角速度与线速度向心加速度与力的关系(含答案)
- 格式:doc
- 大小:290.00 KB
- 文档页数:4
高考物理《圆周运动》常用模型最新模拟题精练专题02.向心力和向心加速度一.选择题1..(2023浙江台州期中联考)晋代孙绰在《游天台山赋》中写道:“过灵溪而一灌,疏烦不想于心胸”。
灵江是台州的母亲河,也是浙江的第三大河,全长197.7公里,上游为仙居的永安溪和天台的始丰溪,中游为灵江,下游为椒江。
如图所示为百度地图中飞云江某段,河水沿着河床做曲线运动。
图中A B C D 、、、四处,受河水冲击最严重的是哪处()A.A 处B.B 处C.C 处D.D 处【参考答案】B【名师解析】河水沿着河床做曲线运动,在B 处,河水在河岸的作用下转弯,需要受到河岸作用较大的向心力,根据牛顿第三定律,B 处受河水冲击最严重,选项B 正确。
2.(2022年9月甘肃张掖一诊)如图所示,两个可视为质点的、相同的木块甲和乙放在转盘上,两者用长为L 的不计伸长的细绳连接(细绳能够承受足够大的拉力),木块与转盘的最大静摩擦力均为各自重力的K 倍,连线过圆心,甲到圆心距离1r ,乙到圆心距离2r ,且14L r =,234Lr =,水平圆盘可绕过圆心的竖直轴OO'转动,两物体随圆盘一起以角速度ω转动,当ω从0开始缓慢增加时,甲、乙与转盘始终保持相对静止,则下列说法错误的是(已知重力加速度为g )()A.当2Kgr ω=时,乙的静摩擦力恰为最大值B.ω取不同的值时,甲、乙所受静摩擦力都指向圆心C.ω取不同值时,乙所受静摩擦力始终指向圆心;甲所受静摩擦力可能指向圆心,也可能背向圆心D.如果KgLω>【参考答案】B 【名师解析】根据2Kmg mr ω=,可得Kg rω=乙的半径大,知乙先达到最大静摩擦力,故A 正确,不符合题意;甲乙随转盘一起做匀速圆周运动,由于乙的半径较大,故需要的向心力较大,则22Kmg m r ω=解得23Kg Lω=即若3KgLω 时,甲、乙所受静摩擦力都指向圆心。
当角速度增大,绳子出现张力,乙靠张力和静摩擦力的合力提供向心力,甲也靠拉力和静摩擦力的合力提供向心力,角速度增大,绳子的拉力逐渐增大,甲所受的静摩擦力先减小后反向增大,当反向增大到最大值,角速度再增大,甲乙与圆盘发生相对滑动。
圆周运动和向心加速度目标1、理解匀速圆周运动的特点,掌握描述匀速圆周运动快慢的几个物理量:线速度、角速度、周期、转速的定义,理解它们的物理意义并能灵活的运用它们解决问题。
2、理解并掌握描写圆周运动的各个物理量之间的关系。
3、理解匀速圆周运动的周期性的确切含义。
4、理解向心加速度产生的原因和计算方法。
重点描述匀速圆周运动快慢的几个物理量:线速度、角速度、周期、转速、向心加速度的定义以及它们的相互关系,是学习的重点。
学习难点弄清描写匀速圆周运动的各个物理量之间的关系,理解匀速圆周运动是变速运动且是变加速运动是学习的难点。
知识点一:圆周运动的线速度要点诠释:1、线速度的定义:圆周运动中,物体通过的弧长与所用时间的比值,称为圆周运动的线速度。
公式:(比值越大,说明线速度越大)方向:沿着圆周上各点的切线方向单位:m/s2、说明1)线速度是指物体做圆周运动时的瞬时速度。
2)线速度的方向就是圆周上某点的切线方向。
线速度的大小是的比值。
所以是矢量。
3)匀速圆周运动是一个线速度大小不变的圆周运动。
4)线速度的定义式,无论是对于变速圆周运动还是匀速圆周运动都成立,在变速圆周运动中,只要取得足够小,公式计算的结果就是瞬时线速度。
注:匀速圆周运动中的“匀速”二字的含义:仅指速率不变,但速度的方向(曲线上某点的切线方向)时刻在变化。
知识点二:描写圆周运动的角速度要点诠释:1、角速度的定义:圆周运动物体与圆心的连线扫过的角度与所用时间的比值叫做角速度。
公式:单位:(弧度每秒)2、说明:1)这里的必须是弧度制的角。
2)对于匀速圆周运动来说,这个比值是恒定的,即匀速圆周运动是角速度保持不变的圆周运动。
3)角速度的定义式,无论是对于变速圆周运动还是匀速圆周运动都成立,在变速圆周运动中,只要取得足够小,公式计算的结果就是瞬时角速度。
4)关于的方向:中学阶段不研究。
5)同一个转动的物体上,各点的角速度相等。
例如. 木棒OA以它上面的一点O为轴匀速转动时,它上面的各点与圆心O的连线在相等时间内扫过的角度相等。
6.3 向心加速度1.基础达标练一、单选题(本大题共10小题)1. 做匀速圆周运动的物体,一定不发生变化的物理量是( )A. 速率B. 速度C. 合力D. 加速度【答案】A【解析】解:做匀速圆周运动的物体,一定不发生变化的物理量是速率,速度、合力、加速度的方向都时刻改变,故A正确,BCD错误;故选:A。
