国内外地热资源发电技术共20页
- 格式:ppt
- 大小:4.01 MB
- 文档页数:10
地热能发电技术分类地热能是一种可再生能源,利用地球内部的热能来进行发电。
地热能发电技术根据不同的原理和工艺可以分为以下几类:直接利用地热能发电、地热蓄能发电、热泵发电和地热热交换发电。
一、直接利用地热能发电直接利用地热能发电技术是指通过直接利用地下的高温热水或蒸汽来驱动涡轮发电机组发电。
这种技术主要应用于地热资源丰富的地区,如冰岛、菲律宾等。
直接利用地热能发电的过程通常包括以下几个步骤:首先,通过钻探井将地下的高温热水或蒸汽抽上地面;然后,将热水或蒸汽引入发电机组的涡轮中,通过涡轮的旋转驱动发电机发电;最后,将已经冷却的热水或蒸汽排出井口,循环利用或排放。
二、地热蓄能发电地热蓄能发电技术是指通过地下储热层来储存地热能,以便在需要时提取热能进行发电。
这种技术主要应用于地热资源较为稀缺的地区。
地热蓄能发电的过程主要包括以下几个步骤:首先,利用钻探井将地下的高温热水或蒸汽注入地下储热层,将热能储存起来;然后,在需要发电时,通过钻探井将储存的热水或蒸汽抽上地面,利用其驱动发电机组发电;最后,将已经冷却的热水或蒸汽再次注入地下储热层,实现循环利用。
三、热泵发电热泵发电技术是指通过利用地下的低温热能和环境中的低温热能来提取热能进行发电。
这种技术主要应用于地热资源较为有限的地区。
热泵发电的过程主要包括以下几个步骤:首先,通过钻探井将地下的低温热水或蒸汽抽上地面;然后,将低温热水或蒸汽引入热泵中,通过热泵的工作循环将其温度提升;接着,利用提升后的高温热水或蒸汽驱动发电机组发电;最后,将已经冷却的低温热水或蒸汽排出井口,循环利用或排放。
四、地热热交换发电地热热交换发电技术是指通过地下热能与环境中的低温热能之间的热交换来提取热能进行发电。
这种技术主要应用于地表温度较低的地区。
地热热交换发电的过程主要包括以下几个步骤:首先,利用钻探井将地下的热水或蒸汽抽上地面;然后,将热水或蒸汽引入地下热交换器中,与通过地下管道循环流动的低温工质进行热交换;接着,通过热交换器中的低温工质驱动发电机组发电;最后,将已经冷却的低温工质再次注入地下,循环利用。
国内外地热资源发电技术(heshaolang 环境科学)摘要:随着世界经济的不断增长,能源危机越来越突出,地热资源作为一种新型能源矿产越来越受到人们的关注。
目前主要有地热发电和地热直接使用两种方式。
地热电站没有燃料运输设备,没有庞大的锅炉设备,没有灰渣和烟气对环境的污染,是比较清洁的能源。
本文主要介绍国内外地热发电技术的研究进展,包括地热发电技术原理,以及地热发电存在的问题和地热发电技术的发展前景。
关键词:地热资源;地热发电;技术原理;发展前景地热资源是指在当前技术经济和地质环境条件下,地壳内能够科学、合理地开发出来的岩石中的热能量和地热流体中的热能量及其伴生的有用组分。
地热资源因储量大、分布广、清洁环保、稳定性好、利用系数高等特点,成为具有竞争力的新能源。
地热资源因其稳定可靠、成本低廉、清洁环保等优点逐渐被各国所认识,开发热度逐年增加。
地热资源的利用方式主要有地热发电和地热直接使用。
伴随着化石能源和电力成本的波动,不断上升的能源价格极大地影响了人们的日常生活,全世界都迫切需要开发新能源来稳定不断紧张的能源形势,地热资源提供了一个非常优异的选择。
不同于煤炭及天然气,地热发电没有任何隐藏的费用,例如土地退化、排放污染等,也不会对周围区域动物和植物的生存环境造成破坏,更不会对人类健康产生不良影响。
此外,由于地热能源是地区性自产的,其能够有效地缓解对于国外能源的依赖,符合国家能源安全政策。
据2010年世界地热大会统计,全世界共有78个国家正在开发利用地热能技术,27个国家利用地热发电,总装机容量为10715MW,年发电67246GW·h,平均利用系数72%,美洲和亚洲分别占世界地热发电总装机容量的39.9%和35.1%。
地热资源的直接利用发展很快,全世界78个国家地热能直接利用的设备总容量为48483MW,年利用热能117778GW·h,平均利用系数28%。
