专题五 图形的旋转与中心对称
- 格式:doc
- 大小:709.50 KB
- 文档页数:14
核心考点01图形的旋转与中心对称目录考点一:生活中的旋转现象考点二:旋转的性质考点三:旋转对称图形考点四:中心对称考点五:中心对称图形考点六:作图-旋转变换一.生活中的旋转现象(1)旋转的定义:在平面内,把一个图形绕着某一个点O 旋转一个角度的图形变换叫做旋转.点O 叫做旋转中心,转动的角叫做旋转角,如果图形上的点P 经过旋转变为点P ′,那么这两个点叫做对应点.(2)注意:①旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这时判断旋转的关键.②旋转中心是点而不是线,旋转必须指出旋转方向. ③旋转的范围是平面内的旋转,否则有可能旋转成立体图形,因而要注意此点. .二.旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心; ②旋转方向; ③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.三.旋转对称图形(1)旋转对称图形如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.(2)常见的旋转对称图形有:线段,正多边形,平行四边形,圆等.考点考向四.中心对称(1)中心对称的定义把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点..(2)中心对称的性质①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.五.中心对称图形(1)定义把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.注意:中心对称图形和中心对称不同,中心对称是两个图形之间的关系,而中心对称图形是指一个图形自身的特点,这点应注意区分,它们性质相同,应用方法相同.(2)常见的中心对称图形平行四边形、圆形、正方形、长方形等等.六.作图-旋转变换(1)旋转图形的作法:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.(2)旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等.一.生活中的旋转现象(共1小题)1.(2022春•泰州月考)下列图案中,可以由一个“基本图案”连续旋转45°得到的是( )A .B .C .D .【分析】因为45°×8=360°,整个图形应由8个基本图形组成.【解答】解:根据旋转的性质可知,可以由一个“基本图案”连续旋转45°,考点精讲即经过8次旋转得到的是B.故选:B.【点评】本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.二.旋转的性质(共11小题)2.(2022春•姑苏区校级月考)如图,在正方形网格中,△EFG绕某一点旋转某一角度得到△RPQ.则旋转中心可能是( )A.点A B.点B C.点C D.点D【分析】连接ER、FP、GQ,作FP的垂直平分线,作ER的垂直平分线,作GQ的垂直平分线,交点为旋转中心.【解答】解:如图,∵△EFG绕某一点旋转某一角度得到△RPQ,∴连接ER、FP、GQ,作FP的垂直平分线,作ER的垂直平分线,作GQ的垂直平分线,∴三条线段的垂直平分线正好都过C,即旋转中心是C.故选:C.【点评】本题考查了学生的理解能力和观察图形的能力,注意:旋转时,对应顶点到旋转中心的距离应相等且旋转角也相等,对称中心在连接对应点线段的垂直平分线上.3.(2022春•梁溪区校级期中)如图,将△AOB绕点O按逆时针方向旋转50°后得到△A'OB',若∠AOB=15°,则∠AOB'的度数是 35° .【分析】根据旋转的性质可知,旋转角等于60°,从而可以得到∠BOB′的度数,由∠AOB=15°可以得到∠AOB′的度数.