超临界流体
- 格式:ppt
- 大小:3.20 MB
- 文档页数:43
超临界流体萃取法名词解释一、什么是超临界流体萃取法1、超临界流体萃取法(superconductiv):利用具有临界压力和温度的液态或气态物质作为萃取剂,使其在临界压力下进行萃取。
超临界萃取可使一些难溶于有机溶剂的物质如萜类、生物碱等以萃取相析出而达到分离提纯的目的,也可以从矿物质中萃取有用元素,如萃取铅、锌、金等。
2、超临界流体的特性:⑴密度大,黏度小。
⑵沸点高,临界温度高。
⑶具有非活性性质,无毒。
⑷密度与组成的关系为:密度ρ比黏度(mPa·s),其数值与超临界流体种类有关。
⑸对非极性或弱极性化合物(如极性或非极性植物油)能显示很好的萃取效果。
⑹在水溶液中易于与其他物质混合均匀。
⑺在一定条件下可发生相变。
二、超临界流体萃取的原理1、超临界流体的特性:⑴密度大,黏度小。
⑵沸点高,临界温度高。
⑶具有非活性性质,无毒。
⑷密度与组成的关系为:密度ρ比黏度(mPa·s),其数值与超临界流体种类有关。
⑸对非极性或弱极性化合物(如极性或非极性植物油)能显示很好的萃取效果。
⑹在水溶液中易于与其他物质混合均匀。
⑺在一定条件下可发生相变。
三、超临界流体萃取的装置简介2、超临界流体萃取机理:分散在液体中的固体颗粒与水接触,将溶解度极低的溶质微粒子吸附在固体颗粒表面上形成吸附层,再经分离回收其他产品。
一般认为超临界状态下溶质微粒间的相互作用主要是静电作用。
由于超临界流体具有独特的物理化学性质,所以在萃取过程中一般情况下,溶质被包容在固体颗粒周围,形成类似于海绵状结构,超临界流体中的溶质粒子就象海绵吸水一样吸附了水分子,使溶质以自由流动的形式移动到萃取相。
四、超临界流体萃取技术应用:通过萃取精油,合成高纯度单方或复方精油;从天然植物中提取维生素、氨基酸等营养保健品;萃取香料中有用成分,制备具有特殊香气的精油;从海洋生物中提取活性物质,制取生物药物等。
超临界流体超临界二氧化碳纯净的物质随着温度和压力的变化,会呈现出气体、液体或固体不同的物理状态;当到达某个特定的温度和压力时,物质的气、液界面会消失,此时的温度称为临界温度T,而压力称为临界压力P超临界流体(SCF)就是温度和压力处于临界点以上的流体超临界流体是一种兼具气体和液体物理性质的独特流体。
它本质上仍是一种气态,但又不同于常规意义上的气体,而是一种稠密的气态。
超临界流体的密度与液体相似,粘度和扩散能力与气体相似,表面张力近似于零,有利于流体的传质和传热。
此外,超临界流体的介电常数对压力非常敏感,可以通过改变压力来调控超临界流体溶解不同极性的物质。
超临界流体还具有较强的可压缩性,略微地调节温度和压力就能改变超临界流体的物理性质超临界二氧化碳(scCO2)是应用最为广泛的一种。
因为scCO2除了拥有超临界流体本身所具有的渗透性能好、传质系数高等特点之外,还拥有以下优点:(1)CO2达到超临界状态的条件很温和,只需温度超过31.1 °C、压力超过7.38MPa,CO2就会转变为scCO2;(2)CO2来源广泛,价格低廉,并且无色、无毒、无臭、无害,具有优异的化学稳定性,不会发生燃烧和爆炸;(3)scCO2在聚合物熔体中具有较高的扩散性和溶解度,对聚合物熔体有较强的增塑作用,从而能显著降低熔体黏度,提高熔体的流动性;(4)scCO2能轻易从产物中脱除,完全省去了使用传统溶剂带来的复杂的后处理工序,并且还能实现对CO2的回收利用;(5)CO2分子成对称结构,极性较弱,它能溶解非极性或极性较弱的物质,可以作为反应介质或萃取剂;若要溶解无机盐类或极性较强的物质,需要在scCO2中加入一些极性共溶剂(如乙醇)来改善它的极性。
1.3 scCO2在聚合物发泡中的应用聚合物发泡材料是指以聚合物(塑料、橡胶、弹性体或天然高分子材料)为基体而内部含有无数气泡的多孔材料,也可以视为以气体为填料的复合材料。
超临界流体技术超临界流体(Supercritical Fluids, SCF), 是一种在温度和压力处于其临界点以上时兼具液体和气体双重物性的流体。