本题根据匀速圆周运动的物理量特征,结合选项,即可解答。
本题解题关键是掌握匀速圆周运动的物体,速度、合力、加速度的方向都时刻改变。
2. 关于向心加速度下列说法正确的是( )A. 向心加速度是描述物体速度大小改变快慢的物理量B. 向心加速度是描述物体速度方向改变快慢的物理量C. 向心加速度是描述物体速度改变快慢的物理量D. 向心加速度的方向始终指向圆心,所以其方向不随时间发生改变【答案】B【解析】向心加速度只改变速度的方向,不改变速度大小,向心加速度描述的是线速度方向变化的快慢,因此明确向心加速度的物理意义即可正确解答本题.解决本题的关键掌握向心加速度只改变速度的方向,不改变速度大小,向心加速度描述的是线速度方向变化的快慢.属于基础题.解答:A、、向心加速度时刻与速度方向垂直,不改变速度大小,只改变速度方向,所以向心加速度是描述速度方向变化快慢的物理量,故A错误,B正确;C、向心加速度时刻指向圆心,方向随时间发生改变,C错误;D、由于B正确,故D错误;3. 关于做匀速圆周运动的物体的向心加速度,下列说法正确的是( )A. 向心加速度大小与轨道半径成正比B. 向心加速度大小与轨道半径成反比C. 向心加速度方向与向心力方向不一致D. 向心加速度指向圆心【答案】D【解析】解:、公式可知,当线速度一定时,加速度的大小与轨道半径成反比;由公式可知,当角速度一定时,加速度的大小与轨道半径成正比。
故AB没有控制变量;故AB均错误;C、由牛顿第二定律可知,向心加速度与向心力的方向一致;故C错误;D、向心力始终指向圆心;故D正确;公式及公式均可求解加速度,根据控制变量法分析加速度与半径的关系;匀速圆周运动物体其合外力指向圆心,大小不变,方向时刻变化;而向心加速度方向与合力方向相同。
角速度与线速度一、基础知识回顾1.请写出匀速圆周运动定义,特点,条件.(1)定义:做圆周运动的物体,若在相等的时间内通过的圆弧长相等,就是匀速圆周运动。
(2)特点:加速度大小不变,方向始终指向圆心,是变加速运动。
(3)条件:合外力大小不变,方向始终与速度方向垂直且指向圆心。
2.试写出线速度、角速度、周期、频率,转数之间的关系T r t s v π2==; T t πϕω2==; fT 1=; v=ωr ; 转数(转/秒)n=f 二、例题精讲【例题1】如图所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点,左侧是一轮轴,大轮的半径为4r ,小轮的半径为2r ,b 点在小轮上,到小轮中心的距离为r ,c 点和d 点分别位于小轮和大轮的边缘上,皮带不打滑,则. ( )A .a 点与b 点的线速度大小相等B .a 点与b 点的角速度大小相等C .a 点与c 点的线速度大小相等D .a 点与d 点的向心加速度大小相等因为右轮和左侧小轮靠皮带传动而不打滑,所以v a =v c ,选项C 正确.b 、c 、d 绕同一轴转动,因此ωb =ωc =ωd . ωa =rv r v c a ==2ωc 选项B 错误. 22a c c b b v v r r v ====ωω 选项A 错误. r v r a a c a 220== rv r r r v a c d a d 2224)4(4=⋅==ω ∴a d = a a ∴正确答案为C 、D【例题2】 如图2所示,一个圆环,以竖直直径AB 为轴匀速转动,如图所示,则环上M 、N 两点的线速度的大小之比v M∶v N = ;角速度之比ωM∶ωN = ;周期之比T M∶T N = .图2 图 3图3【例题3】 如图3所示,转轴O1上固定有两个半径分别为R 和r 的轮,用皮带传动O2轮,O2的轮半径是r ′,若O1每秒钟转了5圈,R =1 m,r =r ′=0.5 m,则:①大轮转动的角速度ω= rad/s ;②图中A 、C 两点的线速度分别是v A = m/s ,v C = m/s 。
专题十一:线速度、角速度、向心加速度大小的比较在分析传动装置的各物理量时.要抓住不等量和相等量的关系.同轴的各点角速度ω和n 相等,而线速度v =ωr 与半径r 成正比.在不考虑皮带打滑的情况下.传动皮带与皮带连接的两轮边缘的各点线速度大小相等,而角速度ω=v/r 与半径r 成反比.例1。
