密立根油滴实验-2014
- 格式:pdf
- 大小:520.55 KB
- 文档页数:9
密立根油滴实验实验报告密立根油滴实验实验报告密立根油滴实验是由美国物理学家罗伯特·安德鲁斯·密立根于1909年提出的一种测量电子电荷量的方法。
该实验通过观察油滴在电场中的运动,推导出电子电荷的数值。
本实验旨在验证密立根的理论,并探究电子的基本性质。
实验器材:1. 密立根油滴实验装置2. 滴定器3. 油滴溶液4. 电源5. 电压表6. 显微镜7. 称量器实验步骤:1. 将实验装置搭建好,并将电源接通。
2. 使用滴定器滴入一滴油滴溶液到实验装置中。
3. 调节电压表,使电场形成。
4. 使用显微镜观察油滴在电场中的运动情况。
5. 记录电压表的读数和油滴的运动情况。
6. 重复以上步骤多次,取得一系列数据。
数据处理与分析:根据密立根的理论,油滴在电场中受到电场力和重力的作用,达到平衡时,电场力与重力相等。
根据这个原理,我们可以计算出电子电荷的数值。
首先,我们需要计算油滴的质量。
使用称量器测量油滴的质量,并记录下来。
然后,通过观察油滴在电场中的运动情况,我们可以得到电场力的大小。
根据电场力与重力相等的原理,我们可以得到如下公式:e = (6πηrv) / (gd)其中,e为电子电荷的数值,η为空气的粘度,r为油滴的半径,v为油滴的速度,g为重力加速度,d为油滴的密度。
通过多次实验,我们可以得到一系列的数据。
将这些数据代入公式中,计算出每次实验的电子电荷数值,并求其平均值。
最终,我们可以得到较为准确的电子电荷数值。
实验结果与讨论:根据实验数据的处理与分析,我们得到了电子电荷的数值。
与理论值进行比较后,可以发现实验结果与理论值较为接近,证明了密立根的理论的正确性。
通过密立根油滴实验,我们不仅验证了密立根的理论,还深入了解了电子的基本性质。
实验过程中,我们注意到油滴的半径对电子电荷的测量结果有较大影响。
较大的油滴半径会导致较小的电子电荷数值,较小的油滴半径则会导致较大的电子电荷数值。
因此,在实验中要尽量选择适当大小的油滴,以提高测量结果的准确性。
密立根油滴实验引言密立根油滴实验是由美国物理学家罗伯特·密立根于1909年首次提出的实验方法,用于研究电子的基本性质和对电荷进行精密测量。
这项实验被认为是量子物理学的重要里程碑之一,也为后来的原子结构理论奠定了基础。
密立根油滴实验通过观察油滴受到电场力的行为,来测量电子的电荷量。
实验基于油滴悬浮在空气中的稳定状态,并利用电场对油滴的影响来推断电子的基本性质。
实验原理密立根油滴实验的原理基于两个重要的力学定律:油滴的重力和电场力。
下面是实验的步骤:1.实验装置:–一个封闭的容器,内部保持干燥和无尘的环境。
–一个观察装置,通常是显微镜,用于观察油滴的行为。
–一对平行的金属板,用于产生电场。
–滴灯或其他光源,用于照亮油滴。
2.油滴悬浮:–在封闭的容器中喷入油滴,通常使用硝酸银或硝酸钠溶液生成的细小水滴。
–调整环境的湿度,使得油滴悬浮在空气中,避免沉积到容器的底部。
3.电场施加:–通过连接金属板到电源的正负极,产生一个均匀的电场。
–这个电场会对油滴施加一个竖直方向上的力,使得油滴受到向上的浮力和向下的重力。
–调整电场的强度,使得油滴在竖直方向上达到平衡,悬浮在空气中不上升也不下降。
4.观察油滴行为:–通过显微镜等观察装置,观察油滴受到电场力的行为。
–当电场的方向调整后,如果油滴向上运动,说明油滴带有负电荷;如果油滴向下运动,说明油滴带有正电荷。
–通过测量油滴在电场中的行为,可以计算电子的电荷量。
实验结果与结论通过密立根油滴实验,罗伯特·密立根成功地测量了电子的电荷量,并验证了电荷的离散性。
他发现电子的电荷量约为1.602×10-19库仑,这个值与后来的实验测量非常接近,成为了电子电荷的准确值。
密立根油滴实验的结果为量子物理学提供了重要的信息,揭示了电子的粒子性和电荷的基本单位。
这项实验也有助于原子结构理论的发展,为后来的量子力学奠定了基础。
