坐标计算控制测量导线测量小三角测量交会定点高程控制测量全站仪
- 格式:ppt
- 大小:2.85 MB
- 文档页数:88
测量复习题⼀、名词解释⼤地⽔准⾯:与静⽌的平均海⽔⾯重合的闭合曲⾯。
视准轴:物镜光⼼与⼗字丝交点的连线称为望远镜视准轴。
等⾼线:地⾯上⾼程相同的点所连接⽽成的连续闭合曲线。
⽔平⾓:空间相交的两条直线在⽔平⾯上的投影所夹的⾓度。
⽐例尺:图上某⼀线段的长度与地⾯上相应线段⽔平距离之⽐。
直线定向:确定⼀直线与标准⽅向之间⾓度关系称为直线定向。
地貌:地⾯⾼低起伏的形态。
绝对⾼程:地⾯上任⼀点到⼤地⽔准⾯的铅垂距离。
⾼差闭合差:⽔准路线⾼差观测值和理论值之差。
测量学:是研究如何测定地⾯点的平⾯位置和⾼程,将地球表⾯的地形及其他信息测绘成图,以及确定地球的形状和⼤⼩的科学。
⽐例尺精度:我们把图上0.1㎜所代表的实地⽔平距离称为⽐例尺精度,即0.1M㎜。
⽅位⾓:由基本⽅向的北端起,沿顺时针⽅向到某⼀直线的⽔平夹⾓,⾓值为0°~360°。
数字地图:是全数字的形式描述地图要素的属性、空间位置和相互关系信息的数据集合。
竖直⾓:在同⼀竖直⾯内,某⼀倾斜视线与⽔平线之间的夹⾓称为竖直⾓,简称竖⾓。
磁偏⾓:磁⼦午线与真⼦午线之间的夹⾓。
象限⾓:由标准⽅向的北端或南端起,顺时针或逆时针到某⼀直线所夹的⽔平锐⾓。
导线测量:依次测定各导线边的长度和各转折⾓,根据起算数据,推算各边的坐标⽅位⾓,从⽽求出各导线坐标。
坐标增量:两导线点坐标值之差。
地图:按—定的法则,将地球表⾯的⾃然和社会现象缩⼩,经制图综合,⽤地图符号表现在平⾯上,以反映地表现象的地理分布,相互联系、相互制约关系的图称为地图。
计曲线:为了便于⽤图时查算等⾼线⾼程,每隔四条⾸曲线加粗描绘的曲线。
磁⼦午线⽅向:是磁针在地球磁场的作⽤下,磁针⾃由静⽌时其轴线所指的⽅向。
普通测量学:研究地球表⾯⼩范围测绘的基本理论、技术和⽅法,不顾及地球曲率的影响,把地球局部表⾯当作平⾯看待,是测量学的基础。
地形图:按⼀定的⽐例尺,表⽰地物、地貌平⾯位置和⾼程的正射投影图。
全站仪具有角度测量、距离(斜距、平距、高差)测量、三维坐标测量、导线测量、交会定点测量和放样测量等多种用途。
内置专用软件后,功能还可进一步拓展。
全站仪的基本操作与使用方法:1)水平角测量(1)按角度测量键,使全站仪处于角度测量模式,照准第一个目标A。
(2)设置A方向的水平度盘读数为0°00′00〃。
(3)照准第二个目标B,此时显示的水平度盘读数即为两方向间的水平夹角。
2)距离测量(1)设置棱镜常数测距前须将棱镜常数输入仪器中,仪器会自动对所测距离进行改正。
(2)设置大气改正值或气温、气压值光在大气中的传播速度会随大气的温度和气压而变化,15℃和760mmHg是仪器设置的一个标准值,此时的大气改正为0ppm。
实测时,可输入温度和气压值,全站仪会自动计算大气改正值(也可直接输入大气改正值),并对测距结果进行改正。
(3)量仪器高、棱镜高并输入全站仪。
(4)距离测量照准目标棱镜中心,按测距键,距离测量开始,测距完成时显示斜距、平距、高差。
全站仪的测距模式有精测模式、跟踪模式、粗测模式三种。
精测模式是最常用的测距模式,测量时间约2.5S,最小显示单位1mm;跟踪模式,常用于跟踪移动目标或放样时连续测距,最小显示一般为1cm,每次测距时间约0.3S;粗测模式,测量时间约0.7S,最小显示单位1cm或1mm。
