(完整版)高等数学(同济)下册期末考试题及答案(5套)
- 格式:doc
- 大小:877.44 KB
- 文档页数:17
高等数学(下册)期末考试试卷(一)一、填空题(每小题3分,共计24分) 1、z =)0()(log 22>+a y x a 的定义域为D=。
2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x的符号为。
3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为,其值为。
4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。
5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122(。
6、微分方程xyx y dx dy tan +=的通解为。
7、方程04)4(=-y y 的通解为。
8、级数∑∞=+1)1(1n n n 的和为。
二、选择题(每小题2分,共计16分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是() (A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C )y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim 2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。
2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于()(A )y x +;(B )x ;(C)y ;(D)0。
3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于()(A )4⎰⎰⎰202013cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ2020103cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ2013cos sin dr r d d 。
高等数学(同济)下册期末考试题及答案(5套)高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、z=log(a,(x+y))的定义域为D={(x,y)|x+y>0}。
2、二重积分22ln(x+y)dxdy的符号为负号。
3、由曲线y=lnx及直线x+y=e+1,y=1所围图形的面积用二重积分表示为∬(x+y-e-1)dxdy,其值为1/2.4、设曲线L的参数方程表示为{x=φ(t),y=ψ(t)}(α≤t≤β),则弧长元素ds=sqrt(φ'(t)^2+ψ'(t)^2)dt。
5、设曲面∑为x+y=9介于z=0及z=3间的部分的外侧,则∬(x+y+1)ds=27√2.6、微分方程y'=ky(1-y)的通解为y=Ce^(kx)/(1+Ce^(kx)),其中C为任意常数。
7、方程y(4)d^4y/dx^4+tan(x)y'''=0的通解为y=Acos(x)+Bsin(x)+Ccos(x)e^x+Dsin(x)e^x,其中A、B、C、D为任意常数。
8、级数∑n(n+1)/2的和为S=1/2+2/3+3/4+。
+n(n+1)/(n+1)(n+2)=n/(n+2),n≥1.二、选择题(每小题2分,共计16分)1、二元函数z=f(x,y)在(x,y)处可微的充分条件是(B)f_x'(x,y),f_y'(x,y)在(x,y)的某邻域内存在。
2、设u=yf(x)+xf(y),其中f具有二阶连续导数,则x^2+y^2等于(B)x。
3、设Ω:x+y+z≤1,z≥0,则三重积分I=∭Ω2z dV等于(C)∫0^π/2∫0^1-rsinθ∫0^1-r sinθ-zrdrdφdθ。
4、球面x^2+y^2+z^2=4a^2与柱面x^2+y^2=2ax所围成的立体体积V=(A)4∫0^π/4∫0^2acosθ∫0^4a-rsinθ rdrdφdθ。
高等数学同济版(下册)期末考试试卷(一)一、填空题(每小题3分,共计24分)1、 z =)0()(log 22>+a y x a 的定义域为D= 。
2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为 。
3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值为 。
4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。
5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。
6、微分方程x yx y dx dy tan +=的通解为 。
7、方程04)4(=-y y的通解为 。
8、级数∑∞=+1)1(1n n n 的和为 。
二、选择题(每小题2分,共计16分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C ) y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。