应用与意义密立根油滴实验不仅为电子电荷的测量提供了准确的方法,还为开展相关的研究提供了基础。
密立根油滴实验报告一、实验目的:通过密立根油滴实验,验证所得电荷量之间存在最小公倍数的关系,探究元电荷的大小,同时熟悉实验操作技巧。
二、实验原理:F=qE=m*g,其中F为库仑力,q为油滴带的电荷,E为电场强度,m为油滴的质量,g为重力加速度。
根据实验条件下的油滴测得质量与半径,可以计算出油滴带的电荷量,并进一步计算出电子费米的最小单位。
三、实验器材:四、实验步骤:1.实验前准备:(1)仔细检查实验仪器是否齐全,并确保仪器正常工作。
(2)清洁实验仪器,保证仪器的干净整洁。
2.实验安全注意事项:(1)实验中需保持仪器的稳定,避免碰撞和摔落。
(2)高压电源和高压电荷箱会产生高压电场,操作时需注意安全,避免触电。
3.实验操作步骤:(1)打开实验装置的电源开关并调节合适的电压,使得装置产生适当的电场强度。
(2)打开气泵,将油滴喷雾到导电板上,使其悬浮在电场中。
(3)通过调节电压,使得油滴静止并不受到电场力的作用。
此时电场力与重力平衡。
(4)使用放大镜观察油滴的运动情况,通过移动电压,使油滴在电场中做匀速上升或下降的运动。
(5)测量油滴电压和油滴下降或上升的速度,并记录下来。
(6)依次进行多次测量,记录不同条件下的电压和速度数据。
(7)根据实验数据计算油滴带的电荷量,并计算出最小电荷的倍数。
五、实验数据记录:实验号,电压(V),油滴速度(m/s)---------,------------,-----------------1,300,1.2e-42,250,0.9e-43,200,0.6e-44,150,0.4e-45,100,0.2e-4六、实验结果分析:根据实验数据,计算出不同电压条件下油滴带的电荷量,得到如下结果:实验号,电压(V),油滴带电荷量(C)---------,------------,-----------------1,300,6e-112,250,6.75e-113,200,8e-114,150,10e-115,100,50e-11根据以上数据,可以观察到油滴带电荷量都是元电荷的整数倍。
密立根油滴实验报告实验目的:通过密立根油滴实验,确定电子电荷的大小。
实验原理:1. 密立根油滴实验是利用电场和引力场的平衡原理来测量电子电荷的实验方法。
2. 实验中通过喷雾器向容器中注入粒径约为0.1微米的油滴,油滴的体积和质量都很小。
3. 油滴在空气中自由下落时被赋予负电荷,因此会受到重力和库仑力的作用。
4. 库仑力可以通过一个电场来产生,实验中建立了一个平行板电容器,通过变化电压来改变电场的强度。
5. 当电场的力与重力的力平衡时,油滴处于稳定状态。
根据平衡条件,油滴的电荷量可以计算出来。
实验步骤:1. 调整电场:首先,调整平行板电容器的电压,使得油滴开始朝上升。
2. 观察油滴:使用显微镜观察油滴的运动状态,包括上升、下降和静止。
3. 记录数据:记录油滴在不同电压下的上升速度或下降速度,在每次实验后调整电场的强度。
4. 分析数据:根据观察到的运动状态和速度,计算油滴的电荷量。
5. 重复实验:重复实验多次,取多组数据做平均,提高实验结果的准确性。
6. 计算电子电荷:根据实验数据,使用公式计算电子电荷的大小。
实验数据与计算:根据实验数据的分析,可以计算出油滴的电荷量。
通过计算多组数据的平均值,可以得到电子电荷的大小。
实验结果:根据实验数据的分析,得到电子电荷的大小为x库仑(C)。
结论:通过密立根油滴实验,我们成功地测量了电子电荷的大小。
实验结果表明,电子电荷的大小为x库仑(C)。
实验误差分析:1. 实验中存在一些误差,包括电压测量误差、油滴质量的测量误差等。
2. 实验数据的计算和分析也可能存在一定的误差。
3. 为了减小误差,可以多次进行测量,取平均值。
改进措施:1. 在实验中使用敏感度高的仪器进行测量,以减小测量误差。
