信息光学习题答案及解析
- 格式:doc
- 大小:4.63 MB
- 文档页数:25
信息光学试题及答案一、选择题(每题4分,共20分)1. 以下哪个选项不是信息光学的研究范畴?A. 光波传播B. 光纤通信C. 激光加工D. 量子计算答案:D2. 光纤通信中,光信号的传输介质是什么?A. 真空B. 空气C. 光纤D. 水答案:C3. 在信息光学中,光的相干性是指什么?A. 光的强度B. 光的颜色C. 光的传播方向D. 光波的相位关系答案:D4. 以下哪个设备不是用于光纤通信的?A. 光纤B. 光端机C. 路由器D. 光放大器答案:C5. 光波的频率与波长之间的关系是什么?A. 成正比B. 成反比C. 无关D. 相等答案:B二、填空题(每题4分,共20分)1. 光纤通信中,光信号的传输介质是________。
答案:光纤2. 光的相干性是指光波的________。
答案:相位关系3. 光纤通信中,光信号的调制方式包括________和________。
答案:幅度调制、频率调制4. 光纤通信中,光信号的传输损耗主要由________和________造成。
答案:材料吸收、散射5. 光纤通信中,光信号的传输距离可以通过________来延长。
答案:光放大器三、简答题(每题10分,共30分)1. 简述信息光学在现代通信中的应用。
答案:信息光学在现代通信中的应用主要包括光纤通信、激光通信、无线光通信等。
光纤通信利用光纤作为传输介质,具有传输速度快、传输距离远、抗干扰能力强等优点。
激光通信则利用激光的高方向性和高相干性,实现远距离、高速度的通信。
无线光通信则通过大气或自由空间传输光信号,适用于移动通信和卫星通信。
2. 解释光波的相干性及其在信息光学中的重要性。
答案:光波的相干性是指不同光波之间能够相互干涉的能力,它与光波的相位关系密切相关。
在信息光学中,相干性是实现光信号调制、传输和检测的关键因素。
例如,在光纤通信中,相干光源可以提高信号的传输质量和距离。
在光学成像系统中,相干光源可以提高成像的分辨率和对比度。
信息光学习题答案第一章 线性系统分析1.1 简要说明以下系统是否有线性和平移不变性. (1)()();x f dxdx g =(2)()();⎰=dx x f x g (3)()();x f x g = (4)()()()[];2⎰∞∞--=αααd x h f x g(5)()()απξααd j f ⎰∞∞--2exp解:(1)线性、平移不变; (2)线性、平移不变; (3)非线性、平移不变; (4)线性、平移不变; (5)线性、非平移不变。
1.2 证明)()ex p()(2x comb x j x comb x comb +=⎪⎭⎫ ⎝⎛π证明:左边=∑∑∑∞-∞=∞-∞=∞-∞=-=⎥⎦⎤⎢⎣⎡-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛n n n n x n x n x x comb )2(2)2(2122δδδ∑∑∑∑∑∑∞-∞=∞-∞=∞-∞=∞-∞=∞-∞=∞-∞=--+-=-+-=-+-=+=n nn n n n n n x n x n x jn n x n x x j n x x j x comb x comb )()1()()()exp()()()exp()()exp()()(δδδπδδπδπ右边当n 为奇数时,右边=0,当n 为偶数时,右边=∑∞-∞=-n n x )2(2δ所以当n 为偶数时,左右两边相等。
1.3 证明)()(sin x comb x =ππδ 证明:根据复合函数形式的δ函数公式0)(,)()()]([1≠''-=∑=i ni i i x h x h x x x h δδ式中i x 是h(x)=0的根,)(i x h '表示)(x h 在i x x =处的导数。
于是)()()(sin x comb n x x n =-=∑∞-∞=πδπππδ1.4 计算图题1.1所示的两函数的一维卷积。
解:设卷积为g(x)。
当-1≤x ≤0时,如图题1.1(a)所示, ⎰+-+=-+-=xx x d x x g 103612131)1)(1()(ααα图题1.1当0 < x ≤1时,如图题1.1(b)所示, ⎰+-=-+-=13612131)1)(1()(xx x d x x g ααα 即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤≤--+=其它,010,61213101,612131)(33x x x x x x x g 1.5 计算下列一维卷积。