2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +; (B )x ; (C)y ; (D)0 。
3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰202013cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰212sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ2020103cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ2013cos sin dr r d d 。
高等数学同济版(下册)期末考试试卷(一)一、填空题(每小题3分,共计24分)1、=的定义域为D= .2、二重积分的符号为。
3、由曲线及直线,所围图形的面积用二重积分表示为,其值为.4、设曲线L的参数方程表示为则弧长元素。
5、设曲面∑为介于及间的部分的外侧,则 .6、微分方程的通解为 .7、方程的通解为。
8、级数的和为。
二、选择题(每小题2分,共计16分)1、二元函数在处可微的充分条件是()(A)在处连续;(B),在的某邻域内存在;(C)当时,是无穷小;(D)。
2、设其中具有二阶连续导数,则等于()(A); (B);(C); (D)0 。
3、设:则三重积分等于()(A)4;(B);(C);(D)。
4、球面与柱面所围成的立体体积V=()(A);(B);(C);(D)。
5、设有界闭区域D由分段光滑曲线L所围成,L取正向,函数在D上具有一阶连续偏导数,则(A); (B);(C);(D)。
6、下列说法中错误的是()(A)方程是三阶微分方程;(B)方程是一阶微分方程;(C)方程是全微分方程;(D)方程是伯努利方程。
7、已知曲线经过原点,且在原点处的切线与直线平行,而满足微分方程,则曲线的方程为()(A);(B);(C);(D)。
8、设, 则( )(A)收敛; (B)发散;(C)不一定;(D)绝对收敛。
三、求解下列问题(共计15分)1、(7分)设均为连续可微函数.,求.2、(8分)设,求。
四、求解下列问题(共计15分)。
1、计算。
(7分)2、计算,其中是由所围成的空间闭区域(8分)五、(13分)计算,其中L是面上的任一条无重点且分段光滑不经过原点的封闭曲线的逆时针方向.六、(9分)设对任意满足方程,且存在,求。
七、(8分)求级数的收敛区间.高等数学同济版(下册)期末考试试卷(二)1、设,则。
2、。
3、设,交换积分次序后,。
4、设为可微函数,且则。
5、设L为取正向的圆周,则曲线积分。
6、设,则。
7、通解为的微分方程是。
⎰ ⎰⎰⎰⎰⎰⎰ ∞n ⎩x n !同济大学2020年数学系《高等数学》第二学期期末考试试卷一、单选题(共 15 分,每小题 3 分)1.设函数 f (x , y ) 在 P (x 0 , y 0 ) 的两个偏导 f x (x 0 , y 0 ) , f y (x 0 , y 0 )都存在,则 ()A . f (x , y ) 在 P 连续B . f (x , y ) 在 P 可微C . lim f (x , y 0 ) 及x →x 0lim y → y 0f (x 0 , y ) 都存在D .lim ( x , y )→( x 0 , y 0 )f (x , y ) 存在2.若 z = y ln x ,则 dz 等于( ). y ln x ln y y ln x ln y y ln x ln yA . +B .x yxC . y ln xln ydx + y ln x ln y xdy D .y ln x ln y y ln x ln x dx + x ydy 3.设Ω 是圆柱面 x2+ y 2 = 2x 及平面 z = 0, z = 1所围成的区域,则 ⎰⎰⎰ Ωf (x , y , z )dxdydz = ().A.π2d θ2cos θ dr 1f (r cos θ , r sin θ , z )dzB.π2d θ2cos θrdr 1f (r cos θ , r sin θ , z )dz0 π22cos θ1π2cos x1C. -π 2d θ ⎰0rdr ⎰0 f (r cos θ , r sin θ , z )dzD .⎰0 d θ ⎰0rdr ⎰0f (r cos θ , r sin θ , z )dz4.4.若∑a (x -1)n在 x = -1处收敛,则此级数在 x = 2 处().n =1A.条件收敛 B . 绝对收敛 C . 发散 D . 敛散性不能确定⎧x - y + z = 25.曲线⎨ z = x 2 + y 2在点(1,1,2)处的一个切线方向向量为( ).A. (-1,3,4)B.(3,-1,4)C. (-1,0,3)D. (3,0,-1)二、填空题(共 15 分,每小题 3 分)1.设 x + 2 y - 2xyz = 0 ,则 z '(1,1) = .eln x2. 交 换 I =⎰1dx ⎰f (x , y )dy 的积分次序后, I = .3.设u = 2xy - z 2,则u 在点 M (2,-1,1) 处的梯度为 .x∞xn - x4. 已知 e = ∑ ,则 xe n =0 = .5.函数 z = x 3 + y 3 - 3x 2 - 3y 2的极小值点是.三、解答题(共 54 分,每小题 6--7 分)1.(本小题满分 6 分)设 z = y arctan y, 求∂z ,∂z.x∂x ∂y2.(本小题满分 6 分)求椭球面 2x2+ 3y 2 + z 2 = 9 的平行于平面 2x - 3y + 2z +1 = 0 的切平面方程,并求切点处的法线方程.3. (本小题满分 7 分)求函数 z = x 2 + y 2 在点 (1, 2) 处沿向量 l = 1 i + 3j 方向的方向导数。