【解答】解:∵△AOB绕点O按逆时针方向旋转50°后得到△A′OB′,∴∠BOB′=50°.∵∠AOB=15°,∴∠AOB′=∠BOB′﹣∠AOB=50°﹣15°=35°.故答案为:35°.【点评】本题考查旋转的性质,解题的关键明确旋转角是什么,对应边旋转前后的夹角是旋转角.4.(2022春•邗江区校级月考)如图,△ABC绕着顶点A逆时针旋转到△ADE,∠B=40°,∠E=60°,AB∥DE,求∠DAC的度数.【分析】根据旋转的性质得∠C=∠E=60°,∠D=∠B=40°,再根据平行线的性质的∠BAD=∠D=40°,从而得出答案.【解答】解:∵△ABC绕着顶点A逆时针旋转到△ADE,∴△ABC≌△ADE,∴∠C=∠E=60°,∠D=∠B=40°,∵∠B=40°,∴∠BAC=180°﹣40°﹣60°=80°,∵AB∥DE,∴∠BAD=∠D=40°,∴∠DAC=∠BAC﹣∠BAD=80°﹣40°=40°,∴∠DAC的度数为40°.【点评】本题主要考查了旋转的性质,平行线的性质,三角形内角和定理等知识,熟练掌握旋转的性质是解题的关键.5.(2022春•沭阳县月考)如图,在四边形ABCD中,AB∥CD,BC⊥CD,垂足为点C,E是AD的中点,连接BE并延长交CD的延长线于点F.(1)图中△EFD可以由△ EBA 绕着点 E 旋转 180 度后得到;(2)写出图中的一对全等三角形 △EBA≌△EFD ;(3)若AB=4,BC=5,CD=6.求△BCF的面积.【分析】(1)由已知条件可证明△EBA≌△EFD,所以△EFD可以由△EBA绕点E旋转180°后得到;(2)由(1)可得出答案;(3)由(1)可知△EBA≌△EFD,所以求△BCF的面积可转化为求梯形ABCD的面积,根据梯形的面积公式计算即可.【解答】解:(1)∵AB∥CD,∴∠ABE=∠F,∠A=∠FDE,∵E是AD的中点,∴AE=CE,在△EBA和△EFD中,,∴△EBA≌△EFD(AAS),∴△EFD可以由△EBA绕点E旋转180°后得到,故答案为:EBA,E,180°;(2)由(1)可知△EBA ≌△EFD ,故答案为:△EBA ≌△EFD ;(3)∵△EBA ≌△EFD ,∴S △BCF =S 梯形ABCD ==25.【点评】本题考查了全等三角形的判定、梯形的面积公式,旋转的性质,熟练掌握旋转的性质是解题的关键.6.(2022春•沭阳县月考)如图,点O 是等边三角形ABC 内的一点,∠BOC =150°,将△BOC 绕点C 按顺时针旋转得到△ADC ,连接OD ,OA .(Ⅰ)求∠ODC 的度数;(Ⅱ)若OB =2,OC =3,求AO 的长.【分析】(Ⅰ)根据旋转的性质得到三角形ODC 为等边三角形即可求解;(Ⅱ)在Rt △AOD 中,由勾股定理可求得AO 的长,再在直角△AOD 中利用三角函数的定义即可求解.【解答】解:(Ⅰ)由旋转的性质得,CD =CO ,∠ACD =∠BCO ,∵∠ACB =60°,∴∠DCO =60°,∴△OCD 为等边三角形,∴∠ODC =60°;(Ⅱ)由旋转的性质得,AD =OB =2,∵△OCD 为等边三角形,∴OD =OC =3,∵∠BOC =150°,∠ODC =60°,∴∠ADO =90°,在Rt △AOD 中,由勾股定理得:AO ==.【点评】本题主要考查了旋转的性质以及三角函数的定义,正确求得AO的长是解题的关键.7.(2022春•铜山区校级月考)如图,在△ABC中,∠BAC=120°,以BC为边向形外作等边三角形BCD,把△ABD绕着点D按顺时针方向旋转60°后得到△ECD,若AB=5,AC=3,求:(1)∠BAD的度数;(2)AD的长.【分析】(1)由旋转的性质可得AD=DE,BC=CD,AB=CE,∠ADE=∠BDC=60°,∠ABD=∠DCE,可证△ADE是等边三角形,可得∠DAE=60°,AD=AE,即可求解;(2)由等边三角形的性质可求AD=AE的长.