1. 若对函数()()ax c a x h sin =进行抽样,其允许的最大抽样间隔为aX a 11≤或 ((){},,x xx F h x rect a a a x B X a B ⎛⎫= ⎪⎪⎝⎭≤=≤111222)2.一列波长为λ,振幅为A 的平面波,波矢量与x 轴夹角为α,与y 轴夹角为β,与z 轴夹角为γ,则该列波在d z =平面上的复振幅表达式为()()()[]βαγcos cos ex p cos ex p ,y x jk jkd A y x U +=3、透镜对光波的相位变换作用是由透镜本身的性质决定的。
在不考虑透镜的有限孔径效应时,焦距为f 的薄凸透镜的相位变换因子为()⎥⎦⎤⎢⎣⎡+-222exp y x fjk4.对于带限函数g(x,y),按照抽样定理,函数g 的空间带宽积为 16L X L Y B X B Y5. 就全息图的本质而言,散射物体的平面全息图,记录过程是 与 的干涉过程,记录在全息记录介质上的是 。
再现过程是在再现光照明情况下光的 过程。
若再现光刚好是记录时的参考光,其再现像有 。
(再现像的个数与特点)物光 参考光 干涉条纹 衍射 两个像,一个是+1级衍射光所成的原始像,另一个是-1级衍射光所成的共轭像,分别在零级两侧。
6.写出菲涅尔近似条件下,像光场(衍射光场)()U x y d ,,与物光场(初始光场)()U x y 000,,0间的关系式,并简述如何在频域中求解菲涅尔衍射积分? 菲涅耳近似条件下,衍射光场()U x y d ,,与初始物光场()U x y 000,,0间的关系为()()()()()220000000exp ,,,,0exp 2jkd jk U x y d U x y x x y y dx dy j d d λ+∞-∞⎧⎫⎡⎤=-+-⎨⎬⎣⎦⎩⎭⎰⎰菲涅耳衍射积分(上式)可以写成如下卷积形式()()()()22000exp ,,,,0exp 2jkd jk U x y d U x y x y j d d λ⎡⎤=*+⎢⎥⎣⎦上式两边进行傅里叶变换得(){}(){}()()22000exp ,,,,0exp 2jkd jk F U x y d F U x y F x y j d d λ⎧⎫⎡⎤=*+⎨⎬⎢⎥⎣⎦⎩⎭先求出()(){}0000,,,0x y U f f F U x y =和()()()()22222exp ,exp exp 122x y x y jkd jk H f f F x y jkd f f j d d λλ⎧⎫⎧⎫⎡⎤⎪⎪⎡⎤=+=-+⎨⎬⎨⎬⎢⎥⎢⎥⎣⎦⎪⎪⎣⎦⎩⎭⎩⎭即可得()(){},,,x y U f f F U x y d =再进行傅里叶反变换即可得菲涅耳衍射场()(){}1,,,x y U x y d F U f f -=7.简述利用SFFT 编程实现菲涅尔衍射的主要过程。
信息光学 补充习题0-1. 已知函数U (x )=A exp(j 2πf 0x ),求下列函数,并作出函数的图形(1) | U (x ) |2 (2) U (x ) + U*(x ) (3) | U (x ) + U*(x ) |20-2. 已知函数 f (x )=rect (x +2)+rect (x -2),求下列函数,并作出函数的图形.(1) f (x-1) (2) f (x )sgn(x )0-3. 画出下列函数的图形(1) ⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛=2rect 4rect )(x x x f (2))tri(2tri 2)(x x x g -⎪⎭⎫⎝⎛= (3))tri(22tri 2)(x x x h -⎪⎭⎫ ⎝⎛=(4) ))step(tri()(x x x p = 0-4计算:(1) sinc(x )δ (x ) (2) sinc(x )δ (x-0.5) (3) sinc(x )δ (x-1) (4) (3x +5) δ (x+3)0-5:已知连续函数f (x ),若x 0 > b > 0, 利用δ 函数可筛选出函数在x = x 0 + b 的值,试写出运算式。
0-6:f (x )为任意连续函数, a > 0, 求函数g (x ) = f (x )[δ(x +a )- δ(x -a )], 并作出示意图。
0-7:已知连续函数f (x ), a > 0和b > 0 。