高等数学同济版(下册)期末考试试卷(一) 一、填空题(每小题3分,共计24分)1、 z =)0()(log 22>+a y x a 的定义域为D= 。
2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x的符号为 。
3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值为 。
4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。
5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。
6、微分方程xyx y dx dy tan +=的通解为 。
7、方程04)4(=-y y 的通解为 。
8、级数∑∞=+1)1(1n n n 的和为 。
二、选择题(每小题2分,共计16分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C ) y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim 2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。
2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +; (B )x ; (C)y ; (D)0 。
3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰202013cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ20213cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ20013cos sin dr r d d 。
高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、z= . log a(x^y2)(a 0)的定义域为D= 。
2、二重积分ln(x2 y2)dxdy的符号为。
|x| | y| 13、由曲线y lnx及直线x y e 1,y 1所围图形的面积用二重积分表示为,其值为。
4、设曲线L的参数方程表示为x⑴(x ),则弧长元素y (t)ds 。
5、设曲面刀为x2 y2 9介于z 0及z 3间的部分的外侧,则(x2y21)ds 。
6、微分方程鱼-tan#的通解为。
dx x x7、方程y⑷4y 0的通解为。
8、级数J的和为。
n 1 n(n 1)二、选择题(每小题2分,共计16分)1、二元函数z f (x, y)在(X0,y0)处可微的充分条件是( )(A ) f (x,y)在(x°, y°)处连续;(B ) f x(x,y) , f y(x, y)在(x°,y。
)的某邻域内存在;(C) z f x(x°,y°) x f y(x°,y°) y当、、(x)2( y)20时,是无穷小;(D )z limx 0y 02、设xu yf ()y(A)x y;3、设 2:x 5叮f y(2x0,y0)y 0。
(x)2 ( y)2xf(y),其中f具有二阶连续导数,x2则x」Ux2y-U等于(y(B) x; (C)y; (D)0y2 z2 1,z 0,则三重积分I zdV等于(1 -(A) 4。
厲02d0r sin cos dr ; (B)2 d d r2 sin dr ;0 0 0(C) 1r3sin cos dr ; ( D )1r3sin cosdr。
4、 球面x 2y 2 z 2 4a 2与柱面x 2 y 2 (A ) 4 2d 2aC0S ,4a 2 r 2dr ;o o2acos --------------- 22(C )8 2dr . 4a r dr ;0 05、 设有界闭区域D 由分段光滑曲线 2ax 所围成的立体体积V=()2a cos ------------- 22(B )4 02 d o r . 4a r dr ;a cos(D )2dr 4a r dr 。
高等数学同济版下册期末考四套试题及答案高等数学同济版(下册)期末考试试卷(一)一、填空题(每小题3分,共计24分)1、$z=\log_a(x+y)$ $(a>0)$的定义域为$D=\{(x,y)|x+y>0\}$。
2、二重积分$\iint_{|x|+|y|\leq1}2\ln(x+y)dxdy$的符号为正。
3、由曲线$y=\ln x$及直线$x+y=e+1$,$y=1$所围图形的面积用二重积分表示为$\iint_D dxdy$,其值为$e-2$。
4、设曲线$L$的参数方程表示为$\begin{cases}x=\varphi(t)\\y=\psi(t)\end{cases}$$(\alpha\leqx\leq\beta)$,则弧长元素$ds=\sqrt{\left(\dfrac{dx}{dt}\right)^2+\left(\dfrac{dy}{dt}\right)^2}dt$。