对如图所示的皮带传动装置,下列说法中正确的是(A)A 轮带动B 轮沿逆时针方向旋转.(B)B 轮带动A 轮沿逆时针方向旋转.(C)C 轮带动D 轮沿顺时针方向旋转.(D)D 轮带动C 轮沿顺时针方向旋转.答案:BD例2.如图所示,皮带传动装置转动后,皮带不打滑,则皮带轮上A 、B 、C 三点的情况是( )A .v A =vB ,v B >vC ; B .ωA =ωB ,v B = v CC .v A =v B ,ωB =ωc ;D .ωA >ωB ,v B =v C答案:AC例3.如图所示,直径为d 的纸质圆筒,以角速度ω绕轴O 高速运动,有一颗子弹沿直径穿过圆筒,若子弹穿过圆筒时间小于半个周期,在筒上先、后留下a 、b 两个弹孔,已知ao 、bo 间夹角为φ弧度,则子弹速度为例4.两个大轮半径相等的皮带轮的结构如图所示,AB 两点的半径之比为2 : 1,CD 两点的半径之比也为2 : 1,则ABCD 四点的角速度之比为___________,这四点的线速度之比为______________,向心加速度之比为_____________。
6.如图所示,O 1、O 2为两个皮带轮,O 1轮的半径为R 1,O 2轮的半径为R 2,且R 1>R 2,M 为O 2轮边缘上的一点,N 1为O 1轮中的一点(N 在图中未画出,但不在O 1轮边缘,也不在圆心处,)当皮带传动时(不打滑)A .M 点的线速度一定大于N 点的线速度B .M 点的线速度可能小于N 点的线速度C .M 点的向心加速度一定大于N 点的向心加速度D .M 点的向心加速度可能小于N 点的向心加速度 2、如图所示,为一皮带传动装置,右轮半径为r ,a 为它边缘上一点;左侧是一轮轴,大轮半径为4r ,小轮半径为2r ,b 点在小轮上,到小轮中心的距离为r 。
1 如图为表演杂技“飞车走壁”的示意图.演员骑摩托车在一个圆桶形结构的内壁上飞驰,做匀速圆周运动.图中a 、b 两个虚线圆表示同一位演员骑同一辆摩托,在离地面不同高度处进行表演的运动轨迹.不考虑车轮受到的侧向摩擦,下列说法中正确的是( )A.在a 轨道上运动时角速度较大B .在a 轨道上运动时线速度较大C .在a 轨道上运动时摩托车对侧壁的压力较大D .在a 轨道上运动时摩托车和运动员所受的向心力较大2.如图所示,靠摩擦传动做匀速转动的大、小两轮接触面互不打滑,大轮半径是小轮半径的2倍.A 、B 分别为大、小轮边缘上的点,C 为大轮上一条半径的中点.则( )A .两轮转动的角速度相等B .大轮转动的角速度是小轮的2倍C .质点加速度aA =2aBD .质点加速度aB =4aC3 .图所示为一皮带传动装置,右轮的半径为r ,A 是它边缘上的一点.左侧是一轮轴,大轮的半径为4r ,小轮的半径为2r .B 点在小轮上,它到小轮中心的距离为r .C 点和D 点分别位于小轮和大轮的边缘上.若在传动过程中,皮带不打滑.则( )A.A 点与B 点的线速度大小相等B.A 点与B 点的角速度大小相等C.A 点与C 点的线速度大小相等D.A 点与D 点的向心加速度大小相等 4 (5分)图示为某一皮带传动装置。
主动轮的半径为r 1,从动轮的半径为r 2。
已知主动轮做顺时针转动,转速为n ,转动过程中皮带不打滑。
下列说法正确的是 。
(填入选项前的字母,有填错的不得分)A.从动轮做顺时针转动B. 从动轮做逆时针转动 abC. 从动轮的转速为21r r n D. 从动轮的转速为12r r n 5.如图所示是自行车的轮盘与车轴上的飞轮之间的链条传动装置.P是轮盘的一个齿,Q 是飞轮上的一个齿.下列说法中正确的是( )A .P 、Q 两点角速度大小相等B .P 、Q 两点向心加速度大小相等C .P 点向心加速度小于Q 点向心加速度D .P 点向心加速度大于Q 点向心加速度.6.如图所示,传动装置中,已知大轮的半径是小轮半径的3倍,A 和B 两点分别在两轮的边缘上,C 点离大轮轴距离等于小轮半径,若不打滑,则它们线速度之比v A ∶v B ∶v C =______,角速度之比ωA ∶ωB ∶ωC =________.向心加速度之比:a A ∶a B ∶a C =________.。
线速度与角速度的关系公式
在数学上,角速度(ω)表示单位时间内角度的改变量。
它的单位通
常为弧度/秒(rad/s)。
角速度的表示方法可以用线速度(v)和转动半
径(r)来计算,由下面的公式给出:
ω=v/r
其中,ω表示角速度,v表示线速度,r表示转动半径。
这个公式表
明了线速度与角速度之间的数学关系。
我们可以通过一个具体的例子来理解线速度与角速度之间的关系。
假
设有一辆车在半径为3米的圆形跑道上行驶,它的角速度为2π/秒(即
一秒钟转一圈),则根据上面的公式,线速度可以计算为:
v=ω*r=(2π/秒)*3=6π米/秒
这个例子表明,在给定的角速度下,车辆沿圆形跑道行驶的线速度是
