列出了方程组,并通过列表找公共解的方法得到了这个方程组的解⎩⎨⎧==46y x ,显然这样的方法需要一个个尝试,有些麻烦,不好操作,所以我们这节课就来探究如何解二元一次方程组.教师追问(1):这个实际问题能用一元一次方程求解吗?师生活动:学生回答:设胜x 场,则负)10(x -场.根据题意,得16)10(2=-+x x . 教师追问(2):对比方程和方程组,你能发现它们之间的关系吗?师生活动:通过对实际问题的分析,认识方程组中的两个方把二元一次方程组转化为一元一次方程,先求出一个未知数,再求出另一个未知数.教师总结:这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想程.【设计意图】用引言中的问题引入本节课内容,先列二元一次方程组,再列一元一次方程,对比方程和方程组,发现方程组的解法.二、探究新知问题2 对于二元一次方程组10 216 x y x y ⎧+=⎨+=⎩①②你能写出求x 的过程吗? 师生活动:学生回答:由①,得x y -=10.③把③代入②,得16)10(2=-+x x .解得6=x【设计意图】通过解具体的方程明确消元的过程.教师追问:把③代入①可以吗?师生活动:学生把③代入①,观察结果.【设计意图】由于方程③是由方程①得到的,它只能代入方程②,不能代入方程①,让学生实际操作,得到恒等式,更好地认识这一点.问题3 怎样求y 的值?师生活动:学生回答:把6=x 代入③,得4=y .教师追问(1):代入①或②可不可以?哪种方法更简便?师生活动:学生回答:代入③更简便.教师追问(2):你能写出这个方程组的解,并给出问题的答案吗?师生活动:学生回答:这个方程组的解是⎩⎨⎧==46y x ,这个队胜6场,负4场. 【设计意图】让学生考虑求另一个未知数的过程,并思考如何让优化解法.问题4 你能总结出上述解法的基本步骤吗?其中,哪一步是最关键的步骤?师生活动:教师引导学生总结:变、代、求、写,学生回答:“代入”是最关键的步骤,教师总结:这种方法叫做代入消元法,简称代入法.【设计意图】使学生明确代入法解二元一次方程组的基本步骤,并明确关键步骤是“代入”,将二元一次方程组转化为一元一次方程.问题5 是否有办法得到关于y 的一元一次方程?师生活动:学生具体操作.【设计意图】 让学生尝试不同的代入消元方法,并为后面学生选择简单的代入方法作铺垫.三、应用新知例 用代入法解方程组⎩⎨⎧=-=-14833y x y x师生活动:学生写出用代入法解这个方程组的过程,教师巡视,个别点拨.【设计意图】使学生熟悉代入法解二元一次方程组的步骤,巩固新知.四、加深认识练习 用代入法解下列二元一次方程组:(1)⎩⎨⎧=+=+15253t s t s (2)⎩⎨⎧=-=+33651643y x y x 师生活动:学生写出代入法解这些方程组的过程.【设计意图】本题需要先分析方程组的结构特征,再选择适当的解法,通过此练习,使学生熟练掌握用代入法解二元一次方程组.五、学以致用例 根据市场调查,某种消毒液的大瓶装(500g )和小瓶装(250g ),两种产品的销售数量(按瓶计算)的比为 ,某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶两种产品各多少瓶?师生活动:教师引导学生列出二元一次方程组,学生写出解这个方程组的过程. 教师追问:上述解方程组的过程能用一个框图表示出来吗?师生活动:教师与学生一起尝试用下列框图表示解方程组的过程:【设计意图】这是一个实际问题,需要先根据题意设两个未知数,列二元一次方程组,再用代入5:2法解这个方程组,体现应用方程组分析、解决实际问题的全过程,增强学生的应用意识.并通过框图形式形象地表示代入法解二元一次方程组的过程,使学生加深理解.六、再探新知问题4 前面我们用代入法求出了方程组10 216 x y x y ⎧+=⎨+=⎩①② 的解,这个方程组的两个方程中,y 的系数有什么关系?你能利用这种关系发现新的消元方法吗?师生活动:学生回答:这两个方程中y 的系数相等,②-①可消去未知数y ,得6=x . 把6=x 代入 ①得,4=y所以这个方程组的解为⎩⎨⎧==46y x .教师追问:①-②也能消去未知数y ,求得x 吗?师生活动:学生具体操作,发现求得的解跟上面相同.