超临界流体技术就是利用超临界流体的这种特性发展起来的一门新兴技术, 因其清洁、安全、高质、高效等显著优势超越传统技术, 被誉为“超级绿色”技术。
1超临界流体中的化学反应1.1 超临界CO2聚合反应超临界CO2(SC-CO2)用于聚合反应,是基于其惰性不会引起链转移,通过减压即可实现反应-分离一体化。
目前在SC-CO2中进行的的聚合反应大多为非均相聚合,主要有悬浮聚合、乳液聚合、分散聚合和沉淀聚合,前3 种都需要合成能溶于SC-CO2的特殊表面活性剂,而且聚合物很难与这些表面活性剂分离纯化,所以研究在SC-CO2中的沉淀聚合反应更具有实用意义。
SC- CO2具有双极性, 其极性与烃类相近。
根据相似相溶原理, 其既可溶解非极性物质, 又可溶解极性物质, 还能溶解许多有机固体。
对气体如H2、O2等也具有很高的溶解性, 有利于诸如催化加氢、催化氧化等反应的进行。
在不对称的催化加氢反应、Diels-Alder反应、氢甲酰化反应、烯烯键易位反应、烯环化反应等方面都有应用研究。
如, Burk[1]小组以SC-CO2为溶剂极大地提高了烯烃衍生物不对称氢化的对映性选择(99.5%,ee), 这无疑是一个完美的绿色合成反应。
陈坚等[2]在超临界CO2中进行氯乙烯(VC)自由基聚合,对聚合过程和树脂颗粒特性进行了研究。
实验发现聚合存在诱导期和自动加速效应,聚合初期一次加入引发剂、提高聚合压力和搅拌都会使转化率降低。
压力提高使得凝胶效应减弱,导致聚合转化率降低;聚合过程中部分自由基和活性聚合物链被聚合物包埋、金属釜壁面对自由基和活性聚合物链的终止作用也导致聚合转化率降低。
聚合成粒过程有别于传统氯乙烯悬浮聚合,树脂由初级粒子聚集而成,且多孔疏松、无皮膜。
1.2超临界水氧化的应用超临界水氧化是一种对有机物废料处理的新技术[3,4],它的优点是被处理的有机物和氧在超临界水中可以完全混溶, 即反应过程中反应物成单一流体相; 并且在温度足够高( 400~ 600℃ ) 时, 氧化速度非常快, 可以在几分钟内将有机物完全转化为CO2和水。
超临界流体的制备和应用超临界流体是介于气体-液体两相之间的一种物质状态,具有一定的密度、粘度和溶解能力。
在高温高压条件下,超临界流体的物理和化学性质会发生巨大的变化,因此被广泛应用于化学、材料、环保等领域。
本文将就超临界流体的制备和应用做详细阐述。
一、超临界流体的制备1.常用制备方法超临界流体的制备主要有三种方法:压缩法、膨胀法和化学反应法。
压缩法是以高压为主要手段,通过升高温度和压力把物质压缩至临界状态,进而转化为超临界流体。
膨胀法则是通过突然减压使液体在恒压下变为超临界流体。
化学反应法是利用化学反应产生的反应热,让物质在特定温度、压力条件下形成超临界流体。
2.影响制备的因素超临界流体的制备还受到多种因素的影响,如温度、压力、溶剂、反应物浓度等。
温度和压力是制备超临界流体的关键参数,它们的选择会直接影响反应物的状态和产率。
不同的溶剂或反应物浓度也会对制备过程产生重要影响,不同的配料比例可能导致制备结果不同。
二、超临界流体的应用1.化学领域超临界流体在化学领域有多种应用,例如在化学反应和催化领域中,超临界流体既可以作为反应介质,也可以作为溶剂。
在超临界流体中,反应速率和收率往往比传统的反应更高。
此外,超临界CO2在芳香化合物的合成和分离、核磁共振(NMR)试样制备、高质量蛋白质像素制备等领域也得到了广泛应用。
2.材料领域超临界流体在材料领域有突出应用,尤其是在金属纳米材料的制备中。
由于超临界反应物的可控性和高分散能力,超临界流体可以用于制备纳米颗粒、纳米形貌粉体、高含量纳米抗菌材料等。
此外,超临界流体还广泛应用于制备二氧化硅和其他纳米材料的天然长晶体的制备过程中,可以实现高质量、高效率、低成本的纳米材料制备。
3.环保领域超临界流体在环保领域也有重要作用,主要体现在有机污染物的净化和绿色化学反应中。
超临界流体具有高渗透能力和高粘度,可以有效地替代传统有毒有机溶剂,达到绿色化学反应的目的。
同时,超临界流体通过溶解和分离技术可以实现高品质的固体废物的回收利用,有重要的环保价值。