单片机上拉电阻和下拉电阻做作用和接线方法图解
- 格式:docx
- 大小:9.46 KB
- 文档页数:2
下拉电阻和上拉电阻的作用1.下拉电阻的作用:下拉电阻是将电路接地的电阻,其主要作用有以下几点:(1)保持逻辑低电平:在数字电路中,逻辑低电平常用0V表示。
当系统处于空闲状态时,下拉电阻将电路拉低到0V,确保所有未接入时电路处于逻辑低电平状态。
这样可以避免电路的未定义状态,确保电路的稳定性和可靠性。
(2)电路的信号接地:下拉电阻将电路接地,起到信号处理的接地作用,避免由于信号耦合引起的干扰和噪声。
(3)承担输出电阻:在一些电路中,下拉电阻也会作为输出电阻存在,通过控制下拉电阻的阻值来调节电路的输出电阻。
(4)限制电流:下拉电阻可以限制电路中的电流大小,保护电路和元器件不受损坏。
(5)消除漂移:在一些传感器电路中,由于工作环境和元器件特性的影响,电路可能会产生输出漂移,通过使用下拉电阻可以消除这种漂移效应。
2.上拉电阻的作用:上拉电阻是将电路接向电源的电阻,其主要作用有以下几点:(1)保持逻辑高电平:在数字电路中,逻辑高电平常用VDD电压表示。
当系统处于空闲状态时,上拉电阻将电路拉高到VDD电压,确保所有未接入时电路处于逻辑高电平状态。
这样可以避免电路的未定义状态,确保电路的稳定性和可靠性。
(2)电路的信号接电源:上拉电阻将电路接向电源,起到信号处理的接入电源的作用,提供稳定的电源电压,避免由于电源波动引起的干扰和噪声。
(3)承担输入电阻:在一些电路中,上拉电阻也会作为输入电阻存在,通过控制上拉电阻的阻值来调节电路的输入电阻。
(4)限制电流:上拉电阻可以限制电路中的电流大小,保护电路和元器件不受损坏。
(5)提供信号源:在一些传感器电路中,通过使用上拉电阻作为信号源,可以提供稳定的电压信号输出。
综上所述,下拉电阻和上拉电阻在电子电路中有着不同的作用。
它们通过控制电路的电平状态、接地或接电源、控制电流大小等方式,对信号进行稳定和控制。
在数字电路中,下拉电阻和上拉电阻常用于控制逻辑门的输入和输出电平状态,确保电路的稳定工作;在模拟电路中,它们常用于限流、输入输出电阻调节、电路信号源等方面。
下拉电阻电路和上拉电阻电路
在数字电路的应用中,时常会听到上拉电阻器和下拉电阻器这个词,其实上拉电阻和下拉电阻都是起稳定电路工作状态的作用。
1:下拉电阻是如何工作的:
如图:U1是数字电路中的反相器,输入端Ui通过下拉电阻R1接地,这样在没有高电平输入时,可以使输入端稳定地处于低电平状态,防止了可能出现的高电平干扰使反相器误动作。
如果没有下拉电阻R,反相器输入端悬空,而输入端为高阻状态,外界的高电平干扰很容易从输入端加入到反向其中,从而引起反相器朝输出低电平方向翻转的误动作。
在接入下拉电阻R后,电源电压在+5V时,上拉电阻R的取值一般在470R 左右,由于R值很小,所以将输入端的各种高电平干扰短接到地,达到抗干扰的目的。
2:上拉电阻是如何工作的:
如图:U1是数字电路中的反相器,当反相器输入端Ui没有输入低电平时,上拉电阻R可以使反相器输入端稳定的处于高电平状态,防止了可能出现的低电平干扰使反相器出现误动作。
如果没有上拉电阻R,反相器输入端悬空,外界的低电平干扰很容易从输入端加入到反相器中,从而引起反相器朝输出高电平方向翻转的误动作。
在接入上拉电阻R后,电源电压在+5V时,上拉电阻R的取值一般在5—10K之间,上拉电阻R使输入端为高电平状态,没有足够的低电平触发,反相器不会翻转,达到抗干扰的目的。
电阻之上拉电阻与下拉电阻详解(转)上拉(Pull Up )或下拉(Pull Down)电阻(两者统称为“拉电阻”)最基本的作⽤是:将状态不确定的信号线通过⼀个电阻将其箝位⾄⾼电平(上拉)或低电平(下拉),⽆论它的具体⽤法如何,这个基本的作⽤都是相同的,只是在不同应⽤场合中会对电阻的阻值要求有所不同,从⽽也引出了诸多新的概念,本节我们就来⼩谈⼀下这些内容。