【设计意图】让学生发现除代入法以外的其它消元方法:通过两个方程相减实现消元.问题5 联系上面的解法,想一想怎样解方程组⎩⎨⎧=-=+.81015,8.2103y x y x 师生活动:学生回答:由于这两个方程中y 的系数相反,将两个方程相加,可消去未知数y ,求得x ,进而求得y .教师总结:当两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.【设计意图】让学生再次发现新的消元方法:通过两方程相加实现消元,并总结出加减消元法.七、应用新知例 用加减法解方程组⎩⎨⎧=-=+33651643y x y x问题6 上述方程组能直接通过加减消元吗?为什么?师生活动:学生回答:不能,因为同一未知数的系数既不相等也不相反.教师追问:那该怎样变形才能实现消元?师生活动:可以在方程两边同时乘适当的数,使同一未知数的系数相等或相反,再通过将两个方程相加或相减,实现消元.【设计意图】让学生掌握加减消元法的基本步骤,加深对加减法的认识.八、巩固提高练习 用加减法解下列方程组:(1)⎩⎨⎧-=-=+12392y x y x (2)⎩⎨⎧=+=+15432525y x y x 【设计意图】让学生熟练掌握加减消元法解二元一次方程组的步骤,巩固提高.九、学以致用例 2台大收割机和5台小收割机工作2小时收割小麦3.6公顷;3台大收割机和2台小收割机工作5小时收割小麦8公顷.1台大收割机和1台小收割机工作1小时各收割小麦多少公顷?【设计意图】这是一个实际问题,需要先根据题意设两个未知数,列二元一次方程组,再用加减法解这个方程组,体现应用方程组分析、解决实际问题的全过程,增强学生的应用意识,同时加深和巩固对加减法解二元一次方程组的认识.十、归纳总结回顾本节课的学习过程,并回答以下问题:(1)代入法和加减法解二元一次方程组有哪些步骤?(2)解二元一次方程组的基本思路是什么?(3)在探究解法的过程中用到了什么思想方法?你还有哪些收获?【设计意图】让学生总结本节课的主要内容,提炼思想方法.十一、布置作业课本习题教学反思1.应用意识贯穿始终:从问题的提出,到最后的练习,多出环节以实际问题为背景,为解决问题的需要而学习,最后回归到用新知识解决实际问题,既解决了为什么要学习二元一次方程组的解法的问题,同时,由于目标明确具体,学生探究时容易把握方向,在一定程度上分解了难点,提高了学生学习的兴趣.2.循序渐进原则的运用:学生对消元思想的理解很难一步到位,所以采用结合具体问题逐步渗透、感悟,然后提炼升华的方式学习,类似地,对二元一次方程组的解法,经历了从特殊到一般,从简单到复杂的循环上升过程,学生对数学思想的理解随之加深.。
初中数学什么是消元法消元法是解一元一次方程组的常用方法之一。
一元一次方程组是由多个一元一次方程构成的方程组,每个方程中只有一个未知数,并且未知数的最高次数为1。
消元法通过对方程组进行加减操作,将未知数的系数调整为相等或相反数,从而简化方程组的求解过程。
下面将详细介绍消元法的步骤,并通过一些实例来说明如何使用消元法解一元一次方程组。
消元法的步骤如下:步骤1:观察方程组,选择合适的消元顺序。
根据方程组中的未知数系数情况,选择合适的消元顺序。
通常选择系数较小的未知数进行消元,或者选择一个未知数的系数为1,从而简化计算。
步骤2:将某个方程的未知数系数调整为相等或相反数。
通过加减操作,将某个方程中的未知数系数调整为与另一个方程中相同或相反的值。
步骤3:将调整后的方程相加或相减,消去一个未知数。
将调整后的两个方程相加或相减,从而消去一个未知数,得到一个新的方程。
步骤4:重复步骤2和步骤3,逐步消去其他未知数。
重复进行步骤2和步骤3,逐步消去其他未知数,得到新的方程组。
步骤5:求解最后一个未知数。
在新的方程组中,求解出最后一个未知数的值。
步骤6:反向代入,求解其他未知数的值。
将求得的最后一个未知数的值代入到前面的方程中,依次求解其他未知数的值。
下面通过几个实例来说明如何使用消元法解一元一次方程组:实例1:解方程组2x + 3y = 8x + y = 4解法:我们可以选择第二个方程,将其乘以2,得到2(x + y) = 2(4),化简为2x + 2y = 8。
将这个式子与第一个方程相减,得到(2x + 3y) - (2x + 2y) = 8 - 8,化简为y = 0。