在距离测量或坐标测量时,可按测距模式(MODE)键选择不同的测距模式。
应注意,有些型号的全站仪在距离测量时不能设定仪器高和棱镜高,显示的高差值是全站仪横轴中心与棱镜中心的高差。
3)坐标测量(1)设定测站点的三维坐标。
(2)设定后视点的坐标或设定后视方向的水平度盘读数为其方位角。
当设定后视点的坐标时,全站仪会自动计算后视方向的方位角,并设定后视方向的水平度盘读数为其方位角。
(3)设置棱镜常数。
(4)设置大气改正值或气温、气压值。
(5)量仪器高、棱镜高并输入全站仪。
(6)照准目标棱镜,按坐标测量键,全站仪开始测距并计算显示测点的三维坐标。
全站仪测量坐标和高程的方法全站仪是一种广泛应用于土木工程、建筑测量和地质勘探等领域的高精度测量仪器。
它可以同时测量水平角、垂直角和斜距,从而可以用来测量不同位置的坐标和高程。
下面将介绍全站仪测量坐标和高程的基本方法及步骤。
1. 准备工作在进行全站仪测量之前,需要进行一些准备工作,以确保测量的准确性和可靠性。
•校准全站仪:在开始测量之前,需要对全站仪进行校准,确保其水平仪、垂直仪和距离测量装置的准确性。
具体校准方法可参考全站仪的说明书。
•设置基准点:在即将进行测量的区域中,选择一个相对稳定的点作为基准点。
该点的高程可以通过其他测量手段如水准仪进行确定。
2. 测量坐标步骤一:设置观测点在测量区域中选择几个观测点,这些观测点应该以基准点为参考,并尽可能分布在整个测量区域内。
步骤二:测量水平角使用全站仪测量水平角,将其对准基准点,记录读数。
然后将全站仪对准每一个观测点,分别记录读数。
步骤三:测量垂直角使用全站仪测量垂直角,将其对准基准点,记录读数。
然后将全站仪对准每一个观测点,分别记录读数。
步骤四:测量斜距使用全站仪的距离测量功能,分别测量观测点到基准点的斜距。
将全站仪对准基准点,记录斜距读数;然后对准每个观测点,分别记录斜距读数。
步骤五:计算坐标利用测得的水平角、垂直角、斜距数据,可以通过三角形计算方法计算出各个观测点的平面坐标。
具体计算方法可参考全站仪的说明书。
3. 测量高程步骤一:设置观测点在测量区域中选择几个观测点,这些观测点应该以基准点为参考,并尽可能分布在整个测量区域内。
步骤二:测量水平角使用全站仪测量水平角,将其对准基准点,记录读数。
然后将全站仪对准每一个观测点,分别记录读数。
步骤三:测量垂直角使用全站仪测量垂直角,将其对准基准点,记录读数。
然后将全站仪对准每一个观测点,分别记录读数。
步骤四:测量斜距使用全站仪的距离测量功能,分别测量观测点到基准点的斜距。
将全站仪对准基准点,记录斜距读数;然后对准每个观测点,分别记录斜距读数。
第十讲控制测量概述及坐标计算—•控制测量概述根据测量工作基本原则,测绘地形图或工程放样,都必须先在整体范围内进行控制测量,然后在控制测量基础上进行碎部测量或施工放样。
因此控制测量目就是为地形图测绘和各种工程测量提供控制基础和起算基准,其实质是测定具有较高精度平面坐标和高程点位,这些点称为控制点。
控制测量提供了控制点精确位置,并以控制点位置来确定碎部点位置。
测定地物地貌特征点位置工作称为碎部测量。
控制测量分为平面控制测量和高程控制测量。
平面控制测量任务是在某地区或全国范围内布设平面控制网,精密测定控制点平面位置。