5、设曲面$\Sigma$为$x+y=9$介于$z=0$及$z=3$间的部分的外侧,则$(x+y+1)ds=\iint_{\Sigma}(x+y+1)dS=27$。
6、微分方程$\dfrac{dy}{dx}=f(x,y)$的通解为$y=\varphi(x,c)$,其中$c$为任意常数,$\varphi(x,c)$是微分方程的一族特解。
7、方程$y^{(4)}+y'''-4y=0$的通解为$y=c_1e^x+c_2e^{-x}+c_3\cos x+c_4\sin x-\dfrac{1}{2}x\cos x$。
8、级数$\sum\limits_{n=1}^{\infty}\dfrac{n(n+1)}{2}$的和为$\dfrac{1}{6}\sum\limits_{n=1}^{\infty}n(n+1)(n+2)$,再利用$\sum\limits_{n=1}^{\infty}n(n+1)(n+2)=\dfrac{1}{4}\sum\limits _{n=1}^{\infty}n(n+1)(2n+1)$,最终得到$\dfrac{1}{12}\sum\limits_{n=1}^{\infty}n(2n+1)(n+1)=\dfrac{1}{12}\cdot\dfrac{1}{3}\cdot\dfrac{1}{2}\cdot 4=\dfrac{1}{3}$。
高等数学(下册)考试试卷(一)一、填空题(每小题3 分,共计 24 分)1 、 log a ( x2 y 2 ) (a 0) 的定义域为 D= 。
z =2、二重积分ln( x 2y 2 ) dxdy 的符号为 。
|x| |y| 13、由曲线 y ln x 及直线 x y e 1, y 1 所围图形的面积用二重积分表示为,其值为。
4 、设曲线 L 的参数方程表示为 x (t ) x),则弧长元素 ds。
y ((t )5 、 设 曲 面 ∑ 为 x 2y 29 介 于 z 0 及 z3间的部分的外侧,则(x 2 y 2 1)ds。
6、微分方程dyytan y的通解为 。
dxxx7、方程 y (4 ) 4 y 0 的通解为 。
8、级数1的和为。
n 1 n(n 1)二、选择题(每小题2 分,共计 16 分)1、二元函数 z f (x, y) 在 ( x 0 , y 0 ) 处可微的充分条件是()(A ) f (x, y) 在 ( x 0 , y 0 ) 处连续;( B ) f x ( x, y) , f y ( x, y) 在 (x 0 , y 0 ) 的某邻域内存在;( C ) z f x ( x 0 , y 0 ) xf y ( x 0 , y 0 ) y 当 () 2 ( y ) 2 0 时,是无穷小;x( D ) limz f x ( x 0 , y 0 ) x f y ( x 0 , y 0 ) y0 。
x ( x)2( y)2y 02、设 u yf ( x ) xf ( y), 其中 f 具有二阶连续导数,则 x2uy2u 等于()yxx 2 y 2( A ) x y ; ( B ) x ;(C) y ;(D)0 。
3、设 : x 2 y 2 z 2 1, z 0, 则三重积分 IzdV 等于()(A )4221 3;( )21 2;ddr sin cos drddr sin dr0 0 0 B( C ) 22 d13sin cos dr ;(D )2d d13 sin cos dr 。
⎰ ⎰⎰⎰⎰⎰⎰ ∞n ⎩x n !同济大学2020年数学系《高等数学》第二学期期末考试试卷一、单选题(共 15 分,每小题 3 分)1.设函数 f (x , y ) 在 P (x 0 , y 0 ) 的两个偏导 f x (x 0 , y 0 ) , f y (x 0 , y 0 )都存在,则 ()A . f (x , y ) 在 P 连续B . f (x , y ) 在 P 可微C . lim f (x , y 0 ) 及x →x 0lim y → y 0f (x 0 , y ) 都存在D .lim ( x , y )→( x 0 , y 0 )f (x , y ) 存在2.若 z = y ln x ,则 dz 等于( ). y ln x ln y y ln x ln y y ln x ln yA . +B .x yxC . y ln xln ydx + y ln x ln y xdy D .y ln x ln y y ln x ln x dx + x ydy 3.设Ω 是圆柱面 x2+ y 2 = 2x 及平面 z = 0, z = 1所围成的区域,则 ⎰⎰⎰ Ωf (x , y , z )dxdydz = ().A.π2d θ2cos θ dr 1f (r cos θ , r sin θ , z )dzB.π2d θ2cos θrdr 1f (r cos θ , r sin θ , z )dz0 π22cos θ1π2cos x1C. -π 2d θ ⎰0rdr ⎰0 f (r cos θ , r sin θ , z )dzD .⎰0 d θ ⎰0rdr ⎰0f (r cos θ , r sin θ , z )dz4.4.若∑a (x -1)n在 x = -1处收敛,则此级数在 x = 2 处().n =1A.条件收敛 B . 绝对收敛 C . 发散 D . 敛散性不能确定⎧x - y + z = 25.曲线⎨ z = x 2 + y 2在点(1,1,2)处的一个切线方向向量为( ).A. (-1,3,4)B.(3,-1,4)C. (-1,0,3)D. (3,0,-1)二、填空题(共 15 分,每小题 3 分)1.