将y = 0代入第二个方程中,得到x + 0 = 4,化简为x = 4。
因此,方程组的解为x = 4,y = 0。
实例2:解方程组3x + 2y = 72x - 3y = -4解法:我们可以选择第一个方程,将其乘以2,得到2(3x + 2y) = 2(7),化简为6x + 4y = 14。
初中数学消元法的步骤是什么消元法是解决线性方程组的一种常用方法,它的基本思路是通过逐步消除方程组中的未知数,从而得到一个或多个简化的方程,进而求解未知数的值。
下面我将详细介绍消元法的步骤。
步骤1:将方程组按照未知数的顺序排列,形成一个矩阵方程。
给定一个二元一次方程组:a1x + b1y = c1a2x + b2y = c2按照未知数的顺序排列,可以得到矩阵方程:⎡a1 b1⎡⎡x⎡ ⎡c1⎡⎡a2 b2⎡⎡y⎡ = ⎡c2⎡步骤2:选取一个方程作为基准方程。
在消元的过程中,我们需要选取一个方程作为基准方程,通常选取系数不为零的方程。
可以选择第一个方程或者具有最简单系数的方程作为基准方程。
假设我们选择第一个方程a1x + b1y = c1作为基准方程。
步骤3:通过乘以一个适当的倍数或者加减其他方程的倍数来消除其他方程中与基准方程的未知数的系数。
我们需要通过乘以一个适当的倍数或者加减其他方程的倍数,来消除其他方程中与基准方程的未知数的系数。
假设我们要消除第二个方程中的x的系数。
首先,计算一个倍数m,使得m * a1 = a2。
然后,将第一个方程乘以m以后,再与第二个方程相减,即可消去x的系数。
具体的计算步骤如下:m = a2 / a1 (计算倍数m)a2' = a2 - m * a1 (计算第二个方程消去x系数后的新系数a2')b2' = b2 - m * b1 (计算第二个方程消去x系数后的新系数b2')c2' = c2 - m * c1 (计算第二个方程消去x系数后的新系数c2')得到消去x系数后的新方程:a1x + b1y = c1a2'x + b2'y = c2'步骤4:重复步骤3直到得到一个简化的方程组,其中某些方程只有一个未知数。
上述的步骤3可以重复进行,直到得到一个简化的方程组,其中某些方程只有一个未知数。
这样的简化方程组可以更容易求解。
七年级数学教案:消元一、教学目标:1. 让学生理解消元的概念,掌握消元的方法和技巧。
2. 培养学生解决二元一次方程组的能力,提高学生的数学思维能力。
3. 培养学生合作学习、积极探究的精神,增强学生的自信心。
二、教学内容:1. 消元的概念及其意义。
2. 消元的方法:加减消元法、代入消元法。
3. 消元在解决二元一次方程组中的应用。
三、教学重点与难点:1. 教学重点:消元的概念、方法及应用。
2. 教学难点:消元法的灵活运用,解决实际问题。
四、教学方法:1. 采用问题驱动法,引导学生主动探究消元的方法。
2. 运用案例分析法,让学生在实际问题中体会消元的作用。
3. 采用小组合作学习,培养学生的团队精神和沟通能力。
五、教学过程:1. 引入新课:通过生活中的实际问题,引导学生思考如何解决二元一次方程组。
2. 讲解消元的概念:解释什么是消元,消元的作用和意义。
3. 讲解消元的方法:加减消元法、代入消元法,并通过例题展示解题过程。
4. 练习与讲解:学生自主练习,教师精选题目进行讲解,引导学生掌握消元的方法。
6. 布置作业:设计相关作业,巩固所学知识,提高学生的应用能力。
7. 课后反思:教师对本节课的教学进行反思,为下一步教学做好准备。
六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习状态。
2. 作业评价:检查学生作业的完成情况,评估学生对消元方法的掌握程度。
3. 小组讨论评价:评价学生在小组合作学习中的表现,包括沟通能力、团队协作能力等。
七、教学拓展:1. 引导学生思考:消元方法在解决其他数学问题中的应用。
2. 介绍消元方法在实际生活中的应用,提高学生的实践能力。
3. 引导学生探究:如何将消元方法应用于更复杂的数学问题。
八、教学资源:1. PPT课件:展示消元的概念、方法和应用。
2. 例题及练习题:供学生自主练习和巩固所学知识。
3. 小组合作学习资料:促进学生之间的交流与合作。