【解答】解:(1)∵把△ABD绕着点D按顺时针方向旋转60°后得到△ECD,∴AD=DE,BC=CD,AB=CE,∠ADE=∠BDC=60°,∠ABD=∠DCE,∵∠BAC+∠BDC=180°,∴∠ABD+∠ACD=180°,∴∠ACD+∠DCE=180°,∴点A,点C,点E三点共线,又∵AD=DE,∠ADE=60°,∴△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAD=60°;(2)∵AB=5=CE,AC=3,∴AE=AC+CE=8,∴AD=AE=8.【点评】本题考查了旋转的性质,全等三角形的性质,等边三角形的判定和性质,证明点A,点C,点E三点共线是解题的关键.8.(2022春•东海县期末)如图,用四根木条钉成矩形框ABCD,把边BC固定在地面上,向右推动矩形框,矩形框的形状会发生改变(四边形具有不稳定性).(1)通过操作观察可知,线段EB由AB旋转得到,所以EB=AB.同理可得FC=CD,EF= AD ;(2)进一步观察,我们还会发现EF∥AD,请证明这一结论;(3)已知BC=30cm,DC=80cm,若BE恰好经过原矩形DC边的中点H,求此时四边形BCFE的面积.【分析】(1)由推动矩形框时,矩形ABCD的各边的长度没有改变,可求解;(2)通过证明四边形BEFC是平行四边形,可得结论;(3)由勾股定理可求BH的长,由面积法可求CG的长,即可求解.【解答】(1)解:∵把边BC固定在地面上,向右边推动矩形框,矩形的形状会发生改变,∴矩形ABCD的各边的长度没有改变,∴AB=BE,EF=AD,CF=CD,故答案为:AD;(2)证明:∵四边形ABCD是矩形,∴AD∥BC,AB=CD,AD=BC,∵AB=BE,EF=AD,CF=CD,∴BE=CF,EF=BC,∴四边形BEFC是平行四边形,∴EF∥BC,∴EF∥AD;(3)解:如图,过点C作CG⊥BE于G,∵DC=AB=BE=80cm,点H是CD的中点,∴CH=DH=40cm,在Rt△BHC中,BH===50(cm),=×BC×CH=×BH×CG,∵S△BCH∴30×40=50×CG,∴CG=24,∴四边形BCFE的面积=BE×CG=80×24=1920(cm2).【点评】本题考查了旋转的性质,矩形的性质,平行四边形的判定和性质,勾股定理,相似三角形的判定和性质等知识,灵活运用这些性质解决问题是解题的关键.9.(2022•溧阳市模拟)已知:如图,将△ABC绕点C旋转一定角度得到△EDC,若∠ACE=2∠ACB.(1)求证:△ADC≌△ABC;(2)若AB=BC=5,AC=6,求四边形ABCD的面积.【分析】(1)根据旋转的性质得到∠ACB=∠DCE,BC=CD,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AB=AD,推出四边形ABCD是菱形,根据菱形的性质得到AC⊥BD,设AC,BD交于O,根据勾股定理得到BO===4,求得BD=8,根据菱形的面积公式即可得到结论.【解答】(1)证明:∵将△ABC绕点C旋转一定角度得到△EDC,∴∠ACB=∠DCE,BC=CD,∵∠ACE=2∠ACB,∴∠ACE=2∠DCE,∴∠ACD=∠DCE=∠ACB,在△ADC与△ABC中,,∴△ADC≌△ABC(SAS);(2)解:由(1)知,△ADC≌△ABC,∴AB=AD,∵AB=BC,BC=CD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,∴AC⊥BD,设AC,BD交于O,∴AO=AC=3,∴BO===4,∴BD=8,∴四边形ABCD的面积=AC•BD=6×8=24.【点评】本题考查了旋转的性质全等三角形的判定和性质,菱形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.10.(2022春•滨海县月考)如图,点O是等边三角形ABC内的一点,∠BOC=150°,将△BOC绕点C按顺时针方向旋转一定的角度,得到△ADC,连接OD,OA.