求出下列函数(写出最简式并画出示意图):(1) h (x ) = f (x )δ (ax -x 0) (2) g (x ) = f (x )comb[(x - x 0)/b]0-8:画函数图形(1) (2)0-9:若)()()(x g x h x f =*,证明:)()()(00x x g x h x x f -=*-0-10利用梳函数与矩形函数的卷积表示线光栅的透过率。
假定缝宽为a ,光栅常数为d ,缝数为N .0-11 利用包含脉冲函数的卷积表示下图所示 双圆孔屏的透过率。
信息光学习题答案第一章 线性系统分析1.1 简要说明以下系统是否有线性和平移不变性. (1)()();x f dxdx g =(2)()();⎰=dx x f x g (3)()();x f x g = (4)()()()[];2⎰∞∞--=αααd x h f x g(5)()()απξααd j f ⎰∞∞--2exp解:(1)线性、平移不变; (2)线性、平移不变; (3)非线性、平移不变; (4)线性、平移不变; (5)线性、非平移不变。
1.2 证明)()ex p()(2x comb x j x comb x comb +=⎪⎭⎫ ⎝⎛π证明:左边=∑∑∑∞-∞=∞-∞=∞-∞=-=⎥⎦⎤⎢⎣⎡-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛n n n n x n x n x x comb )2(2)2(2122δδδ∑∑∑∑∑∑∞-∞=∞-∞=∞-∞=∞-∞=∞-∞=∞-∞=--+-=-+-=-+-=+=n nn n n n n n x n x n x jn n x n x x j n x x j x comb x comb )()1()()()exp()()()exp()()exp()()(δδδπδδπδπ右边当n 为奇数时,右边=0,当n 为偶数时,右边=∑∞-∞=-n n x )2(2δ所以当n 为偶数时,左右两边相等。
1.3 证明)()(sin x comb x =ππδ 证明:根据复合函数形式的δ函数公式0)(,)()()]([1≠''-=∑=i ni i i x h x h x x x h δδ式中i x 是h(x)=0的根,)(i x h '表示)(x h 在i x x =处的导数。
于是)()()(sin x comb n x x n =-=∑∞-∞=πδπππδ1.4 计算图题1.1所示的两函数的一维卷积。
解:设卷积为g(x)。
当-1≤x ≤0时,如图题1.1(a)所示, ⎰+-+=-+-=xx x d x x g 103612131)1)(1()(ααα图题1.1当0 < x ≤1时,如图题1.1(b)所示, ⎰+-=-+-=13612131)1)(1()(xx x d x x g ααα 即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤≤--+=其它,010,61213101,612131)(33x x x x x x x g 1.5 计算下列一维卷积。
信息光学试题1. 解释概念光谱:复色光经过色散系统(如棱镜、光栅)分光后,按波长(或频率)的大小依次排列的图案。
干涉图:在一定光程差下,探测器接收到的信号强度的变化,叫干涉图。
2. 傅里叶光谱学的基本原理是干涉图与光谱图之间的关系,是分别用复数形式和实数表示之。
复数形式方程:实数形式方程:3. 何谓Jacquinot 优点?干涉光谱仪的通量理论上约为光栅光谱仪通量的多少倍? Jacquinot 优点是:高通量。
对相同面积、相同准直镜焦距、相同分辨率,干涉仪与光栅光谱仪通量之比为对好的光栅光谱仪来说,由于 则 即干涉仪的通量为最好光栅干涉仪的190倍。
4. 何谓Fellgett 优点?证明干涉光谱仪与色散型光谱仪的信噪比之比为2/1)/()/(M N S N S GI =,M 为光谱元数。
Fellgett 优点:多重性。
设在一扩展的光谱带1σ —2σ间,其光谱分辨率为δσ,则光谱元数为δσσδσσσ∆=-=21M2()()(0)1[]2i R R B I I e d πσδσδδ∞--∞=-⎰()0()(0)1(tan ){[]cos(2)}2R R B cons t I I d σδπσδδ∞=-⎰'2()M G E f l E π≈'30f l ≥对光栅或棱镜色散型光谱仪,设T 为从1σ —2σ的扫描总时间,则每一小节观测时间为T/M ,如果噪音是随机的、不依赖于信号水平,则信噪比正比于21)(M T 即21)()(M T N S G ∝。