6π米/秒。
另外,角速度与时间之间的关系可以通过角度与时间之间的关系求得。
假设物体在t秒内旋转了θ角度,那么角速度可以计算为:
ω=θ/t
这个公式表明了角速度与时间之间的数学关系。
角速度与线速度都是描述运动轨迹的重要物理量,它们之间的关系可
以用于分析和计算转动运动。
例如,在机械工程中,我们经常需要计算转
动对象的最大线速度,以确保机械的设计安全。
总结起来,线速度与角速度之间的关系可以通过角速度公式和线速度公式来推导得出。
角速度的计算可以基于物体的线速度和转动半径,而角速度与时间之间的关系则可以通过角度与时间之间的关系来求解。
这些关系可以帮助我们更好地理解物体的运动规律,并应用于实际的物理和工程问题中。
考点2 匀速圆周运动、线速度、角速度和周期、向心加速度和向心力第一部分 考纲扫描1.了解线速度、角速度、周期、频率、转速等概念。
理解向心力及向心加速度。
2.能结合生活中的圆周运动实例熟练地应用向心力和向心加速度处理问题。
3.能正确处理竖直平面内的圆周运动。
4.了解离心现象。
第二部分 知识梳理一、描述圆周运动的物理量1.线速度①定义:质点做圆周运动通过的弧长l 与通过这段弧长所用的时间t 的比值叫做圆周运动的线速度。
②线速度的公式为:2l r v t Tπ==。
③方向为沿圆周的切线方向。
作匀速圆周运动的物体速度方向时刻在变化,因此匀速圆周运动是一种变速运动。
2.角速度①定义:用连接物体和圆心的半径转过的角度θ跟转过这个角度所用的时间t 的比值叫做角速度。
②公式为:2t Tθπω==,单位是:弧度/秒(rad/s)。
3.周期①定义:做匀速圆周运动的物体运动一周所用的时间,称为周期。
周期越大,运动越慢。
②公式:2r T vπ= 频率——质点在1秒内转动的圈数。
频率越大,物体运动越快。
转数——质点每秒钟(或每分钟)所转过的圈数。
常用的单位有:转/分(r/min)。
4.描述匀速圆周运动的各个物理量的关系①角速度ω与周期的关系是:ω=2π/T②角速度和线速度的关系是:v=ωr③周期与频率的关系是: 1T f=; ④向心加速度与以上各运动学物理量之间的关系:a=2v r=2r ω=224r T π 5.描述圆周运动的力学物理量是向心力(F 向):它的作用是改变速度的方向。
描述圆周运动的运动学物理量和力学物理量之间的关系是:F 向= m 2v r= m 2r ω =m 224r T π=ma 。
[规律总结]在分析传送带或边缘接触问题时,要抓住的关系是:同转轴的各点角速度相同,而同一皮带(不打滑时)或相吻合的两轮边缘的线速度相同。
当分析既不同轴又不同皮带的问题时,往往需要找一个联系轴与皮带的中介点作为桥梁。
高一物理向心力公式试题答案及解析1.关于向心加速度的物理意义,下列说法正确的是A.它描述的是线速度方向变化的快慢B.它描述的是线速度大小变化的快慢C.它描述的是角速度变化的快慢D.以上说法都不正确【答案】A【解析】圆周运动的向心加速度只改变速度的方向,不改变速度大小,向心加速度描述的是线速度方向变化的快慢的物理量,A正确。
【考点】考查了对向心加速度的理解2.如图所示,小物体A与圆盘保持相对静止,跟着圆盘一起做匀速圆周运动,则A的受力情况是()A.受重力、支持力B.受重力、支持力和指向圆心的摩擦力C.受重力、支持力、向心力、摩擦力D.以上均不正确【答案】B【解析】物体在水平面上,一定受到重力和支持力作用,物体在转动过程中,有背离圆心的运动趋势,因此受到指向圆心的静摩擦力,且静摩擦力提供向心力,故ACD错误,B正确.【考点】考查了向心力3.有一种杂技表演叫“飞车走壁”.由杂技演员驾驶摩托车沿圆台形表演台的侧壁做匀速圆周运动.下图中粗线圆表示摩托车的行驶轨迹,轨迹离地面的高度为h ,则下列说法中正确的是()A.h越高,摩托车对侧壁的压力将越大B.h越高,摩托车做圆周运动的向心力将越大C.h越高,摩托车做圆周运动的周期将越大D.h越高,摩托车做圆周运动的线速度将越大【答案】CD【解析】试题分析:设圆台侧壁与竖直方向的夹角为α,摩托车做匀速圆周运动,提供圆周运动的向心力是重力mg和支持力F的合力,作出力图.侧壁对摩托车的支持力,则摩托车对侧壁的压力不变.故A错误;向心力,向心力大小不变.故B错误;根据向心力公式得,h越高,r越大,则T越大.故C 正确;根据向心力公式得,h越高,r越大,则T越大.故D正确。
【考点】向心力4.一辆载重卡车,在丘陵地上以不变的速率行驶,地形如图所示。