(1)求∠ODC的度数;(2)试判断AD与OD的位置关系,并说明理由;(3)若OB=2,OC=3,求AO的长(直接写出结果).【分析】(1)根据旋转的性质得到三角形ODC为等边三角形即可求解;(2)将△BOC绕点C按顺时针方向旋转一定的角度,得到△ADC,可知∠ADC=∠BOC=150°,即得∠ADO=∠ADC﹣∠ODC=90°,故AD⊥OD;(3)在Rt△AOD中,由勾股定理即可求得AO的长.【解答】解:(1)由旋转的性质得,CD=CO,∠ACD=∠BCO,∴∠ACD+∠ACO=∠BCO+∠ACO,即∠DCO=∠ACB,∵三角形ABC是等边三角形,∴∠ACB=60°,∴∠DCO=60°,∴△OCD为等边三角形,∴∠ODC=60°;(2)AD与OD的位置关系是:AD⊥OD,理由如下:由(1)知∠ODC=60°,∵将△BOC绕点C按顺时针方向旋转一定的角度,得到△ADC,∴∠ADC=∠BOC=150°,∴∠ADO=∠ADC﹣∠ODC=90°,∴AD⊥OD;(3)由旋转的性质得,AD=OB=2,∵△OCD为等边三角形,∴OD=OC=3,在Rt△AOD中,由勾股定理得:AO===.【点评】本题考查等边三角形中的旋转变换,涉及直角三角形判定、勾股定理等知识,解题的关键是掌握旋转的性质,旋转不改变图形的大小和形状.11.(2022春•相城区校级期末)如图,在△ABC中,∠BAC=50°,将△ABC绕点A按逆时针方向旋转后得△AB1C1.当B1B∥AC时,求∠BAC1的度数.【分析】先依据平行的性质可求得∠ABB1的度数,然后再由旋转的性质得到△AB1B为等腰三角形,∠B1AC1=50°,再求得∠BAB1的度数,最后依据∠BAC1=∠BAB1﹣∠C1AB1求解即可.【解答】解:∵B1B∥AC,∴∠ABB1=∠BAC=50°.∵由旋转的性质可知:∠B1AC1=∠BAC=50°,AB=AB1.∴∠ABB1=∠AB1B=50°.∴∠BAB1=80°∴∠BAC1=∠BAB1﹣∠C1AB1=80°﹣50°=30°.【点评】本题主要考查的是旋转的性质、平行线的判断,求得∠BAB1的度数是解题的关键.12.(2022春•南京期中)已知:如图,在△ABC中,∠BAC=120°,以BC为边向形外作等边三角形BCD,把△ABD绕着点D按顺时针方向旋转60°后得到△ECD,且A、C、E三点共线,若AB=3,AC=2,求∠BAD的度数与AD的长.【分析】由旋转的性质可得出∠ADE=60°、DA=DE,进而可得出△ADE为等边三角形以及∠DAE=60°,由点A、C、E在一条直线上可得出∠BAD=∠BAC﹣∠DAE=60°;由点A、C、E在一条直线上可得出AE=AC+CE,根据旋转的性质可得出CE=AB,结合AB=3、AC=2可得出AE的长度,再根据等边三角形的性质即可得出AD的长度.【解答】解:∵△ABD绕着点D按顺时针方向旋转60°后得到△ECD,∴∠ADE=60°,DA=DE,∴△ADE为等边三角形,∴∠DAE=60°.∵点A、C、E在一条直线上,∴∠BAD=∠BAC﹣∠DAE=120°﹣60°=60°.∵点A、C、E在一条直线上,∴AE=AC+CE.∵△ABD绕着点D按顺时针方向旋转60°后得到△ECD,∴CE=AB,∴AE=AC+AB=2+3=5.∵△ADE为等边三角形,∴AD=AE=5.【点评】本题考查了旋转的性质以及等边三角形的判定与性质,根据旋转的性质结合旋转角度为60°找出△ADE为等边三角形是解题的关键.三.旋转对称图形(共3小题)13.(2022春•东台市月考)正方形至少旋转 90 度才能与自身重合.【分析】正方形可以被其对角线平分成4个全等的部分,则旋转的角度即可确定.【解答】解:正方形可以被其对角线平分成4个全等的部分,则旋转至少360÷4=90度,能够与本身重合.故答案为:90.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.