对干涉仪,它在所有时间内探测在 1σ —2σ间所有分辨率为δσ的小带,所以探测每一个小带的时间正比于T ,即21)()(T N S I ∝ 因此21)()(M N S N SG I =5. 单色光的干涉图和光谱表达式是什么?在实际仪器使用中,若最大光程差为L ,试写出其光谱表达式——仪器线性函数(ILS )。
单色光干涉图表达式:)2cos(2)]0(21)([1δπσδ=-R R I I 其中1σ为单色光的波数,δ为光程差。
信息光学试题及答案一、选择题1. 光学成像的基本条件是:A. 物距等于像距B. 物距大于像距C. 物距小于像距D. 物距等于两倍焦距2. 光的干涉现象说明光具有:A. 波动性B. 粒子性C. 直线传播性D. 反射性3. 在全息照相中,记录的是:A. 物体的实像B. 物体的虚像C. 物体的像差D. 物体的光强分布二、填空题4. 光的衍射现象表明,光波在遇到障碍物或通过狭缝时,会发生______现象。
5. 光纤通信利用的是光的______原理,可以实现长距离、大容量的信息传输。
三、简答题6. 简述迈克尔逊干涉仪的工作原理。
7. 光学信息处理技术在现代通信中的应用有哪些?四、计算题8. 已知一个凸透镜的焦距为10厘米,物体距离透镜15厘米,求像的性质和位置。
9. 一个光源发出波长为600纳米的光,通过一个双缝干涉装置,求在屏幕上距离中心亮纹1毫米处的条纹间距。
五、论述题10. 论述光学信息存储技术的发展及其对未来信息技术的影响。
参考答案:一、选择题1. D2. A3. D二、填空题4. 衍射5. 总反射三、简答题6. 迈克尔逊干涉仪通过将一束光分成两束,分别照射到两个反射镜上,再反射回来,通过观察两束光的干涉条纹,可以测量光波的波长或物体的微小位移。
7. 光学信息处理技术在现代通信中应用广泛,如光纤通信、光电子器件、光存储技术等,它们提高了信息传输的速度和容量,降低了传输损耗。
四、计算题8. 根据透镜成像公式,1/f = 1/u + 1/v,其中f为焦距,u为物距,v为像距。
代入数据得1/10 = 1/15 + 1/v,解得v = 30厘米,由于v > u,可知成像为倒立、放大的实像。
9. 根据双缝干涉条纹间距公式,Δx = λL/d,其中λ为波长,L为观察屏到双缝的距离,d为双缝间距。
由于题目中未给出L和d,无法直接计算条纹间距。
五、论述题10. 光学信息存储技术,如光盘存储、全息存储等,具有存储密度高、读取速度快、耐用性好等优点。
信息光学习题答案第一章 线性系统分析1.1 简要说明以下系统是否有线性和平移不变性. (1)()();x f dxdx g =(2)()();⎰=dx x f x g (3)()();x f x g = (4)()()()[];2⎰∞∞--=αααd x h f x g(5)()()απξααd j f ⎰∞∞--2exp解:(1)线性、平移不变; (2)线性、平移不变; (3)非线性、平移不变; (4)线性、平移不变; (5)线性、非平移不变。
1.2 证明)()ex p()(2x comb x j x comb x comb +=⎪⎭⎫ ⎝⎛π证明:左边=∑∑∑∞-∞=∞-∞=∞-∞=-=⎥⎦⎤⎢⎣⎡-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛n n n n x n x n x x comb )2(2)2(2122δδδ∑∑∑∑∑∑∞-∞=∞-∞=∞-∞=∞-∞=∞-∞=∞-∞=--+-=-+-=-+-=+=n nn n n n n n x n x n x jn n x n x x j n x x j x comb x comb )()1()()()exp()()()exp()()exp()()(δδδπδδπδπ右边当n 为奇数时,右边=0,当n 为偶数时,右边=∑∞-∞=-n n x )2(2δ所以当n 为偶数时,左右两边相等。
1.3 证明)()(sin x comb x =ππδ 证明:根据复合函数形式的δ函数公式0)(,)()()]([1≠''-=∑=i ni i i x h x h x x x h δδ式中i x 是h(x)=0的根,)(i x h '表示)(x h 在i x x =处的导数。
于是)()()(sin x comb n x x n =-=∑∞-∞=πδπππδ1.4 计算图题1.1所示的两函数的一维卷积。
解:设卷积为g(x)。