由于轮胎已旧,途中爆了胎.你认为在图中A、B、C、D四处中,爆胎的可能性最大的一处是()A.A处 B.B处 C.C处D.D处【答案】 B【解析】试题分析:在A处,地面对轮胎的作用力大小等于卡车的重力;在B处,卡车做圆周运动,加速度方向竖直向上,根据牛顿运动定律得知,卡车处于超重状态,地面对卡车的作用力大于其重力;在C处,卡车做圆周运动,加速度方向竖直向下,根据牛顿运动定律得知,卡车处于失重状态,地面对卡车的作用力小于其重力;在D处,地面对卡车的作用力等于重力垂直于斜面向下的分力,也小于重力.故可知,在B处,卡车受到地面的作用力最大,最容易爆胎.故B正确,ACD错误.【考点】向心力5.如图所示,汽车以一定的速率运动,当它通过凸形拱桥的最高点A,水平路面B及凹形桥最低点C时的压力大小分别为FA 、FB与FC,则下列说法正确的是A.FA 、FB与FC大小均等于汽车所受到的重力大小B.FA小于汽车所受到的重力C.FA 、FB与FC大小均不等于汽车所受到的重力大小D.FC大于汽车所受到的重力【答案】D【解析】试题分析: 在平直公路上行驶时,重力等于压力,所以FB=mg;汽车到达桥顶时,受重力mg和向上的支持力FA ,合力等于向心力,有:,解得:FA<mg;在凹形桥最低点C时,有,解得:FC>mg;故A、B、C错误,D正确。
圆周运动(线速度 角速度 向心力 向心加速度)学生姓名 年级 高一 学科 物理 授课教师日期时段核心内容圆周运动课型一对一/一对N教学目标1. 了解线速度、角速度、周期、频率、转速等概念。
2. 理解向心力及向心加速度,会通过受力分析处理向心力的问题 3.会用圆周运动知识处理生活中的圆周运动问题重、难点重点:理解和掌握圆周运动的线速度、角速度、周期、向心加速度和向心力难点:求解圆周运动的向心力精准诊查课首沟通上讲回顾(错题管理);作业检查;询问学生学习进度等。
知识导图课首小测1. 质点做匀速圆周运动时,下列说法正确的是( ) A. 速度的大小和方向都改变 B. 匀速圆周运动是匀变速曲线运动C. 当物体所受合力全部用来提供向心力时,物体做匀速圆周运动D. 向心加速度大小不变,方向时刻改变 【题型】双选题 【知识点】匀速圆周运动圆周运动描述圆周运动的基本物理量圆周运动的基本模型圆周运动知识在生活中的运用线速度(v ) 角速度(ω)周期(T )和转速(n )或频率(f ) 向心加速度a 向心力F 向圆周运动绳模型圆周运动杆模型 汽车过桥火车转弯等【参考答案】CD【解析】匀速圆周运动的速度的大小不变,方向时刻变化,A 错;它的加速度大小不变,但方向时刻改变,不是匀变速曲线运动,B 错,D 对;由匀速圆周运动的条件可知,C 对.2. (2012·邵阳高一检测)如图所示,甲、乙、丙三个轮子依靠摩擦传动,相互之间不打滑,其半径分别为1r 、2r 、3r 。
若甲轮的角速度为ω1,则丙轮的角速度为( )A.311r r ωB.113r r ωC.213r r ωD.211r r ω【题型】单选题【知识点】描述圆周运动的物理量 【参考答案】A【解析】靠摩擦传动的轮子边缘线速度大小相等,故321v v v ==,而111r v ω=,333r v ω= 所以A 正确。
3.如图所示,一小球用细绳悬挂于O 点,将其拉离竖直位置一个角度后释放,则小球以O 点为圆心做圆周运动,运动中小球所需的向心力是( )A. 绳的拉力B. 重力和绳拉力的合力C. 重力和绳拉力的合力沿绳方向的分力D. 绳的拉力和重力沿绳方向分力的合力【题型】双选题 【知识点】向心力公式 【参考答案】CD【解析】小球在竖直平面内做变速圆周运动,受重力和绳的拉力作用,由于向心力是指向圆心方向的合外力,因此它可以是小球所受合力沿绳方向的分力,也可以是各力沿绳方向的分力的合力,故C 、D 正确。
角速度与线速度的关系练习(经典题目) 角速度与线速度的关系练习(经典)
1、如图所示,O1、O2两轮通过摩擦传动,传动时两轮间不打滑,两轮的半径之比为r1:r2,A、B分别为O1、O2边缘上的点,则A、B两点的线速度大小之比VA:VB= ,角速度之比为wA:wB= ,周期之比T A:T B= ,转速之比为n A:n B= 。
2、如图所示,一辆自行车上连接脚踏板的连杆长为R1,由脚踏板带动半径为r1的大齿盘,通过链条与半径为r2的后轮齿盘连接,在带动半径为R2的后轮转动。
若将后轮架空,踩脚踏板使后轮匀速转动,则脚踏板上一点和后轮边缘上一点的角速度之比,线速度大小之比为。
3、如图所示的皮带转动装置,大论半径为2R,小轮半径为R,A、B分别为两轮边缘上的点,C为大轮上离轮轴为R处的一点,转动时皮带不打滑,则A、B、C的线速度大小之比为,角速度大小之比为 .