注意基础概念的熟练掌握.14.(2022春•常州期末)如图,用六个全等的等边三角形可以拼成一个六边形,三角形的公共顶点为O,则该六边形绕点O至少旋转 60 °后能与原来的图形重合.【分析】根据旋转角及旋转对称图形的定义作答.【解答】解:∵360°÷6=60°,∴该六边形绕中心至少旋转60度后能和原来的图案互相重合.故答案为:60.【点评】本题考查了旋转角的定义及求法,对应点与旋转中心所连线段的夹角叫做旋转角.15.(2022春•洪泽区校级月考)等边三角形绕一点至少旋转 120 °与自身完全重合.【分析】等边三角形的中心到三个顶点的距离相等,相邻顶点与中心连线的夹角相等,求旋转角即可.【解答】解:因为等边三角形的中心到三个顶点的距离相等,相邻顶点与中心连线的夹角相等,所以,旋转角为360°÷3=120°,故至少旋转120度才能与自身重合.故答案为:120.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.四.中心对称(共5小题)16.(2022春•张家港市校级月考)如图,菱形ABCD的对角线AC、BD交于点O,AC=4,BD=16,将△BOC绕着点C旋转180°得到△BOC,则点A与点B'之间的距离为( )A.6B.8C.10D.12【分析】根据菱形ABCD的对角线AC、BD交于点O,AC=4,BD=16,可得AC⊥BD,所以∠BOC=90°,根据△BOC绕着点C旋转180°得到△B′O′C,所以∠CO′B′=∠BOC=90°,AO′=6,OB′=8,再根据勾股定理即可求出点A与点B′之间的距离.【解答】解:∵菱形ABCD的对角线AC、BD交于点O,AC=4,BD=16,∴AC⊥BD,∴∠BOC=90°,∵△BOC绕着点C旋转180°得到△B′O′C,∴∠CO′B′=∠BOC=90°,∴O′C=OC=OA=AC=2,∴AO′=6,∵OB=OD=O′B′=BD=8,在Rt△AO′B′中,根据勾股定理,得:AB′===10.则点A与点B′之间的距离为10.故选:C.【点评】本题考查了中心对称、旋转的性质,菱形的性质,勾股定理等知识,解决本题的关键是掌握旋转的性质.17.(2022春•相城区校级期中)如图,菱形ABCD的对角线AC、BD交于点O,将△BOC绕着点C旋转180°得到△B'O'C,若AC=2,AB′=5,则菱形ABCD的边长是( )A.3B.4C.D.【分析】根据菱形的性质、旋转的性质,得到OA=OC=O'C=1、OB⊥OC、O'B'⊥O'C、BC=B′C,根据AB′=5,利用勾股定理计算O'B',再次利用勾股定理计算B'C即可.【解答】解:∵四边形ABCD是菱形,且△BOC绕着点C旋转180°得到△B'O'C,AC=2,∴OA=OC=O'C=1,OB⊥OC,BC=B′C,∴O'B'⊥O'C,O'A=AC+O'C=2+1=3,∵AB′=5,∴,∴,∴,即菱形ABCD的边长是,故选:D.【点评】本题考查了菱形的性质、旋转的性质以及勾股定理等知识,熟练掌握菱形的基本性质并灵活运用勾股定理是解题的关键.18.(2022春•涟水县校级月考)如图,在平面直角坐标系xOy中,△ABC经过中心对称变换得到△A′B′C′,那么对称中心的坐标为( )A.(0,0)B.(﹣1,0)C.(﹣1,﹣1)D.(0,﹣1)【分析】根据点A与点A'关于(﹣1,0)对称,点B与点B'关于(﹣1,0)对称,点C与点C′关于(﹣1,0)对称,得出△ABC与△A′B′C′关于点(﹣1,0)成中心对称.【解答】解:由图可知,点A与点A'关于(﹣1,0)对称,点B与点B'关于(﹣1,0)对称,点C与点C′关于(﹣1,0)对称,所以△ABC与△A′B′C′关于点(﹣1,0)成中心对称,故选:B.【点评】本题考查了坐标与图形变化﹣旋转,准确识图,观察出两三角形成中心对称,对称中心是(﹣1,0)是解题的关键.19.(2022春•江阴市校级月考)平面直角坐标系中,点P(3,﹣2)关于点Q(1,0)成中心对称的点的坐标是 (﹣1,2) .