如果拉电阻⽤于输⼊信号引脚,通常的作⽤是将信号线强制箝位⾄某个电平,以防⽌信号线因悬空⽽出现不确定的状态,继⽽导致系统出现不期望的状态,如下图所⽰:在实际应⽤中,10K欧姆的电阻是使⽤数量最多的拉电阻。
需要使⽤上拉电阻还是下拉电阻,主要取决于电路系统本⾝的需要,⽐如,对于⾼有效的使能控制信号(EN),我们希望电路系统在上电后应处于⽆效状态,则会使⽤下拉电阻。
假设这个使能信号是⽤来控制电机的,如果悬空的话,此信号线可能在上电后(或在运⾏中)受到其它噪声⼲扰⽽误触发为⾼电平,从⽽导致电机出现不期望的转动,这肯定不是我们想要的,此时可以增加⼀个下拉电阻。
⽽相应的,对于低有效的复位控制信号(RST#),我们希望上电复位后处于⽆效状态,则应使⽤上拉电阻。
⼤多数具备逻辑控制功能的芯⽚(如单⽚机、FPGA等)都会集成上拉或下拉电阻,⽤户可根据需要选择是否打开,STM32单⽚机GPIO模式即包含上拉或下拉,如下图所⽰(来⾃ST数据⼿册):根据拉电阻的阻值⼤⼩,我们还可以分为强拉或弱拉(weak pull-up/down),芯⽚内部集成的拉电阻通常都是弱拉(电阻⽐较⼤),拉电阻越⼩则表⽰电平能⼒越强(强拉),可以抵抗外部噪声的能⼒也越强(也就是说,不期望出现的⼲扰噪声如果要更改强拉的信号电平,则需要的能量也必须相应加强),但是拉电阻越⼩则相应的功耗也越⼤,因为正常信号要改变信号线的状态也需要更多的能量,在能量消耗这⼀⽅⾯,拉电阻是绝不会有所偏颇的,如下图所⽰:对于上拉电阻R1⽽⾔,控制信号每次拉低L都会产⽣VCC/R1的电流消耗(没有上拉电阻则电流为0),相应的,对于下拉电阻R2⽽⾔,控制信号每次拉⾼H也会产⽣VCC/R2R 电流消耗(本⽂假设⾼电平即为VCC)。
上拉电阻下拉电阻的原理和作用上拉电阻和下拉电阻是电子电路设计中常用的元件,其原理和作用如下:1.上拉电阻:上拉电阻是一种电阻器,它的作用是将一个信号线拉高到高电平状态。
在数字电路中,上拉电阻通常用来确保信号线在断开连接时保持逻辑高电平,防止其浮动。
当信号线未连接到任何驱动器或信号源时,上拉电阻会向信号线提供一个连接到电源高电平的路径,从而确保信号线保持在逻辑高电平。
上拉电阻的原理是利用电阻的阻值将信号线连接到电源引脚,与电源之间形成一个电阻分压电路。
当信号线未被外部驱动时,上拉电阻会通过电流流向信号线,将其拉高到电源电压,使其保持逻辑高电平。
上拉电阻常用于开关电路、输入/输出电路、微控制器引脚等地方。
例如,在微控制器的输入引脚上加上上拉电阻,当外部信号未连接时,输入引脚会受到上拉电阻的影响,保持在逻辑高电平状态。
当外部信号连接并给出低电平信号时,外部信号能够更容易地拉低输入引脚电压,使微控制器能够检测到这个低电平信号。
2.下拉电阻:下拉电阻与上拉电阻相反,它的作用是将一个信号线拉低到低电平状态。
在数字电路中,下拉电阻通常用来确保信号线在断开连接时保持逻辑低电平,防止其浮动。
它通过提供一个连接到地的路径,将信号线拉低到地电位。
下拉电阻的原理也是利用电阻的阻值将信号线连接到地引脚,与地之间形成一个电阻分压电路。
当信号线未被外部驱动时,下拉电阻会通过电流流向地,将其拉低到地电位,使其保持逻辑低电平。
下拉电阻同样常用于开关电路、输入/输出电路、微控制器引脚等地方。
例如,在微控制器的输入引脚上加上下拉电阻,当外部信号未连接时,输入引脚会受到下拉电阻的影响,保持在逻辑低电平状态。
当外部信号连接并给出高电平信号时,外部信号能够更容易地拉高输入引脚电压,使微控制器能够检测到这个高电平信号。
总之,上拉电阻和下拉电阻在电子电路设计中起着重要的作用。
它们能够确保信号线的稳定性,防止浮动和干扰,从而提高电路的可靠性和抗干扰能力。
什么是上拉电阻?上拉电阻和下拉电阻都是电阻元器件,所谓上拉电阻就是接电源正极,下拉的就是接负极或地。
上拉就是将不确定的信号通过一个电阻钳位在高电平,电阻同时起限流作用。
下拉同理,也是将不确定的信号通过一个电阻钳位在低电平。