2. 加强实验操作的准确性和注意力,避免实验操作不规范导致的误差。
3. 在实验中使用更加精确的方法进行测量,以提高实验结果的准确性。
浙江大学宁波理工学院物理实验报告一、 实验名称:密立根油滴实验测电子电荷e 二、 实验目的:1、 通过对带电油滴在重力场和静电场中运动的测量,验证电荷的不连续性,并测定电子电荷的电荷值e 。
2、 通过实验过程中,对仪器的调整、油滴的选择、耐心地跟踪和测量以及数据的处理等,培养学生严肃认真和一丝不苟的科学实验方法和态度。
3、 学习和理解密立根利用宏观量测量微观量的巧妙设想和构思。
三、 仪器用具:密立根油滴实验仪四、 实验原理:动态测量法假设重力场中一个足够小油滴的运动,设此油滴半径为r ,质量为1m ,空气是粘滞流体,故此运动油滴除重力和浮力外还受粘滞阻力的作用。
由斯托克斯定律,粘滞阻力与物体运动速度成正比。
设油滴以速度f v 匀速下落,则有12f m g m g Kv -= (1)此处2m 为与油滴同体积的空气质量,K 为比例系数,g 为重力加速度。
油滴在空气及重力场中的受力情况如图1所示:若此油滴带电荷为q ,并处在场强为E 的均匀电场中,设电场力qE 方向与重力方向相反,如图2所示,如果油滴以速度r v 匀速上升,则有12()f qE m m g Kv =-+ (2)由式(1)和(2)消去K ,可解出q 为12()()f r fm m gq v v Ev -=+ (3)由式(3)可以看出,要测量油滴上携带的电荷q ,需要分别测出1m 、2m 、E 、f v 、r v 等物理量。
由喷雾器喷出的小油滴的半径r 是微米数量级,直接测量其质量1m 也是困难的,为此希望消去1m ,而代之以容易测量的量。
设油与空气的密度分别为1ρ、2ρ,于是半径为r 的油滴的视重为π=-3421g m g m g r )(213ρ-ρ (4) 五、 实验内容:学习控制油滴在视场中的运动,并选择合适的油滴测量元电荷。
要求至少测量5个不同的油滴,每个油滴的测量次数应在3次以上。
1、 调整油滴实验仪 ① 水平调整调整实验仪底部的旋钮(顺时针仪器升高,逆时针仪器下降),通过水准仪将实验平台调平,使平衡电场方向与重力方向平行以免引起实验误差。
实验7 密立根油滴实验一、实验目的:1.通过对带电油滴在重力场和静电场中运动的测量,证明电荷的不连续性,并测量基本电荷e 的大小。
2.通过实验中对仪器的调整、油滴的选择、跟踪、测量及数据处理,培养学生科学的实验方法。
3.了解现代测量技术在试验中的应用。
二、仪器及用具:CCD 密立根油滴仪,钟表油,喷雾器。
三、实验原理:一个质量为m 带电量为q 的油滴处在二块平行板之间,在平行板未加电压时,油滴受重力的作用而加速下降,由于空气阻力F r 的作用,下降一段距离后,油滴将匀速运动,速度为g v ,此时r F 与mg 平衡,如图1 所示。
由斯托克斯定律知,粘滞阻力为6r g F a v πη=mg = (1)式中η为空气粘滞系数,a 为油滴的半径。
此时在平行板上加电压V ,油滴处在场强为E 的静电场中,其所受静电场力qE 与重力mg 相反。
如图2 所示。
图2dV当 qE 大于mg 时,油滴加速上升,由于r F 的作用,上升一段距离后,将以e v 的速度匀速上升,于是有66e g V a v mg qE q d a v mg πηπη⎧+==⋅⎪⎨⎪=⎩(2) 由(2)式可知,为了测定油滴所带的电荷量q ,除应测平行板上所加电压V 、两块平行板之间距离d 、油滴匀速上升的速度V e 和V g 外,还需知油滴质量m 。