【分析】连接PQ并延长到点P′,使P′Q=PQ,设P′(x,y),则x<0,y>0.过P作PM⊥x轴于点M,过P′作PN⊥x轴于点N.利用AAS证明△QP′N≌△QPM,得出QN=QM,P′N=PM,即1﹣x=3﹣1,y=2,求出x=﹣1,y=2,进而得到P′的坐标.【解答】解:如图,连接PQ并延长到点P′,使P′Q=PQ,设P′(x,y),则x<0,y>0.过P作PM⊥x轴于点M,过P′作PN⊥x轴于点N.在△QP′N与△QPM中,,∴△QP′N≌△QPM(AAS),∴QN=QM,P′N=PM,∴1﹣x=3﹣1,y=2,∴x=﹣1,y=2,∴P′(﹣1,2).故答案为(﹣1,2).【点评】本题考查了坐标与图形变化﹣旋转,全等三角形的判定与性质,准确作出点P(3,﹣2)关于点(1,0)对称的点P′是解题的关键.20.(2022春•铜山区校级月考)如图,AB⊥BC,AB=BC=2cm,弧OA与弧OC关于点O中心对称,则AB、BC、弧CO、弧OA所围成的面积是 2 cm2.【分析】由弧OA与弧OC关于点O中心对称,根据中心对称的定义,如果连接AC,则点O为AC的中点,则题中所求面积等于△BAC的面积.【解答】解:连接AC.∵与关于点O中心对称,∴点O为AC的中点,∴AB、BC、弧CO、弧OA所围成的面积=△BAC的面积==2cm2.故答案为:2.【点评】根据中心对称的性质,把所求的不规则图形转化为规则图形即△BAC的面积,是解决本题的关键.五.中心对称图形(共2小题)21.(2022春•南京期末)下列四个图形中,既是轴对称图形,又是中心对称图形的是( )A.B.C.D.【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】解:A.不是中心对称图形,是轴对称图形,故此选项不合题意;B.是中心对称图形,不是轴对称图形,故此选项不合题意;C.不是中心对称图形,是轴对称图形,故此选项不合题意;D.既是中心对称图形,也是轴对称图形,故此选项符合题意;故选:D.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.22.(2022春•泰兴市期末)江苏省第二十届运动会将于今年8月28日在泰州举行,运动会会徽依据“江苏•泰州”首字母为原型进行设计.下列字母中,是中心对称图形的有( )个.A.1B.2C.3D.4【分析】根据中心对称图形的概念判断.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【解答】解:“J”、“T”都不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,“S”、“Z”能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形,故选:B.【点评】本题考查的是中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与自身重合.六.作图-旋转变换(共6小题)23.(2022春•通州区期末)如图,在平面直角坐标系中,A(4,3),B(1,4),C(1,1),将△ABC绕点O逆时针旋转90°,得到△A'B'C'.(1)请在图中画出△A'B'C',并求出△A'B'C'的面积;(2)若△ABC内一点M(a,b),则在△A'B'C'内与M相对应的点M'的坐标是 (﹣b,a) .【分析】(1)根据旋转的性质找出对应点即可求解;再由面积公式求得△A'B'C'的面积;(2)由旋转的性质可得答案.【解答】解:(1)如图所示,△A'B'C'即为所求;∴△A'B'C'的面积=;(2)在△A'B'C'内与M相对应的点M'的坐标是(﹣b,a),故答案为:(﹣b,a).【点评】本题主要考查了作图﹣旋转变换,三角形的面积等知识,熟练掌握旋转的性质是解题的关键.24.