那么,上拉电阻和下拉电阻的用处和区别分别又是什么呢?一、上拉电阻和下拉电阻是什么上拉就是将不确定的信号通过一个电阻钳位在高电平,电阻同时起限流作用。
而下拉电阻是直接接到地上,接二极管的时候电阻末端是低电平,将不确定的信号通过一个电阻钳位在低电平。
上拉是对器件输入电流,下拉是输出电流;强弱只是上拉电阻的阻值不同,没有什么严格区分;对于非集电极(或漏极)开路输出型电路(如普通门电路)提供电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
二、上拉电阻和下拉电阻的用处和区别上拉电阻和下拉电阻二者共同的作用是:避免电压的“悬浮”,造成电路的不稳定。
上拉电阻:1、概念:将一个不确定的信号,通过一个电阻与电源VCC相连,固定在高电平;2、上拉是对器件注入电流,灌电流;3、当一个接有上拉电阻的IO端口设置为输入状态时,它的常态为高电平。
下拉电阻:1、概念:将一个不确定的信号,通过一个电阻与地GND相连,固定在低电平;2、下拉是从器件输出电流,拉电流;3、当一个接有下拉电阻的IO端口设置为输入状态时,它的常态为低电平。
上拉是对器件注入电流,下拉是输出电流,弱强只是上拉电阻的阻值不同,没有什么严格区分,对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
由此可见,电源到器件引脚上的电阻叫上拉电阻,作用是平时使用该引脚为高电平;地(GND)到器件引脚的电阻叫下拉电阻,作用是平时使该引脚为低电平。
上拉电阻、下拉电阻的作用上拉电阻是指将某点电位采用电阻与电源VDD相连的电阻。
下拉电阻是指在某点电位用电阻与地相连的电阻。
1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须加上拉电阻,以提高输出的搞电平值。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑以上三点,通常在1k到10k之间选取。
上拉电阻:1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须加上拉电阻,才能使用。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
iic上拉电阻、下拉电阻IIC(Inter-Integrated Circuit)是一种常用的串行通信协议,广泛应用于各种电子设备中。
在使用IIC协议进行通信时,为了保证信号的稳定和可靠传输,常常需要使用上拉电阻和下拉电阻。
本文将从IIC协议的基本原理和应用场景入手,详细介绍上拉电阻和下拉电阻的作用和使用方法。
IIC协议是一种双线制的串行通信协议,由时钟线(SCL)和数据线(SDA)组成。
在IIC通信中,上拉电阻和下拉电阻的作用是为了确保SCL和SDA线上的信号电平能够正确地被接收和解析。
我们来了解一下上拉电阻的作用。
上拉电阻是连接在SCL和SDA 线上的电阻,它的作用是将这两根线拉高到一个默认的高电平。
当总线上没有任何设备产生低电平信号时,上拉电阻能够确保SCL和SDA线保持在高电平状态,从而防止信号的漂移和误读。
当总线上某个设备需要传输数据时,它会将相应的线拉低,与上拉电阻形成一个电平切换,以表示数据的传输。
接下来,我们来了解一下下拉电阻的作用。
下拉电阻同样是连接在SCL和SDA线上的电阻,它的作用是将这两根线拉低到一个默认的低电平。
当总线上没有任何设备产生高电平信号时,下拉电阻能够确保SCL和SDA线保持在低电平状态,从而防止信号的漂移和误读。
当总线上某个设备需要传输数据时,它会将相应的线拉高,与下拉电阻形成一个电平切换,以表示数据的传输。
在实际的电路设计中,选择上拉电阻和下拉电阻的数值需要考虑多个因素,如总线上的设备数量、总线长度、工作频率等。
一般来说,上拉电阻和下拉电阻的数值应该相对较大,以确保信号的稳定性。