4、如图所示为自行车链条转动装置,A、B、C分别为踏脚板、大轮、小轮边缘上的点,他们的转动半径之比为3:2:1,则在匀速转动时,三点的线速度大小之比为V A:V B:V C,角速度大小之比为w A:w B:w C。
5、图示为某一皮带传动装置.主动轮的半径为r1,从动轮的半径为r2.已知主
动轮做顺时针转动,转速为n,转动过程中皮带不打滑.下列说法正确的是()
6、某质点做匀速圆周运动,线速度大小v、周期T,则在T/2时间内,速度改变量大小是()
A、0
B、v/2
C、v D2v。
高二物理天体运动试题答案及解析1.均匀分布在地球赤道平面上空的三颗同步通信卫星能够实现除地球南北极等少数地区外的“全球通信”。
已知地球半径为R,地球表面的重力加速度为g,地球自转周期为T,三颗卫星中任意两,下面列出的是同步卫星所在位置处的重力加速度,其中正确的是()颗卫星间距离为sA.B.C.D.【答案】AC【解析】由三颗卫星的距离及角度关系可求得卫星半径为,卫星所在位置的万有引力等于该位置的重力,由可求得重力加速度为,AC正确2.(专题卷)发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、2相切于Q点,轨道2、3相切于P点,如图所示。
则在卫星分别在1、2、3轨道上正常运行时,以下说法正确的是:()A.卫星在轨道3上的速率大于在轨道1上的速率。
B.卫星在轨道3上的角速度小于在轨道1上的角速度。
C.卫星在轨道1上运动一周的时间小于于它在轨道2上运动一周的时间。
D.卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度。
【答案】BCD【解析】轨道1和轨道3都是圆周运动轨道,半径越大线速度越小,A错;由角速度公式可知B对;从轨道1在Q点进行点火加速度才能进入轨道2,所以轨道1在q点的速度小于轨道2的速度, D对;由开普勒第三定律可知轨迹2的半长轴较大,周期较大,C对;3.在圆轨道上运动的质量为m的人造地球卫星,它到地面的距离等于地球半径R.地面上的重力加速度为g,则A.卫星运动的速度为B.卫星运动的周期为C.卫星运动的加速度为D.卫星的动能为【答案】BD【解析】本题考查的是天体运动问题。
由,,,可以计算出:只有BD答案正确。
4.(9分)“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步。
已知“嫦娥一号”绕月飞行轨道近似圆周,距月球表面高度为H,飞行周期为T,月球的半径为R,已知引力常量G,试求:月球的质量M是多少?【答案】【解析】设“嫦娥一号”质量为m1,圆周运动时,万有引力提供向心力,则① 5分② 3分本题考查万有引力定律提供向心力,其中半径r为距离球心间的距离5.两颗质量相等的人造地球卫星,绕地球运动的轨道半径r1=2r2.下面说法正确的是()A.由公式F=m知道,轨道半径为r1的卫星的向心力为另一颗卫星的一半B.由公式F=mω2r知道,轨道半径为r1的卫星的向心力为另一颗卫星的两倍C.由公式F=G知道,轨道半径为r1的卫星的向心力为另一颗卫星的四分之一D.因不知地球质量和卫星质量,无法比较两卫星所受向心力的大小【答案】C【解析】由公式F=G知道,轨道半径为r1的卫星的向心力为另一颗卫星的四分之一,所以C正确。
高一物理向心力公式试题答案及解析1.关于向心加速度的物理意义,下列说法正确的是A.它描述的是线速度方向变化的快慢B.它描述的是线速度大小变化的快慢C.它描述的是角速度变化的快慢D.以上说法都不正确【答案】A【解析】圆周运动的向心加速度只改变速度的方向,不改变速度大小,向心加速度描述的是线速度方向变化的快慢的物理量,A正确。
【考点】考查了对向心加速度的理解2.有一种杂技表演叫“飞车走壁”,由杂技演员驾驶摩托车沿光滑圆台形表演台的侧壁高速行驶,在水平面内做匀速圆周运动。
图中粗线圆表示摩托车的行驶轨迹,轨迹离地面的高度为h。