设 x + 2 y - 2xyz = 0 ,则 z '(1,1) = .eln x2. 交 换 I =⎰1dx ⎰f (x , y )dy 的积分次序后, I = .3.设u = 2xy - z 2,则u 在点 M (2,-1,1) 处的梯度为 .x∞xn - x4. 已知 e = ∑ ,则 xe n =0 = .5.函数 z = x 3 + y 3 - 3x 2 - 3y 2的极小值点是.三、解答题(共 54 分,每小题 6--7 分)1.(本小题满分 6 分)设 z = y arctan y, 求∂z ,∂z.x∂x ∂y2.(本小题满分 6 分)求椭球面 2x2+ 3y 2 + z 2 = 9 的平行于平面 2x - 3y + 2z +1 = 0 的切平面方程,并求切点处的法线方程.3. (本小题满分 7 分)求函数 z = x 2 + y 2 在点 (1, 2) 处沿向量 l = 1 i + 3j 方向的方向导数。
高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、 z =)0()(log 22>+a y x a 的定义域为D= 。
2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为 。
3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值为 。
4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。
5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。
6、微分方程xyx y dx dy tan +=的通解为 。
7、方程04)4(=-y y 的通解为 。
8、级数∑∞=+1)1(1n n n 的和为 。
二、选择题(每小题2分,共计16分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C ) y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim 2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。
2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +; (B )x ; (C)y ; (D)0 。
3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰202013cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ20213cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ2013cos sin dr r d d 。
4、球面22224a z y x =++与柱面ax y x 222=+所围成的立体体积V=( )(A )⎰⎰-20cos 202244πθθa dr r a d ; (B )⎰⎰-20cos 202244πθθa dr r a r d ;(C )⎰⎰-2cos 202248πθθa dr r a r d ; (D )⎰⎰--22cos 20224ππθθa dr r a r d 。
5、设有界闭区域D 由分段光滑曲线L 所围成,L 取正向,函数),(),,(y x Q y x P 在D 上具有一阶连续偏导数,则⎰=+LQdy Pdx )((A )⎰⎰∂∂-∂∂Ddxdy x Q y P )(; (B )⎰⎰∂∂-∂∂D dxdy x P y Q )(; (C )⎰⎰∂∂-∂∂Ddxdy y Q x P )(; (D )⎰⎰∂∂-∂∂Ddxdy y P x Q )(。
6、下列说法中错误的是( ) (A ) 方程022=+''+'''y x y y x 是三阶微分方程; (B ) 方程x y dxdyx dx dy ysin =+是一阶微分方程; (C ) 方程0)3()2(22232=+++dy y x y dx xy x 是全微分方程; (D )方程xyx dx dy 221=+是伯努利方程。
7、已知曲线)(x y y =经过原点,且在原点处的切线与直线062=++y x 平行,而)(x y 满足微分方程052=+'-''y y y ,则曲线的方程为=y ( )(A )x e x 2sin -; (B ))2cos 2(sin x x e x -; (C ))2sin 2(cos x x e x -; (D )x e x 2sin 。
8、设0lim =∞→n n nu , 则∑∞=1n n u ( )(A )收敛; (B )发散; (C )不一定; (D )绝对收敛。
三、求解下列问题(共计15分)1、(7分)设g f ,均为连续可微函数。
)(),,(xy x g v xy x f u +==, 求yu x u ∂∂∂∂,。
2、(8分)设⎰+-=t x tx dz z f t x u )(),(,求tu x u ∂∂∂∂,。
四、求解下列问题(共计15分)。
1、计算=I ⎰⎰-222xy dy e dx 。
(7分)2、计算⎰⎰⎰Ω+=dV y x I )(22,其中Ω是由x 21,222===+z z z y 及所围成的空间闭区域(8分)五、(13分)计算⎰++-=L yx ydxxdy I 22,其中L 是xoy 面上的任一条无重点且分段光滑不经过原点)0,0(O 的封闭曲线的逆时针方向。