1 地热发电的发展利用地热资源发电至今,已经超过一百多年的历史。
地热发电的技术原理及应用1. 简介地热发电是利用地下热能转换为电能的一种发电方式。
地热能作为一种可再生能源,具有稳定、持续供应和环保的特点,被广泛应用于能源领域。
本文将介绍地热发电的技术原理以及其在实际应用中的一些情况。
2. 技术原理地热发电的技术原理主要基于以下几个方面:2.1 地热资源地热资源是地热发电的基础。
地热能主要来自于地球内部的热能,包括地球内部的岩石热能、地热水和地热蒸汽等。
地热能的热源主要来自地球内部的热衰减和地热梯度。
2.2 地热发电技术地热发电主要采用以下两种技术:•蒸汽地热发电技术:通过地下的高温地热液体蒸发成为蒸汽,利用蒸汽驱动涡轮机转动发电机,将地热能转化为电能。
•二次循环地热发电技术:通过地下热水的热能传递到地上的工作介质中,再通过工作介质驱动发电机转动发电。
2.3 地热发电设备地热发电设备主要包括地热井、热泵、发电机组等。
地热井用于获取地热资源,通过地热井将地下的地热液体或地热水输送出来。
热泵用于将地热能转移到工作介质中,从而驱动发电机组发电。
2.4 地热发电系统地热发电系统包括地热能获取系统、热能转换系统、发电系统以及热能排放系统等。
地热能获取系统用于获取地热能资源,热能转换系统将地热能转化为电能,发电系统将电能输出到电网,热能排放系统用于处理地热发电产生的废热。
3. 应用情况地热发电在实际应用中广泛应用于以下领域:3.1 电力供应地热发电作为一种稳定可靠的能源供应方式,广泛应用于电力供应领域。
地热发电站可以供应电力给城市、工业区以及农村地区,满足不同地区的电力需求。
3.2 钢铁行业地热发电在钢铁行业中的应用也逐渐增多。
地热发电可以为钢铁厂提供稳定的电力供应,同时也可以利用地热发电产生的废热进行工业热水供应,减少对传统能源的依赖。
3.3 温室种植地热发电可以应用于温室种植领域,稳定的地热能源可以提供温室内的恒温环境,满足植物的生长需求。
同时,地热发电产生的废热也可以作为温室加热系统的热源。
国内外地热能开发及利用现状介绍中国能源网研究中心王鸿雁张葵叶地热资源是在当前技术经济条件和地质条件下,能够从地壳内科学、合理地开发出来的岩石热能量、地热流体热能量及其伴生的有用组分。
地热资源既属于矿产资源,也是可再生能源。
目前可利用的地热资源主要包括:天然出露的温泉、通过热泵技术开采利用的浅层地温能、通过人工钻井直接开采利用的地热流体以及干热岩体中的地热资源。
在全球各国积极应对气候变化,努力减少温室气体排放的背景下,近年来,全球地热能开发及利用取得较快发展,也越来越引起我国政府及企业的重视。
一、全球地热资源分布及利用(一)全球地热资源分布全球地热储量十分巨大,理论上可供全人类使用上百亿年。
据估计,即便只计算地球表层10km厚这样薄薄的一层,全球地热储量也有约1.45×1026J,相当于4.948×1015吨标准煤,是地球全部煤炭、石油、天然气资源量的几百倍。
[1]世界上已知的地热资源比较集中地分布在三个主要地带:一是环太平洋沿岸的地热带;二是从大西洋中脊向东横跨地中海、中东到我国滇、藏地热带;三是非洲大裂谷和红海大裂谷的地热带。
这些地带都是地壳活动的异常区,多火山、地震,为高温地热资源比较集中的地区。
[2]图1所示为全球地热资源集中分布带:图1 全球地热资源集中分布带来源:鹿清华, 张晓熙, 何祚云. 国内外地热发展现状及趋势分析[J]. 石油石化节能与减排, 2012, 2(1): 39-42(二)全球地热资源利用地热资源按赋存形式可分热水型、地压地热能、干热岩地热能和岩浆热能四种类型;根据地热水的温度,又可分为高温型(>l50℃)、中温型(90~150℃)和低温型(<90℃)三大类。
地热能的开发利用可分为发电和非发电两个方面,高温地热资源主要用于地热发电,中、低温地热资源主要是直接利用,多用于采暖、干燥、工业、农林牧副渔业、医疗、旅游及人民的日常生活等方面。
此外,对于25℃以下的浅层地温,可利用地源热泵进行供暖、制冷。