如果增大高度h,则下列关于摩托车说法正确的是A.对侧壁的压力N增大B.做圆周运动的周期T不变C.做圆周运动的向心力F增大D.做圆周运动的线速度增大【答案】D【解析】摩托车做匀速圆周运动,提供圆周运动的向心力是重力mg和支持力F的合力,作出力图.设圆台侧壁与竖直方向的夹角为α,侧壁对摩托车的支持力不变,则摩托车对侧壁的压力不变.故A错误.如图向心力,m,α不变,向心力大小不变.C错误;根据牛顿第二定律得,h越高,r越大,不变,则T越大.故C正确.根据牛顿第二定律得,h越高,r越大,不变,则v越大.故D正确.【考点】考查了匀速圆周运动;向心力.3.有一种杂技表演叫“飞车走壁”.由杂技演员驾驶摩托车沿圆台形表演台的侧壁做匀速圆周运动.下图中粗线圆表示摩托车的行驶轨迹,轨迹离地面的高度为h ,则下列说法中正确的是()A.h越高,摩托车对侧壁的压力将越大B.h越高,摩托车做圆周运动的向心力将越大C.h越高,摩托车做圆周运动的周期将越大D.h越高,摩托车做圆周运动的线速度将越大【答案】CD【解析】试题分析:设圆台侧壁与竖直方向的夹角为α,摩托车做匀速圆周运动,提供圆周运动的向心力是重力mg和支持力F的合力,作出力图.侧壁对摩托车的支持力,则摩托车对侧壁的压力不变.故A错误;向心力,向心力大小不变.故B错误;根据向心力公式得,h越高,r越大,则T越大.故C 正确;根据向心力公式得,h越高,r越大,则T越大.故D正确。
角速度与线速度
一、基础知识回顾
1.请写出匀速圆周运动定义,特点,条件.
(1)定义:做圆周运动的物体,若在相等的时间内通过的圆弧长相等,就是匀速圆周运动。
(2)特点:加速度大小不变,方向始终指向圆心,是变加速运动。
(3)条件:合外力大小不变,方向始终与速度方向垂直且指向圆心。
2.试写出线速度、角速度、周期、频率,转数之间的关系
T r t s v π2==; T
t πϕω2==; f T 1=; v=ωr ; 转数(转/秒)n=f 二、例题精讲
【例题1】如图所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点,左侧是一轮轴,大轮的半径为4r ,小轮的半径为2r ,b 点在小轮上,到小轮中心的距离为r ,c 点和d 点分别位于小轮和大轮的边缘上,皮带不打滑,则. (
)
A .a 点与b 点的线速度大小相等
B .a 点与b 点的角速度大小相等
C .a 点与c 点的线速度大小相等
D .a 点与d 点的向心加速度大小相等
因为右轮和左侧小轮靠皮带传动而不打滑,所以v a =v c ,选项C 正确.
b 、
c 、
d 绕同一轴转动,因此ωb =ωc =ωd . ωa =r
v r v c a ==2ωc 选项B 错误. 2
2a c c b b v v r r v ====ωω 选项A 错误. r v r a a c a 220== r v r r r v a c d a d 2224)4(4=⋅==ω ∴a d = a a ∴正确答案为C 、D
【例题2】 如图2所示,一个圆环,以竖直直径AB 为轴匀速转动,如图所示,则环上M 、N 两点的线速度的大小之比v M∶v N = ;角速度之比ωM∶ωN = ;周期之比T M∶T N = .
【例题3】 如图3所示,转轴O1上固定有两个半径分别为R 和r 的轮,用皮带传动O2轮,O2
图2
图 3
图3
的轮半径是r ′,若O1每秒钟转了5圈,R =1 m,r =r ′=0.5 m,则:
①大轮转动的角速度ω= rad/s ;
②图中A 、C 两点的线速度分别是v A = m/s ,v C = m/s 。
参考答案:(1) CD (2)3∶1 1∶1 1∶1 (3)①31.4 ②15.7 31.4
三、课堂练习
1.对于做匀速圆周运动的物体,下面说法正确的是 ( )
A .相等的时间里通过的路程相等
B .相等的时间里通过的弧长相等
C .相等的时间里发生的位移相同
D .相等的时间里转过的角度相等
2.做匀速圆周运动的物体,下列不变的物理量是 ( )
A .速度
B .速率
C .角速度
D .周期
3.关于角速度和线速度,说法正确的是 ( )
A .半径一定,角速度与线速度成反比
B .半径一定,角速度与线速度成正比
C .线速度一定,角速度与半径成正比
D .角速度一定,线速度与半径成反比
4.如图3所示,地球绕OO ′轴自转,则下列正确的是 ( )
A .A 、
B 两点的角速度相等
B .A 、B 两点线速度相等
C .A 、B 两点的转动半径相同
D .A 、
B 5.做匀速圆周运动的物体,10 s内沿半径是20 m的圆周运动了100 m,则其线速度大小
是 m/s ,周期是 s,角速度是 rad/s 。
6.A 、B 两质点分别做匀速圆周运动,在相同时间内,它们通过的弧长之比sA ∶sB =2∶3,
而转过的角度之比φA ∶φB =3∶2,则它们的周期之比TA ∶TB = ;角速度之比
ωA ∶ωB = ;线速度之比vA ∶vB = ,半径之比RA ∶RB = .