六、(9分)设对任意)(,,x f y x 满足方程)()(1)()()(y f x f y f x f y x f -+=+,且)0(f '存在,求)(x f 。
七、(8分)求级数∑∞=++--11212)2()1(n n nn x 的收敛区间。
高等数学(下册)考试试卷(二)1、设z y x z y x 32)32sin(2-+=-+,则=∂∂+∂∂yz x z 。
2、=+-→→xyxyy x 93lim0 。
3、设⎰⎰=202),(x xdy y x f dx I ,交换积分次序后,=I 。
4、设)(u f 为可微函数,且,0)0(=f 则⎰⎰≤+→=++222)(1lim 223t y x t d y x f t σπ 。
5、设L 为取正向的圆周422=+y x ,则曲线积分⎰=-++Lx x dy x ye dx ye y )2()1( 。
6、设→→→+++++=k xy z j xz y i yz x A )()()(222,则=A div 。
7、通解为x x e c e c y 221-+=的微分方程是 。
8、设⎩⎨⎧<<<≤--=ππx x x f 0,10,1)(,则它的Fourier 展开式中的=n a 。
二、选择题(每小题2分,共计16分)。
1、设函数⎪⎩⎪⎨⎧=+≠++=0,00,),(2222422y x y x yx xy y x f ,则在点(0,0)处( )(A )连续且偏导数存在; (B )连续但偏导数不存在; (C )不连续但偏导数存在; (D )不连续且偏导数不存在。
2、设),(y x u 在平面有界区域D 上具有二阶连续偏导数,且满足02≠∂∂∂y x u 及 +∂∂22x u 022=∂∂yu, 则( )(A )最大值点和最小值点必定都在D 的内部; (B )最大值点和最小值点必定都在D 的边界上;(C )最大值点在D 的内部,最小值点在D 的边界上; (D )最小值点在D 的内部,最大值点在D 的边界上。
3、设平面区域D :1)1()2(22≤-+-y x ,若⎰⎰+=Dd y x I σ21)(,⎰⎰+=Dd y x I σ32)(则有( )(A )21I I <; (B ) 21I I =; (C )21I I >; (D )不能比较。
4、设Ω是由曲面1,,===x x y xy z 及0=z 所围成的空间区域,则⎰⎰⎰Ωdxdydz z xy 32 =( )(A )3611; (B )3621; (C )3631 ; (D )3641。
5、设),(y x f 在曲线弧L 上有定义且连续,L 的参数方程为⎩⎨⎧==)()(t y t x ψϕ )(βα≤≤t ,其中)(),(t t ψϕ在],[βα上具有一阶连续导数,且0)()(22≠'+'t t ψϕ, 则曲线积分⎰=Lds y x f ),(( ) (A) ⎰βαψϕdt t t f ))(),((; (B)⎰'+'αβψϕψϕdt t t t t f )()())(),((22 ;(C)⎰'+'βαψϕψϕdt t t t t f )()())(),((22; (D)⎰αβψϕdt t t f ))(),((。
6、设∑是取外侧的单位球面1222=++z y x , 则曲面积分⎰⎰∑++zdxdy ydzdx xdydz =( )(A) 0 ; (B) π2 ; (C)π ; (D)π4。
7、下列方程中,设21,y y 是它的解,可以推知21y y +也是它的解的方程是( ) (A) 0)()(=++'x q y x p y ; (B) 0)()(=+'+''y x q y x p y ; (C) )()()(x f y x q y x p y =+'+''; (D) 0)()(=+'+''x q y x p y 。
8、设级数∑∞=1n n a 为一交错级数,则( )(A)该级数必收敛; (B)该级数必发散;(C)该级数可能收敛也可能发散; (D)若)0(0→→n a n ,则必收敛。
三、求解下列问题(共计15分)1、(8分)求函数)ln(22z y x u ++=在点A (0,1,0)沿A 指向点B (3,-2,2) 的方向的方向导数。
2、(7分)求函数)4(),(2y x y x y x f --=在由直线0,0,6===+x y y x 所围成的闭区域D 上的最大值和最小值。
四、求解下列问题(共计15分) 1、(7分)计算⎰⎰⎰Ω+++=3)1(z y x dvI ,其中Ω是由0,0,0===z y x 及1=++z y x 所围成的立体域。
2、(8分)设)(x f 为连续函数,定义⎰⎰⎰Ω++=dv y x f z t F )]([)(222,其中{}222,0|),,(t y x h z z y x ≤+≤≤=Ω,求dtdF 。
五、求解下列问题(15分)1、(8分)求⎰-+-=Lx x dy m y e dx my y e I )cos ()sin (,其中L 是从A (a ,0)经2x ax y -=到O (0,0)的弧。
2、(7分)计算⎰⎰∑++=dxdy z dzdx y dydz x I 222,其中∑是)0(222a z z y x ≤≤=+ 的外侧。
六、(15分)设函数)(x ϕ具有连续的二阶导数,并使曲线积分⎰'++-'Lx dy x ydx xe x x )(])(2)(3[2ϕϕϕ与路径无关,求函数)(x ϕ。