(2022春•涟水县校级月考)按下列要求分别画出与四边形ABCD成中心对称的四边形:(1)以顶点A为对称中心的四边形AB1C1D1(2)以BC的中点O为对称中心的四边形A2B2C2D2【分析】(1)连接CA并延长至C1,使得AC1=CA,则就是点A的对称点(将各点与对称中心相连,并延长至相等长度,得该点的对称点);同理作出其它各点的对称点,连接成四边形即可;(2)方法同(1),连接AO并延长至A2,使AO=A2O,则A2就是点A的对称点(将各点与对称中心相连,并延长至相等长度,得该点的对称点);同理作出其它各点的对称点,连接成四边形即可.【解答】解:(1)连接CA并延长至C1,使得AC1=CA,则就是点A的对称点(将各点与对称中心相连,并延长至相等长度,得该点的对称点);同理作出其它各点的对称点,连接成四边形;如图,四边形AB1C1D1即为所求.(2)连接AO并延长至A2,使AO=A2O,则A2就是点A的对称点(将各点与对称中心相连,并延长至相等长度,得该点的对称点.);同理作出其它各点的对称点,连接成四边形,如图所示,四边形A2B2C2D2即为所求,【点评】本题考查了画中心对称图形,掌握中心对称的性质是解题的关键.25.(2022春•天宁区校级期中)正方形网格中(每个小正方形边长是1,小正方形的顶点叫做格点),△ABC 的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)画出△ABC绕点B逆时旋转90°的△A1BC1.(2)画出△ABC关于点O的中心对称图形△A2B2C2.(3)△A1BC1可由△A2B2C2绕点M旋转得到,请写出点M的坐标.【分析】(1)将点A、C分别绕点B逆时针旋转90°得到其对应点,再首尾顺次连接即可;(2)分别作出三个顶点关于原点的对称点,再首尾顺次连接即可;(3)作C1C2、BB1中垂线,交点即为所求.【解答】解:(1)如图所示,△A1BC1即为所求.(2)如图所示,△A2B2C2即为所求.(3)如图所示,点M即为所求,其坐标为(0,﹣1).【点评】本题主要考查作图—旋转变换,解题的关键是掌握旋转变换的定义与性质.26.(2022春•阜宁县期中)方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)试作出△ABC以C为旋转中心,沿顺时针方向旋转90°后的图形△A1B1C;(2)以原点O为对称中心,再画出与△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标 (﹣4,1) .【分析】(1)根据题意所述的旋转三要素,依此找到各点旋转后的对应点,顺次连接可得出△A1B1C;(2)根据中心对称点平分对应点连线,可找到各点的对应点,顺次连接可得△A2B2C2,结合直角坐标系可得出点C2的坐标.【解答】解:根据旋转中心为点C,旋转方向为顺时针,旋转角度为90°,所作图形如下:.(2)所作图形如下:结合图形可得点C2坐标为(﹣4,1).【点评】此题考查了旋转作图的知识,解答本题关键是仔细审题,找到旋转的三要素,另外要求我们掌握中心对称点平分对应点连线,难度一般.27.(2022春•锡山区期末)按要求作图,不要求写作法,但要保留作图痕迹.(1)如图1,在10×10的网格中,有一格点三角形ABC(说明:顶点都在网格线交点处的三角形叫做格点三角形).将△ABC绕点C旋转180°,得到△A′B′C,请直接画出旋转后的△A′B′C.(2)在图1中,作出AC边上的高BF,则BF的长为 .(3)如图2,已知四边形ABCD是平行四边形,E为BC上任意一点,请只用直尺(不带刻度)在边AD上找点F,使DF=BE.【分析】(1)利用旋转变换的性质分别作出A,B的对应点A′,B′;(2)利用面积法求出BF,可得结论,(3)连接AC,BD交于点O,连接EO,延长EO交AD于点F,点F即为所求.【解答】解:(1)如图,△A′B′C即为所求;=3×3﹣×2×3﹣×1×3﹣×1×1=4,(2)∵AC==,S△ABC∴×AC×BF=4,∴BF=.