常见的数值范围是1kΩ至10kΩ,具体数值需要根据实际情况进行调整。
上拉电阻和下拉电阻的连接方式也需要注意。
一种常见的方式是将上拉电阻和下拉电阻连接到VCC和GND,以保证信号电平的正确切换。
另一种方式是将上拉电阻和下拉电阻连接到IO引脚上,以避免在电源启动时产生过大的电流。
具体的连接方式也需要根据实际情况进行选择。
上拉电阻和下拉电阻的原理以及部分应用总结图中上下两个电阻分别为下拉电阻和上拉电阻,上拉就是将A点的电位拉高,下拉就是将A点的电位拉低,图中的12k有些是没有画出来的,或者是没有的.他们的作用就是在电路驱动器关闭时,给该节点一个固定的电平.上拉电阻:1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须加上拉电阻,才能使用。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑以上三点,通常在1k到10k之间选取。
对下拉电阻也有类似道理对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:1. 驱动能力与功耗的平衡。
以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。
2. 下级电路的驱动需求。
同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。
3. 高低电平的设定。
不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。
以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。
上拉电阻与下拉电阻的作用总结上拉电阻和下拉电阻是在数字电路中常见的两种电阻连接方式。
它们可以用来稳定信号的电平,防止信号出现浮动或者没有明确的电平状态。
本文将从原理、应用场景和作用三个方面来总结上拉电阻和下拉电阻的作用。
首先,我们来介绍上拉电阻和下拉电阻的原理。
上拉电阻是将电阻连接在输入信号线和电源电压之间,而下拉电阻是将电阻连接在输入信号线和地之间。
当信号线没有外部信号输入时,上拉电阻可以将信号线拉高到电源电压,下拉电阻可以将信号线拉低到地。
当外部信号输入时,上拉电阻会通过这个信号将信号线拉高或拉低,下拉电阻同样也会通过信号将信号线拉高或拉低。
通过这种方式,上拉电阻和下拉电阻可以稳定信号的电平。
接下来,我们来介绍上拉电阻和下拉电阻的应用场景。
上拉电阻常见于输入电路中,用来保持输入信号的默认状态为高电平。
例如,在数字电路中,当一个按钮没有被按下时,可以通过上拉电阻将输入信号线拉高到高电平,而当按钮被按下时,输入信号线会被按下按钮连接的地拉低到低电平。
这样可以避免因为按钮没有被按下造成的输入电路信号浮动。
下拉电阻则常见于输出电路中,用来保持输出信号的默认状态为低电平。
例如,在数字电路中,一个开关的引脚可以通过下拉电阻将默认状态设为低电平。
最后,我们来总结上拉电阻和下拉电阻的作用。
首先,上拉电阻和下拉电阻可以使信号的电平稳定。
它们可以保持信号的默认状态,防止信号因为缺乏明确的电平状态而造成误判。
其次,上拉电阻和下拉电阻可以减少信号的浮动。
当没有外部信号输入时,上拉电阻和下拉电阻可以将信号线拉高或拉低到确定的电平,从而降低信号的变化。
此外,上拉电阻和下拉电阻还可以提高电路的抗干扰能力。
它们可以阻止外界的干扰信号对电路的输入或输出信号产生影响。
总之,上拉电阻和下拉电阻是数字电路中常见的电阻连接方式。
它们可以稳定信号的电平,防止信号出现浮动或者没有明确的电平状态。
这对于保证电路的正确工作非常重要。
因此,在设计和使用数字电路时,需要合理选择上拉电阻和下拉电阻的数值和位置,以确保电路的稳定性和可靠性。