当-1≤x ≤0时,如图题1.1(a)所示, ⎰+-+=-+-=xx x d x x g 103612131)1)(1()(ααα图题1.1当0 < x ≤1时,如图题1.1(b)所示, ⎰+-=-+-=13612131)1)(1()(xx x d x x g ααα 即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤≤--+=其它,010,61213101,612131)(33x x x x x x x g 1.5 计算下列一维卷积。
(1)⎪⎭⎫⎝⎛-*-21)32(x rect x δ (2)⎪⎭⎫ ⎝⎛-*⎪⎭⎫ ⎝⎛+2121x rect x rect (3))()(x rect x comb * 解:(1)⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-*⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-*-25.22121232121)32(x rect x rect x x rect x δδ (2)设卷积为g(x),当x ≤0时,如图题1.2(a)所示, 2)(2+==⎰+x d x g x α当0 < x 时,如图题1.2(b)所示图题1.2x d x g x-==⎰2)(2α⎪⎩⎪⎨⎧>-<+=0,210,212)(x xx xx g即 ⎪⎭⎫ ⎝⎛∧=22)(x x g (3)1)()(=*x rect x comb1.6 已知)ex p(2x π-的傅立叶变换为)ex p(2πξ-,试求(1)(){}?ex p 2=-℘x(2)(){}?2/ex p 22=-℘σx解:设ξππ==z x y ,即 {})ex p()ex p(22πξπ-=-℘y由坐标缩放性质{}⎪⎭⎫⎝⎛=℘b a F ab by ax f ηξ,1),( 得 (1)(){}{})ex p()ex p(/ex p(ex p 22222ξπππππ-=-=-℘=-℘z yx(2)(){}(){}22222/ex p 2/ex p πσσyx -℘=-℘)2ex p(2)2ex p(22222ξπσσππσσπ-=-=z1.7 计算积分.(1)()⎰∞∞-=?sin 4dx x c(2)()⎰∞∞-=?cos sin 2xdx x c π 解:应用广义巴塞伐定理可得(1)32)1()1()()()(sin )(sin 121222=-++=ΛΛ=⎰⎰⎰⎰-∞∞-∞∞-ξξξξξξξd d d dx x c x c (2)⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛-Λ+⎪⎭⎫ ⎝⎛+Λ=⎰⎰⎰∞∞-∞∞-∞∞-ξξδξξξδξπd d xdx x c 21)(21)(21cos )(sin 221212121=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛Λ+⎪⎭⎫ ⎝⎛-Λ=1.8 应用卷积定理求()()()x c x c x f 2sin sin =的傅里叶变换.解:{}{}{}⎪⎭⎫ ⎝⎛*=℘*℘=℘2)(21)2(sin )(sin )2(sin )(sin ξξrect rect x c x c x c x c 当2123-<≤-ξ时,如图题1.3(a)所示, ξξξ+==⎰+-2321)(211du G当2121<≤-ξ时,如图题1.3(b)所示, 121)(2121==⎰+-ξξξdu G当2321<≤ξ时,如图题1.3(c)所示, ξξξ-==⎰-2321)(121du G2G(ξ)的图形如图题1.3(d)所示,由图可知 ⎪⎭⎫ ⎝⎛∧-⎪⎭⎫ ⎝⎛∧=2/1412/343)(ξξξG图题1.31.9 设()()x x f β-=exp ,0>β,求 (){}()⎰∞∞-==℘??dx x f x f解:{}⎰⎰∞∞---+-=-℘0)2ex p()ex p()2ex p()ex p()ex p(dx x j x dx x j x x πξβπξβββπξβββπξββξ2)2(2)exp()2(202222=+=-+==∞∞-⎰dx x1.10 设线性平移不变系统的原点响应为()()()x step x x h -=ex p ,试计算系统对阶跃函数()x step 的响应.解:由阶跃函数定义⎩⎨⎧<>=0,00,1)(x x x step 得线性平移不变系统的原点响应为()()()()0,ex p ex p >-=-=x x x step x x h所以系统对解阶跃函数()x step 的响应为 ⎰∞>--=--=*=00),ex p(1)](ex p[)()()(x x d x x h x step x g αα1.11 有两个线性平移不变系统,它们的原点脉冲响应分别为()()x c x h sin 1=和()()x c x h 3sin 2=.试计算各自对输入函数()x x f π2cos =的响应()x g 1和()x g 2.解:1.12 已知一平面波的复振幅表达式为)]432(exp[),,(z y x j A z y x U +-= 试计算其波长λ以及沿z y x ,,方向的空间频率。