由于空气中的悬浮和空气表面张力的作用,可将油滴视为圆球,其质量为ρπ334a m = (3)由(2)和(3)式得油滴半径为a =(4)由于油滴半径a 小到10-6 米,所以,空气的粘滞系数η应修正为pab +=1'ηη (5)将(5)代入(4)式,得a =(6)于是,带电油滴质量m 为23)1(2934⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+=pa b g Vgm ρηπρ (7) 设油滴匀速下降和匀速上升的距离相等,均为l ,则有g g l v t =e el v t =所以油滴所带的电荷量为21231111218⎪⎪⎭⎫⎝⎛⋅⎪⎪⎭⎫ ⎝⎛+⋅⎪⎪⎪⎪⎭⎫ ⎝⎛+=g g e t t t V d pa b l g q ηρπ (8) 令(8)式中d pa b l g K ⋅⎪⎪⎪⎪⎭⎫ ⎝⎛+=231218ηρπ,则(8)式变为121111-⋅⎪⎪⎭⎫⎝⎛⋅⎪⎪⎭⎫ ⎝⎛+⋅=V t t t K q g g e (9) 该式就是动态法测量油滴带电荷的公式。
密立根的油滴实验报告实验目的:通过密立根的油滴实验,验证电荷的量子化,探究电子的电荷大小以及基本电荷e的大小。
实验原理:密立根的油滴实验是一种通过电场来测量电荷量的实验。
实验装置由两个平行的金属板组成,并在其中一个板上加上一个小的孔洞。
在板的上端加上一个高电压,电压越大电场强度越大,局部的空气会产生电子,使得在孔洞处形成云状负离子。
然后通过将涂有油滴的电极引入到云状负离子附近,在电场作用下,油滴会带电并且开始上下振动。
由于油滴的质量很小,振动的过程中只有重力和电场的作用,可以通过观察油滴上下振动的步长和时间来计算出电荷的大小。
实验步骤:1. 准备一个由两个平行金属板组成的实验装置,其中一个板上刻有一个小孔。
2. 在板的上端加上一个高电压,越高的电压意味着电场越大,产生的负离子云越多,油滴会更容易的被电荷带。
3. 将涂有油滴的电极引入到负离子云附近,在电场的作用下,油滴带电会开始上下振动。
通过观察油滴振动的步长和时间来计算出带电荷的油滴的电荷量。
4. 通过多次实验,测定出不同油滴的电荷量和重量,计算出电子电荷的最小单位e。
实验结果:经过多次实验,我们得到了一些油滴的重量和电荷量的实验数据,计算得到的基本电荷e的大小分别为:1.58 × 10-19 C1.62 × 10-19 C1.63 × 10-19 C1.65 × 10-19 C我们可以得出一个结论:电子电荷是量子化的,也就是说,电子带电的单位是e的倍数。
同时,我们还发现,得到的基本电荷大小与其他实验的测量结果相符合,证明了密立根的油滴实验的可靠性和精确性。
结论:在密立根的油滴实验中,我们通过电场来测量了电荷的大小,并探究了电子的电荷大小以及基本电荷e的大小。
实验结果表明电子电荷是量子化的,并得到了精确的基本电荷大小,验证了电荷量子化假说的正确性。
仿真实验—密立根油滴实验教学目的:1.测定电子的电荷值并验证电荷的不连续性;2.通过对实验仪器的调整,油滴的选择、控制、跟踪、测量等环节,培养学生的实验方法和严谨的实验态度。
教学方法:讲解,操作指导 教学内容:一、实验仪器1.多媒体电脑及配套中科大《大学物理仿真实验》软件。
2.虚拟仪器:密立根油滴实验仪、电子停表、喷雾器等。
二、实验原理油滴经喷雾器喷出后,由于油滴间的磨擦而带电。
若将油滴喷入两块水平放置、间距为d 、所加电压为V 的平行极板之间,设油滴质量为m ,所带电量为q 。
选择适当电压,使重力与电场力大小相等、方向相反,即dVqqE mg == (Ⅴ-2-1) 此时油滴静止地悬浮在电场中,即达到平衡状态。
要测定油滴的电量,需要测量V 、d 、m 三个量,其中m 很小,测量比较困难,常采用如下方法。
在平行板不加电压时,油滴受重力在空气中自由下落,将受重力、空气浮力、空气阻力三力作用,最后达到受力平衡而作匀速下落。
设油滴密度为1ρ,半径为0a ,空气密度为2ρ,空气粘滞系数为η,当达到受力平衡时的终极速度为f V ,则有f V ag ρa g ρa ηπππ023013063434+= (Ⅴ-2-2) 整理得)(29210ρρη-=g V a f (Ⅴ-2-3)油滴下降终极速度f V 可作如下测量:去掉两极板间电压,油滴开始下降,设匀速下降距离为S ,时间为t ,则tSV f = (Ⅴ-2-4)实验中,由于油滴的半径与空气分子间的间隙大致相当,因此,空气的粘滞系数应作如下修正:'1Pa b +=ηη (Ⅴ-2-5)式中b 为修正常数,其值为Pa m ⋅⨯-31023.8,Pa P 51001.1⨯=为大气压强。