高程控制测量任务是在某地区或全国范围内布设高程控制网,精密测定控制点高程一、国家控制测量国家测绘部门按照逐级控制逐级加密原则,在全国范围内布设了一系列控制点,由这些控制点组成全国统一控制网,用最精密仪器和最严密方法测定其坐标和高程构成骨架,而后,先急后缓,分期分区逐级布设低一级控制网。
国家平面控制网建立主要方法有三角测量、精密导线测量及GPS定位测量。
三角测量是将相邻控制点连接成三角形,组成网状,称平面三角控制网,三角形顶点称为三角点,如图形5—1 ()所示。
在平面三角控制网中,量出一条边长度,测出各三角形内角,然后用三角学中正弦定理逐一推算出各三角形边长,再根据起始点坐标和起始边方位角以及各边边长,推算出各控制点平面坐标,这种测量方法称为三角测量。
精密导线测量是将一系列相邻控制点连成折线,如图形5—1 (b)所示。
采用精密仪器测角并用测距仪测距,然后根据已知坐标和坐标方位角精确地计算出各点平面位置,这种测量称为精密导线测量。
精密导线已成为国家高级网布设形式之一,因为它比三角测量方便、迅速、灵活。
GPS定位是卫星全球定位系统简称。
GPS定位测量具有高精度、全天候、高效率、多功能、操作简便特点,可同时精确测定点三维坐标(X, Y, H),及常规控制测量(三角测量、三边测量、导线测量)相比,有许多优点。
工程测量名词解释文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-1. 测定:是指使用测量仪器和工具,通过测量和计算,得到一系列特征点的测量数据,或将地球表面的地物和地貌缩绘成地形图。
2. 测设:是指用一定的测量方法将设计图纸上规划设计好的建筑物位置,在实地标定出来,作为施工的依据。
3. 水准面:处处与重力方向线垂直的连续曲面。
4. 水平面:与水准面相切的平面。
5. 大地水准面:人们设想以一个静止不动的海水面延伸穿越陆地,形成一个闭合的曲面包围了整个地球称为大地水准面,即与平均海水面相吻合的水准面。
6. 铅垂线:重力的方向线称为铅垂线。
7. 绝对高程:地面点到大地水准面的铅垂距离。
8. 相对高程:地面点到假定水准面的铅垂距离。
9. 高差:地面两点间的高程之差。
10. 高差法:直接利用高差计算未知点高程的方法。
11. 视线高法(仪高法):利用仪器视线高程Hi计算未知点高程的方法。
12. 视线高:大地水准面至水准仪水平视线的垂直距离。
13. 水准管轴:通过水准管零点与其圆弧相切的切线。
14. 视准轴:十字丝交点与物镜光心的连线。
15. 视差:眼睛在目镜端上下移动,有时可看见十字丝的中丝与水准尺影像之间相对移动的现象。
16. 后视点:在同一测站中与前进方向相反的已知水准点。
17. 前视点:在同一测站中与前进方向相同的未知水准点。
18. 转点:在水准测量中起高程传递作用的点。
19. 水准点:用水准测量的方法测定的高程控制点。
20. 水准路线:在水准点间进行水准测量所经过的路线。
21. 闭合水准路线:从已知高程的水准点出发,沿各待定高程的水准点进行水准测量,最后又回到原出发点的环形路线。
22. 附合水准路线:从已知高程的水准点出发,沿待定高程的水准点进行水准测量,最后附合到另一已知高程的水准点所构成的水准路线。
23. 支水准路线:从已知高程的水准点出发,沿待定高程的水准点进行水准测量,是既不闭合又不附合的水准路线。