上拉电阻、下拉电阻的原理和作⽤上拉电阻、下拉电阻的原理和作⽤2014-11-11⼀、应⽤1、当TTL电路驱动COMS电路时,如果TTL电路输出的⾼电平低于COMS电路的最低⾼电平(⼀般为3、5V),这时就需要在TTL的输出端接上拉电阻,以提⾼输出⾼电平的值。
2、OC门电路必须加上拉电阻,以提⾼输出的搞电平值。
3、为加⼤输出引脚的驱动能⼒,有的单⽚机管脚上也常使⽤上拉电阻。
4、在COMS芯⽚上,为了防⽌静电造成损坏,不⽤的管脚不能悬空,⼀般接上拉电阻产⽣降低输⼊阻抗,提供泄荷通路。
5、芯⽚的管脚加上拉电阻来提⾼输出电平,从⽽提⾼芯⽚输⼊信号的噪声容限增强抗⼲扰能⼒。
6、提⾼总线的抗电磁⼲扰能⼒。
管脚悬空就⽐较容易接受外界的电磁⼲扰。
7、长线传输中电阻不匹配容易引起反射波⼲扰,加上下拉电阻是电阻匹配,有效的抑制反射波⼲扰。
上拉电阻阻值的选择原则包括:1、从节约功耗及芯⽚的灌电流能⼒考虑应当⾜够⼤;电阻⼤,电流⼩。
2、从确保⾜够的驱动电流考虑应当⾜够⼩;电阻⼩,电流⼤。
3、对于⾼速电路,过⼤的上拉电阻可能边沿变平缓。
综合考虑以上三点,通常在1k到10k之间选取。
对下拉电阻也有类似道理。
⼆、原理:上拉电阻实际上是集电极输出的负载电阻。
不管是在开关应⽤和模拟放⼤,此电阻的选则都不是拍脑袋的。
⼯作在线性范围就不多说了,在这⾥是讨论的是晶体管是开关应⽤,所以只谈开关⽅式。
找个TTL器件的资料单独看末级就可以了,内部都有负载电阻根据不同驱动能⼒和速度要求这个电阻值不同,低功耗的电阻值⼤,速度快的电阻值⼩。
但芯⽚制造商很难满⾜应⽤的需要不可能同种功能芯⽚做许多种,因此⼲脆不做这个负载电阻,改由使⽤者⾃⼰⾃由选择外接,所以就出现OC、OD输出的芯⽚。
由于数字应⽤时晶体管⼯作在饱和和截⽌区,对负载电阻要求不⾼,电阻值⼩到只要不⼩到损坏末级晶体管就可以,⼤到输出上升时间满⾜设计要求就可,随便选⼀个都可以正常⼯作。
但是⼀个电路设计是否优秀这些细节也是要考虑的。
上拉电阻、下拉电阻详细解读电阻在电路中起限制电流的作用。
上拉电阻和下拉电阻是经常提到也是经常用到的电阻,在每个系统的设计中都用到了大量的上拉电阻和下拉电阻。
在上拉电阻和下拉电阻的电路中,经常有的疑问是:上拉电阻为何能上拉?下拉电阻为何能下拉?下拉电阻旁边为何经常会串一个电阻?简单概括为:●电源到器件引脚上的电阻叫上拉电阻,作用是平时使该引脚为高电平;●地到器件引脚上的电阻叫下拉电阻,作用是平时使该引脚为低电平。
●低电平在IC内部与GND相连接;●高电平在IC内部与超大电阻相连接。
上拉就是将不确定的信号通过一个电阻钳位在高电平,电阻同时起限流作用,下拉同理。
对于非集电极(或漏极)开路输出型电路(如普通门电路,其提升电流和电压的能力是有限的,上拉和下拉电阻的主要功能是为集电极开路输出型电路提供输出电流通道。
上拉是对器件注入电流,下拉是输出电流;强弱只是上拉或下拉电阻的阻值不同,没有什么严格区分。
当IC的I/O端口,节点为高电平时:节点处和GND之间的阻抗很大,可以理解为无穷大,这个时候通过上拉电阻(如4.7K欧,10K欧电阻)接到VCC上,上拉电阻的分压几乎可以忽略不计;当I/O端口节点需要为低电平时:直接接GND就可以了,这个时候VCC与GND 是通过刚才的上拉电阻(如4.7K欧,10K欧电阻)连接的,通过的电流很小,可以忽略不计。
电平值的大小、高低是相对于地电平来说的,因此在看电平值的大小时要参考地的电平值来看。
看看那些引脚是否接到地上,与自己是否连接外围器件没有关系,因为其实高电平还是低电平是相对于地平面来说的。
在节点与+5V之间接10K欧或4.7K欧的上拉电阻,能够把这个节点的电位拉上来,往往这个节点要求应用单片机或其它控制器来控制它(及这个节点与I/O连接)为高电平或低电平。
如果单纯的想要使这个节点成为高电平,并且输出阻抗非常大,则直接接电源也无妨,但是如果单片机要使这个节点拉低,即单片机内部使节点接地,这样5V电源和地之间就短路了。