参考答案:
1.ABD
2.BCD
3.B
4.AD
5. 10 12.56 0.5
6. 2∶3 3∶2 2∶3 4∶9
向心加速度与力的关系
1向心加速度a :
(1)大小:a =ππω442222===r T
r r v 2 f 2r (2)方向:总指向圆心,时刻变化
(3)物理意义:描述线速度方向改变的快慢。
2.向心力
(1)大小:R f m R T
m R m R v m ma F 2222
2244ππω=====向 (2)方向:总指向圆心,时刻变化
做匀速圆周运动的物体,向心力就是物体所受的合外力,总是指向圆心。
做变速圆周运动的物体,向心力只是物体所受合外力在沿着半径方向上的一个分力,合外力的另一个分力沿着圆周的切线,使速度大小改变。
(3).处理方法:
一般地说,当做圆周运动物体所受的合力不指向圆心时,可以将它沿半径方向和切线方向正交分解,其沿半径方向的分力为向心力,只改变速度的方向,不改变速度的大小;其沿切线方向的分力为切向力,只改变速度的大小,不改变速度的方向。
分别与它们相应的向心加速度描述速度方向变化的快慢,切向加速度描述速度大小变化的快慢。
【例1】杂技节目中的“水流星”表演,用一根绳子两端各拴一个盛水的杯子,演员抡起杯子在竖直面上做圆周运动,在最高点杯口朝下,但水不会流下,如下图所示,这是为什么?
【分析】水和杯子一起在竖直面内做圆周运动,需要提供一个向心力。
当水杯在最低点时,水做圆周运动的向心力由杯底的支持力提供,当水杯在最高点时,水做圆周运动的向心力由重力和杯底的压力共同提供。
只要做圆周运动的速度足够快,所需向心力足够大,水杯在最高点时,水就不会流下来。
【解】以杯中之水为研究对象,进行受力分析,根据牛顿第二定律
【例2】在一个水平转台上放有A 、B 、C 三个物体,它们跟台面间的摩擦因数相同.A 的质量为2m ,
B 、
C 各为m .A 、B 离转轴均为r ,C 为2r .则 ( )
A .若A 、
B 、
C 三物体随转台一起转动未发生滑动,A 、C 的向心加速度比B 大
B .若A 、B 、
C 三物体随转台一起转动未发生滑动,B 所受的静摩擦力最小
C .当转台转速增加时,C 最先发生滑动
D .当转台转速继续增加时,A 比B 先滑动
【分析】A 、 B 、 C 三物体随转台一起转动时,它们的角速度都等于转台的角速度,设为ω.根据向心加速度的公式a n =ω2r ,已知r A =r B <r C ,所以三物体向心加速度的大小关系为a A =a B <a C .
A 错.三物体随转台一起转动时,由转台的静摩擦力提供向心力,即f =F n =m ω2r ,所以三物体受到的静摩擦力的大小分别为
f A =m A ω2r A =2m ω2r ,
f B =m B ω2r B =m ω2r ,
f C =m c ω2rc =m ω2·2r=2m ω2r .
即物体B 所受静摩擦力最小.B 正确.
由于转台对物体的静摩擦力有一个最大值,设相互间摩擦因数为μ,静摩擦力的最大值可认为是f m =μmg .由f m =F n ,即
得不发生滑动的最大角速度为
即离转台中心越远的物体,使它不发生滑动时转台的最大角速度越小.
由于r C >r A =r B ,所以当转台的转速逐渐增加时,物体C 最先发生滑动.转速继续增加时,物体A 、B 将同时发生滑动.C 正确,D 错.
【答】B 、C .
1、如图5所示,杆长为l ,球的质量为m ,杆连球在竖直平面内绕轴O 自由转动,已知在最高点处,杆对球的弹力大小为mg F 2
1 ,求这时小球的瞬时速度大小。
2、如图所示,一质量为0.5kg 的小球,用0.4m 长的细线拴住在竖直面内作圆周运动,求:
(1)当小球在圆上最高点速度为4m/s 时,细线的拉力是多少?
拉力是 多少?(g=10m/s 2)
3、如图所示,质量m =1 kg 的小球用细线拴住,线长l =0.5 m ,细线所受拉力达到F =18 N 时就会被拉断。
当小球从图示位置释放后摆到悬点的正下方时,细线恰好被拉断。
若此时小球距水平地面的高度h =5 m ,重力加速度g =10 m/s 2,
求小球落地处到地面上P点的距离?(P 点在悬点的正下方)
1、弹力向上:2gR 弹力向下: 23gR
2. 15N 、45N 3、2m。