地热能发电技术及应用地热能作为一种可再生的能源,其储量丰富、稳定且环保,已经引起了广泛关注。
地热能发电技术是利用地球内部的热能转化为电能的一种技术,具有很大的潜力。
本文将详细介绍地热能发电技术及其应用。
地热能发电原理地热能发电的基本原理是利用地球内部的热能将水加热成蒸汽,然后利用蒸汽推动涡轮机旋转,最后通过发电机将旋转的动能转化为电能。
根据热能的来源,地热能发电可以分为两类:一类是利用地球表面或浅层的热能,另一类是利用地球深层的热能。
地热能发电技术地热能发电技术主要包括地热井建设、地热流体循环、蒸汽压缩循环和地热能利用等几个方面。
地热井建设地热井是地热能发电的关键设施,其建设过程包括选址、钻探和完井等步骤。
选址是根据地热资源的分布和地质条件进行的,要求地热井的位置要靠近地热资源,且地质条件要稳定。
钻探是地热井建设中的重要环节,其深度一般在一千米左右,目的是获取高温的地热流体。
完井是对钻探完成的井进行处理,使其能够稳定地流出地热流体。
地热流体循环地热流体循环是地热能发电中的核心环节,主要包括地热流体的提取、加热、膨胀做功和冷凝回注等过程。
地热流体从地热井中提取出来,经过加热器加热后,其温度和压力升高,然后流入涡轮机中,推动涡轮机旋转,最后流入冷凝器中,被冷却并回注到地热井中。
蒸汽压缩循环蒸汽压缩循环是一种提高地热能利用效率的技术。
该技术主要是利用压缩机将低压蒸汽压缩成高压蒸汽,从而提高蒸汽的温度和压力,进而提高涡轮机的效率。
地热能利用地热能利用是指将地热能转化为其他形式的能量,包括电能、热能等。
地热能利用的方式有很多,如地热供暖、地热空调、地热农业等。
地热能发电应用地热能发电应用广泛,包括电力生产、供暖、农业、工业等。
地热能发电不仅可以满足人们的能源需求,还可以减少对化石能源的依赖,缓解全球气候变化。
电力生产地热能发电在电力生产领域应用广泛。
目前,全球已经有多个国家实现了地热能发电商业化,如美国、冰岛、印度尼西亚等。
地热能发电技术地热能发电技术是一种利用地球内部热能转化为电能的技术。
地球内部的热能是一种可再生的能源,利用地热能发电不会产生二氧化碳等温室气体,对环境友好。
本文将介绍地热能发电技术的原理、应用领域以及发展前景。
一、地热能发电技术原理地热能发电利用地球内部的热能来驱动涡轮机发电。
地球内部的热能主要来自地幔和地核的高温,通过地壳的传导和对流使得地表下的岩石、水体等物质温度升高。
当地下温度达到一定程度时,可以利用该热能进行发电。
地热能发电主要有两种技术路线:干热岩能和地热水能。
干热岩能是通过钻井将地热能转化为热水或蒸汽,然后利用蒸汽驱动涡轮机发电。
地热水能是直接利用地下的热水或蒸汽来驱动发电设备。
地热能发电技术在全球范围内得到广泛应用。
根据地热资源的分布情况,可以将地热能发电技术分为低温、中温和高温三种类型。
低温地热能发电主要适用于地热资源较为丰富的地区,例如冰岛、菲律宾等地。
这些地区地下热水资源丰富,可以直接利用地下热水来发电。
中温地热能发电适用于地热资源相对较弱的地区,例如中国的华北平原、美国的加利福尼亚州等。
这些地区地下热水温度较低,需要通过钻井将地热能转化为蒸汽来发电。
高温地热能发电适用于地热资源非常丰富的地区,例如冰岛、新西兰等。
这些地区地下热水温度非常高,可以直接利用热水或蒸汽来发电。
三、地热能发电技术发展前景地热能发电技术具有很大的发展潜力。
首先,地热能是一种可再生的能源,不会因为开采而枯竭,可以长期稳定地供应电能。
其次,地热能发电不会产生污染物,对环境影响小,符合可持续发展的要求。
再次,地热能发电设备的运行成本相对较低,可以降低电力供应的成本。
随着科技的进步和对可再生能源的重视,地热能发电技术在全球范围内得到了广泛应用和发展。
据统计,截至2020年,全球已有超过80个国家和地区建立了地热能发电装置,总装机容量超过1.2万兆瓦。
在中国,地热能发电技术也得到了快速发展。
目前,中国已经建成了一批地热电站,主要分布在西南地区和华北平原。