什么是上拉电阻,什么是下下拉电阻?它们有什么作用?(提示:如果图片显示不完整,请保存下来再看就行了。
A:如下图的两个 Bias Resaitor 电阻就是上拉电阻和下拉电阻。
图中,上部的一个Bias Resaitor 电阻因为是接地,因而叫做下拉电阻,意思是将电路节点A 的电平向低方向(地)拉;同样,图中,下部的一个Bias Resaitor 电阻因为是电源(正),因而叫做上拉电阻,意思是将电路节点A的电平向高方向(电源正)拉。
当然,许多电路中上拉下拉电阻中间的那个12k电阻是没有的或者看不到的。
我找来这个图是RS-485/RS-422总线上的,可以一下子认识上拉下拉的意思。
但许多电路只有一个上拉或下拉电阻,而且实际中,还是上拉电阻的为多。
上拉下拉电阻的主要作用是在电路驱动器关闭时给线路(节点)以一个固定的电平。
1 在RS-485总线中,它们的主要作用就是在线路所有驱动器都释放总线时让所有节点的A-B端电压在200mV或200mV以上(不考虑极性)。
不然,如果接收器输入端A和B间的电平低于±200mV(绝对值小于200mV,接收器输出的逻辑电平将被当作所传输数据的末位而被接收起来,这样显然是极容易产生通讯错误的。
2 最容易见到的上拉电阻应当是NE555电路7脚作为输出用的时候。
实际上,它和一个三极管的C极或MOS管的D极有一个电阻接到电源+上是一样道理的。
它的作用就是:当管子(晶体管或MOS管)输入关断电平时,C极或D极有一个高电平(空载时约等于电源电压);当管子(晶体管或MOS管)输入导通电平时,C极或D极将与电源地(-)接通,因而有一个低电平。
理想的应为0V,但因为管子有导通电阻,因而有一定的电压,不同的管子可能不一样,相同的管子也可能因参数差异而小有差别,即便是真正的金属接触的电源开关,也是有接触电阻/导通压降(虽然不同电流下压降不同)的;仅仅就导通而言,对于不同系列的集成电路来说,因为应用对象不同,导通后的输出电压有不同的规定,典型是TTL电平和CMOS电平的不同。
单片机上拉电阻和下拉电阻做作用和接线方法图解摘要: 是不是经常听别人讲,加个试试看,加个下拉电阻试试看,是不是还在疑惑上下拉电阻是什幺,该怎幺用,什幺时候用,有什幺用途? 1.什幺是上下拉电阻:把一个不确定的信号通过电阻连接到高电平,使该信号...是不是经常听别人讲,加个试试看,加个下拉电阻试试看,是不是还在疑惑上下拉电阻是什幺,该怎幺用,什幺时候用,有什幺用途?1.什幺是上下拉电阻:把一个不确定的信号通过电阻连接到高电平,使该信号初始为高电平;下拉电阻:把一个不确定的信号通过电阻连接到低电平,使该信号初始为低电平;2.上下拉电阻的接线方法如下图所示:电阻R12 将KEY1 网络标识上拉到高电平,在按键S2 没有按下的情况下KEY1 将被钳制在高电平,从而避免了引脚悬空而引起的误动作;下拉电阻如下图所示:电阻R29 将DIR 网络标识下拉到低电平,在光耦没有导通的情况下DIR将被钳制在低电平,从而避免了引脚悬空而引起的误动作;3.上下拉电阻的作用提高电路稳定性,避免引起误动作。
第一图中的按键如果不通过电阻上拉到高电平,那幺在上电瞬间可能就发生误动作,因为在上电瞬间的引脚电平是不确定的,上拉电阻R12 的存在保证了其引脚处于高电平状态,而不会发生误动作。
提高输出管脚的带载能力。
受其他外围电路的影响在输出高电平时能力不足,达不到VCC 状态,这会影响整个系统的正常工作,上拉电阻的存在就可以使管脚的驱动能力增强。
这里特别强调如下:带片上I2C 资源的,其SCL和SDA 引脚是开漏引脚,如果当做普通的GPIO 来用的话,你会发现该引脚输出高电平极不稳定甚至因为负载的关系都无法正常输出高电平,这时候就需要在这两个引脚上加上拉电阻了。
通过上面的讲解,不知道困扰你多时的上下拉电阻你明白了吗?。
下拉电阻和上拉电阻的工作原理及必要性是什么?在电路中常说的拉阻指的就是上拉电阻和下拉电阻,上下拉电阻就是将不确定的信号通过一个电阻嵌位在高电平(1)或低电平(0),同时都有限流作用。