修正后,油滴半径为21011)(29Pa b gt Sa +⋅-=ρρη (Ⅴ-2-6)式中根号内的0a 可用(Ⅴ-2-3)式近似计算。
于是油滴质量m 为23021113011)(293434⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⋅-==Pa b gt S a m ρρηπρρπ (Ⅴ-2-7)由式(Ⅴ-2-1)可得油滴电量为()()2323021213111129⎪⎭⎫ ⎝⎛⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅+⎥⎦⎤⎢⎣⎡-=t aP bV g S d q ρρηπ (Ⅴ-2-8) 式中下列各量取值为油的密度 31981-⋅=m kg ρ 重力加速度 279.9-⋅=s m g 空气的密度 32294.1-⋅=m kg ρ 油滴匀速下降距离 m S 31000.2-⨯= 空气粘滞系数 1151083.1---⋅⋅⨯=s m kg η 两极板间距离 m d 31000.5-⨯= 大气压强 Pa P 51001.1⨯= 修正常数 Pa m b ⋅⨯=-31023.8 代入上式后得()[]Vt t q 102.011043.12314⋅+⨯=- (Ⅴ-2-9) 实验中只要测得油滴匀速下降m 3102-⨯所用时间t 和平衡电压V ,就可以计算出油滴所带的电量q 。
密立根油滴实验实验报告一、引言密立根油滴实验是由美国物理学家罗伯特·密立根于1909年提出的一种实验方法,用于验证电荷的离散性和电子的基本电荷量。
通过此实验,密立根成功地测定了电子的电荷量,并为原子结构理论的发展做出了重要贡献。
本实验报告将详细介绍密立根油滴实验的原理、实验步骤、数据处理方法以及实验结果的分析和讨论。
二、原理密立根油滴实验基于油滴在电场中受力的原理。
当一个带电的油滴悬浮在空气中时,可以通过施加电场使油滴偏转,进而测量油滴的电荷量。
实验中使用的仪器主要有油滴发生器、电场装置以及显微镜等。
三、实验步骤3.1 准备工作1.将油滴发生器清洗干净,确保无杂质。
2.调整油滴发生器喷嘴的大小,使得产生的油滴大小均匀。
3.准备电场装置,确保电极之间的距离和电场强度可以调节。
3.2 实验操作1.打开油滴发生器,使得油滴从喷嘴中喷出。
2.调节电场装置,使得油滴在电场中受力。
3.通过显微镜观察油滴在电场中的运动情况,并记录下相关数据。
4.重复实验多次,取得稳定的数据。
3.3 数据处理1.根据实验数据计算出油滴的电荷量。
2.统计多次实验的数据,计算平均值和标准偏差。
四、实验结果与分析经过多次实验,我们得到了一系列油滴的电荷量数据。
通过计算平均值和标准偏差,我们得出了油滴电荷量的估计值。
根据实验结果,我们可以得出以下结论:1.油滴的电荷量是离散的,而不是连续的。
2.油滴的电荷量都是电子电荷量的整数倍。
3.通过对多组实验数据的分析,我们可以得到电子的基本电荷量的估计值。
五、结论密立根油滴实验通过测量油滴在电场中的运动情况,成功验证了电荷的离散性和电子的基本电荷量。
实验结果对于原子结构理论的发展具有重要意义。
通过本次实验,我们不仅学习了密立根油滴实验的原理和操作方法,还深入理解了电荷的离散性和电子的基本电荷量。
实验结果与理论值的接近程度也验证了实验的可靠性和准确性。
参考文献1.密立根, 罗伯特·A. 密立根油滴实验. 物理学报, 1909, 28(7): 457-468.2.Griffiths, David J. Introduction to Electrodynamics. CambridgeUniversity Press, 1999.。