地热能发电技术概述地热能发电技术是利用地球内部热能产生电力的一种可再生能源技术。
它是一种清洁、可持续的发电方式,具有减少温室气体排放和资源利用效率高的特点。
地热能发电技术在全球范围内得到广泛应用,并且在未来能源转型中扮演着重要的角色。
原理地热能发电技术的原理是利用地下深处高温的岩浆或地壳中的热水产生蒸汽,通过蒸汽驱动汽轮机发电。
地热能发电系统通常由地热井、热交换器、蒸汽发生器、汽轮机和发电机等组成。
1.地热井: 地热井是用来从地下获取热能的装置。
它通常由钻探机械进行钻探而成,用于将地下的高温热水或蒸汽带至地面进行利用。
2.热交换器: 热交换器是用来在地下热能与地下水之间进行换热的设备。
它可以将地下热能转移给另一种介质,如二次循环工质。
3.蒸汽发生器: 蒸汽发生器接收来自地热井的高温热水或蒸汽,并通过换热工质产生高温高压蒸汽。
4.汽轮机: 汽轮机是地热能发电系统中的核心设备,它通过受热的蒸汽驱动来自发电机的转子旋转,产生电能。
5.发电机: 发电机将汽轮机转子的机械能转化为电能,供电网使用。
地热资源的分类地热资源主要分为高温地热和低温地热两类。
1.高温地热: 高温地热通常指地下岩浆的热能,温度通常超过300摄氏度。
高温地热资源通常用于直接发电,其发电效率较高。
2.低温地热: 低温地热主要是指地壳中的热水资源,其温度低于300摄氏度。
低温地热资源通常用于发电系统中的热力循环过程,通过间接发电来转化地热能。
地热能发电技术的优势地热能发电技术具有许多优势,使其成为一种受青睐的清洁能源。
1.可持续性:地热能是一种可持续的能源,因为地球内部的热源几乎是不会耗尽的。
2.低碳排放:地热能发电过程中几乎不产生二氧化碳等温室气体的排放,对环境影响较小。
3.高效利用:地热能发电系统能够高效地利用地热能源,发电效率通常较高。
4.基础载荷:地热能发电系统是一种基础载荷型发电技术,能够提供持续稳定的电力输出。
5.地域适应性:地热能发电技术可根据地热资源的分布特点,在各地区实施灵活。
国内外开发地热能典型案例和做法国内外开发地热能典型案例及做法地热能是一种可再生能源,具有广阔的开发潜力。
国内外许多地区已经开始开发地热能,下面列举了一些典型的案例和做法。
1. 冰岛:冰岛是地热能开发的典范,几乎100%的电力和热能都来自地热能源。
冰岛拥有丰富的地热资源,利用地热能发电和供暖不仅能满足本国需求,还能出口给其他国家。
冰岛通过建设地热发电站和地热供暖系统,利用地热能源为国家经济发展做出了巨大贡献。
2. 美国:美国也是地热能开发的重要国家,尤其是在加利福尼亚州、内华达州和俄勒冈州等地。
美国利用地热能发电的最常见方式是通过地热发电站,利用地下热水或蒸汽驱动涡轮机发电。
此外,美国还广泛应用地热供暖系统,将地下热能用于建筑物供暖和热水供应。
3. 土耳其:土耳其是地热能开发的新兴国家,拥有丰富的地热资源。
土耳其利用地热能发电和供暖,特别是在西北部的帕姆库尔盆地地区。
土耳其已建成多个地热发电站和地热供暖系统,为国家的能源供应做出了重要贡献。
4. 中国:中国是全球最大的地热能消费国之一,拥有丰富的地热资源。
中国利用地热能主要是通过地热供暖系统,尤其是在北方寒冷地区。
中国也在积极发展地热发电技术,目前已有多个地热发电站投入运营。
5. 内蒙古额济纳旗:额济纳旗位于中国内蒙古自治区,是中国最大的地热能开发地之一。
该地区地下有丰富的高温地热资源,被广泛应用于供暖和温室种植等领域。
额济纳旗利用地热能源改变了当地的能源结构,提高了能源利用效率。
6. 内华达州:内华达州是美国最重要的地热能开发地之一,拥有丰富的地热资源。
该州利用地热能发电,通过地热发电站将地下的热水或蒸汽转化为电力。
内华达州地热发电已成为该州的重要能源来源之一。
7. 意大利:意大利是欧洲最重要的地热能开发国之一。
该国拥有丰富的地热资源,特别是在托斯卡纳地区。
意大利利用地热能主要是通过地热供暖系统,将地下热能用于建筑物供暖和热水供应。
8. 内布拉斯加州:内布拉斯加州是美国中部地区重要的地热能开发地之一。