高电平(1)并不是说高电平就是1V,可以是3.3V或5V或其它电压,低电平(0)并不是说电平就是0V,可以是接近0v或0V的电压。
高电平、低电平只是代表两种状态。
上拉电阻是从电源到负载之间的电阻,下拉电阻是从地到负载之间的电流。
前者可以用于解决总线驱动能力不足提供电流,后者可用于吸收电流。
上下拉电阻的作用1、提高电压准位。
例如TTL电路驱动COMS电路,若TTL电路输出高电平低于COSM电路最低高电平值,此时就需要在TTL电路的输出端接上拉电阻。
2、加大输出引脚驱动力。
3、N/A PIN防静电防干扰。
4、电阻匹配,抑制反射波干扰。
5、提高输入信号的噪音容限。
6、预设空间状态/缺省。
简单的来说上下拉电阻就是增大电流,加强电路的驱动能力。
https:///a6619285996359909640/电路中加上拉电阻或下拉电阻的目的是确定某个状态电路中的高电平或低电平。
下面举几个例子进行讲解:按键检测中的上拉电阻增加上拉电阻的目的是使当按键断开时,KeyIn1处于高电平状态,若无上拉,悬空,状态无法确定。
断开为1,闭合为0,数字逻辑关系明确。
比较器输出加上拉电阻当比较器反相输入端电压>同相输入端电压时,比较器输出低电平(地),没问题;当比较器反相输入端电压<同相输入端电压时,若无上拉电阻,比较器是不会输出高电平的,而是相当于悬空状态的导线,只有增加上拉电阻才会输出高电平。
三极管、MOS管等控制端上拉或下拉三极管和MOS管当开关使用时,控制端加上拉或下拉电阻的目的是当没有输入信号时,使控制极处于稳定电平状态,确保三极管或MOS管截止。
还有处理器IO口、光耦输出、某些反相器等增加上拉或下拉电阻的目的也是一样的,为了确定电平状态。
上拉、下拉电阻,分压电路(2009-05-23 22:59:26)分类:GlobalKnowledge 标签:分压电路上拉电阻ttl电路下拉电阻it上拉电阻是指:将某电位点采用电阻与电源VDD相连的电阻。
比如,LM339比较器的输出端在输出高电平时,输出端是悬空的(集电极输出),采用上拉电阻可以将电源电压通过该电阻向负载输出电流,而输出端低电平时,输出端对地短接。
下拉电阻就是在某电位点用电阻与地相连的电阻。
如果某电位点有下拉和上拉电阻就组成了分压电路,此时,电阻又叫分压电阻。
作用1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须加上拉电阻,以提高输出的高电平值。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑以上三点,通常在1k到10k之间选取。
对下拉电阻也有类似道理。
单片机IO口结构及上拉电阻单片机IO口结构及上拉电阻MCS-51有4组8位I/O口:P0、P1、P2和P3口,P1、P2和P3为准双向口,P0口则为双向三态输入输出口,下面我们分别介绍这几个口线。
一、P0口和P2口图1和图2为P0口和P2口其中一位的电路图。
由图可见,电路中包含一个数据输出锁存器(D触发器)和两个三态数据输入缓冲器,另外还有一个数据输出的驱动(T1和T2)和控制电路。
这两组口线用来作为CPU与外部数据存储器、外部程序存储器和I/O扩展口,而不能象P1、P3直接用作输出口。
它们一起可以作为外部地址总线,P0口身兼两职,既可作为地址总线,也可作为数据总线。
图1 单片机P0口内部一位结构图图2 单片机P0口内部一位结构图P2口作为外部数据存储器或程序存储器的地址总线的高8位输出口AB8-AB15,P0口由ALE选通作为地址总线的低8位输出口AB0-AB7。
外部的程序存储器由PSEN信号选通,数据存储器则由WR和RD读写信号选通,因为2^16=64k,所以MCS-51最大可外接64kB的程序存储器和数据存储器。