解:设平面波的复振幅的表达式可以表示成以下形式)]cos cos cos (exp[)exp(),,(γβαz y x jk a j a z y x U ++=∙=由题可知,4cos ,3cos ,2cos =-==γβαk k k又因为1cos cos cos 222=++γβα 所以29=k波长为 2922ππλ==k 沿z y x ,,方向的空间频率为πλγζπλβηπλαξ2cos ,23cos ,1cos ==-====1.13 单色平面波的复振幅表达式为 ()⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛++=z y x j A z y x U 143142141exp ,, 求此波在传播方向的空间频率以及在z y x ,,方向的空间频率. 解:设单色平面波的复振幅的表达式可以表示成以下形式)]cos cos cos (exp[)exp(),,(γβαz y x jk a j a z y x U ++=∙= 由题可知,143cos ,142cos ,141cos ===γβαk k k又因为1cos cos cos 222=++γβα 所以1=k 波长为ππλ22==k沿z y x ,,方向的空间频率为 1423cos ,141cos ,1421cos πλγζπλβηπλαξ======第三章 光学成像系统的传递函数3.1 参看图3.1.1,在推导相干成像系统点扩散函数(3.1.5)式时,对于积分号前的相位因子()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛+≈⎥⎦⎤⎢⎣⎡+2220202002exp 2exp M y x d k j y x d k j i i 试问:(1)物平面上半径多大时,相位因子 ()⎥⎦⎤⎢⎣⎡+202002exp y x d k j相对于它在原点之值正好改变π弧度?(2)设光瞳函数是一个半径为a 的圆,那么在物平面上相应h 的第一个零点的半径是多少?(3)由这些结果,设观察是在透镜光轴附近进行,那么a , λ和d o 之间存在什么关系时可以弃去相位因子()⎥⎦⎤⎢⎣⎡+202002exp y x d k j 解:(1)由于原点的相位为零,于是与原点相位差为π的条件是o o oo o o o d r d kr y x d k λπ===+,2)(2222(2)根据⎰⎰⎰⎰∞∞-∞∞-⎭⎬⎫⎩⎨⎧-+--=⎭⎬⎫⎩⎨⎧-+--=dxdy y y y x x x d j y x P d d dxdy y My y x Mx x d j y x P d d y x y x h o i o i i i o o i o i i io i i o o ])~()~[(2exp ),(1])()[(2exp ),(1),;,(22λπλλπλ相干成像系统的点扩散函数是透镜光瞳函数的夫琅禾费衍射图样,其中心位于理想像点)~,~(o o y xρρπλλλπλ)2(1~1])~()~[(2exp ),(1),;,(122222a aJ d d a r circ B d d dxdy y y x x d j y x P d d y x y x h io i o o i o i i io i i o o =⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛=⎭⎬⎫⎩⎨⎧-+--=⎰⎰∞∞-式中22y x r +=,而2222~~⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=+=i o i i o i dy y dx x λληξρ (1) 在点扩散函数的第一个零点处0)2(1=o a J ρπ,此时应有83.32=o a ρπ,即 ao 61.0=ρ (2) 将(2)式代入(1)式,并注意观察点在原点)0(==i i y x ,于是得 ad r oo λ61.0=(3) (3)根据线性系统理论,像面上原点处得场分布,必须是物面上所有点在像面上的点扩散函数对于原点的贡献)0,0;,(o o y x h 。