二、P1口图3为P1口其中一位的电路图,P1口为8位准双向口,每一位均可单独定义为输入或输出口,当作为输入口时,1写入锁存器,Q(非)=0,T2截止,内上拉电阻将电位拉至"1",此时该口输出为1,当0写入锁存器,Q(非)=1,T2导通,输出则为0。
图3 单片机P2口内部一位结构图作为输入口时,锁存器置1,Q(非)=0,T2截止,此时该位既可以把外部电路拉成低电平,也可由内部上拉电阻拉成高电平,正因为这个原因,所以P1口常称为准双向口。
需要说明的是,作为输入口使用时,有两种情况:1.首先是读锁存器的内容,进行处理后再写到锁存器中,这种操作即读—修改—写操作,象JBC(逻辑判断)、CPL(取反)、INC(递增)、DEC(递减)、ANL(与逻辑)和ORL(逻辑或)指令均属于这类操作。
一次性说清上拉电阻和下拉电阻在电子元件中,没有上拉电阻和下拉电阻等物理电阻。
之所以这样称呼它们,是因为它们是根据使用电阻的不同场景来定义的,它们的本质仍然是电阻。
常用于偏置数字门的输入,以防止它们在没有输入时随机浮动。
当你使用它们时,你会得到一个稳定的“高”或“低”状态。
相反,如果没有发生这种情况,则引脚上没有连接,程序读取高阻抗的“浮动”状态。
上拉电阻的定义:通过电阻将不确定的信号连接到VCC电源,并将其固定在高电平。
功能:向上拉动将电流注入器件;灌电流;当带有上拉电阻器的IO 端口设置为输入状态时,其正常状态为高电平,如下图。
图1同理,下拉电阻的定义:通过电阻将某个信号线连接到固定的低电平GND,以将其空闲状态保持在低电平。
功能:下拉是从器件输出电源;拉电流。
当带有下拉电阻的IO端口设置为输入状态时,其正常状态为低,如下图。
图2上拉电阻和下拉电阻2者共同的作用是:避免电压的“悬浮”,造成电路的不稳定。
如下图所示,R1为上拉电阻,R2为下拉电阻。
当R1的电阻在数百K时,它可以向信号线提供非常小的负载电流,负载电容器的充电相对较慢。
在这一点上,电阻被称为弱上拉。
同样,如果下拉电阻很大,下拉速度相对较慢,此时的电阻称为弱下拉。
如果上拉和下拉电平可以为芯片提供大电流,则此时的电阻称为强上拉或强下拉图3上拉电阻的作用1、提高输出的高电平:当TTL电路驱动COMS电路时,当TTL电路的输出电平低于COMS电路的最低高电平(通常为3.5V)时,必须在TTL的输出端连接上拉电阻,以提高输出值的输出电平。
2、OC(集电极开路,TTL)门电路必须加上拉电阻,才能使用,因为管子没有电源就不能输出高电平了。
3、为了提高输出引脚的驱动能力,一些MCU通常在引脚上使用上拉电阻。
4、在COMS芯片上,为了避免静电造成的损坏,不用的管脚不能悬空,通常,连接上拉电阻以降低输入阻抗并提供放电路径。
同时,当引脚悬空时,相对容易接受外部电磁干扰(MOS器件具有高输入阻抗,非常容易受到外部干扰)。
单片机上拉电阻和下拉电阻做作用和接线方法图解
摘要: 是不是经常听别人讲,加个试试看,加个下拉电阻试试看,是不是还在疑惑上下拉电阻是什幺,该怎幺用,什幺时候用,有什幺用途? 1.什幺是上下拉电阻:把一个不确定的信号通过电阻连接到高电平,使该信号...
是不是经常听别人讲,加个试试看,加个下拉电阻试试看,是不是还在疑惑上下拉电阻是什幺,该怎幺用,什幺时候用,有什幺用途?
1.什幺是上下拉电阻
:把一个不确定的信号通过电阻连接到高电平,使该信号初始为高电平;
下拉电阻:把一个不确定的信号通过电阻连接到低电平,使该信号初始为低电平;
2.上下拉电阻的接线方法
如下图所示:
电阻R12 将KEY1 网络标识上拉到高电平,在按键S2 没有按下的情况下KEY1 将被钳制在高电平,从而避免了引脚悬空而引起的误动作;
下拉电阻如下图所示:
电阻R29 将DIR 网络标识下拉到低电平,在光耦没有导通的情况下DIR
将被钳制在低电平,从而避免了引脚悬空而引起的误动作;
3.上下拉电阻的作用
提高电路稳定性,避免引起误动作。
第一图中的按键如果不通过电阻上拉到高电平,那幺在上电瞬间可能就发生误动作,因为在上电瞬间的引脚电平。