故答案为:.(3)如图2,点F即为所求.【点评】本题考查作图﹣旋转变换,平行四边形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.28.(2022春•鼓楼区校级期中)(1)如图1,已知△ABC的顶点A、B、C在格点上,画出将△ABC绕点O 顺时针方向旋转90°后得到的△A1B1C1.(2)如图2,在平面直角坐标系中,将线段AB绕平面内一点P旋转得到线段A′B′,使得A′与点B重合,B′落在x轴负半轴上.请利用无刻度直尺与圆规作出旋转中心P.(不写作法,但要保留作图痕迹)【分析】(1)利用旋转变换的性质分别作出A,B,C的对应点A1,B1,C1即可;(2)作出线段AB,A′B′的垂直平分线的交点P即可.【解答】解:(1)如图1中,△A1B1C1即为所求;(2)如图2,点P即为旋转中心.【点评】本题考查作图﹣旋转变换,解题的关键是掌握旋转变换的性质,属于中考常考题型.一、单选题1.(2022春·江苏·八年级专题练习)如图所示的五个四边形全等,不能由四边形ABCD 经过平移或旋转得到的是( )A .B .C .D .【答案】A【分析】根据平移或者旋转的性质逐一分析即可.【详解】A.经过平移和旋转可得,符合题意;巩固提升B.经过旋转可得,不符合题意;C.经过平移可得,不符合题意;D.经过旋转可得,不符合题意;故选A.【点睛】本题考查了图形的平移和旋转,掌握平移和旋转的性质是解题的关键.2.(2022秋·江苏盐城·八年级校考期中)下列运动属于旋转的是()A.篮球的运动B.气球升空的运动C.钟表钟摆的摆动D.一个图形沿某直线对折的过程【答案】C【分析】根据旋转的定义进行判断即可.【详解】解:A.篮球的运动不一定是旋转,故A不符合题意;B.气球升空的运动属于平移,不属于旋转,故B不符合题意;C.钟表钟摆的摆动属于旋转,故C符合题意;D.一个图形沿某直线对折的过程是轴对称,不属于旋转,故D不符合题意.故选:C.【点睛】本题主要考查了旋转的定义,解题的关键是熟练掌握旋转的定义.3.(2023春·江苏·八年级专题练习)如图,△ABC绕点C旋转,点B转到点E的位置,则下列说法正确的是( )A.点B与点D是对应点B.∠BCD等于旋转角C.点A与点E是对应点D.△ABC≌△DEC【答案】D【分析】利用旋转的性质即可求解【详解】解:∵△ABC绕点C旋转,点B转到点E的位置,∴△ABC≌△DEC,点B与点E是对应点,点A与点D是对应点,∠ACD与∠BCE是旋转角,。
元调复习专题5—图形的旋转,平移和轴对称★核心知识梳理1、 图形的平移(经过平移所得的图形与原来的图形的对应线段_________,对应角_________,连接各组对应点的线段_________.2、轴对称图形,轴对称(1)轴对称与轴对称图形(2)轴对称的性质:连接任意一对对应点的线段被对称轴______________.3、图形的旋转(1)旋转定义:(2)旋转性质:(3)中心对称定义:(4)中心对称性质:★典型例题讲解一、几何变换与角度问题例1.如图,矩形ABCD ,∠DAC=650,点E 是CD 上一点,BE 交AC 于点F,将△BCE 沿BE 折叠,点C 恰好落在AB 边上的点C’处,求∠AFC’的度数。
练习.1.如图,△COD 是△AOB 绕点O 顺时针旋转40°后得到的图形,若点C 恰好落在AB 上,且∠AOD 的度数为90°,则∠B 的度数是 .二、几何变换中线段计算与证明例2:如图,P 是等边三角形ABC 内一点,PA=2,PB=2√3,PC=4,求△ABC 的边长练习:1.如上图 在Rt △ABC 中,∠C=90°,AC=1,BC=,点O 为Rt △ABC 内一点,连接A0、BO 、CO ,且∠AOC=∠COB=BOA=120°,(1)求∠ABC 和∠A′BC 的度数;(2)求OA+OB+OC 的值.2.如图1,在△ABC 中,AB=AC=13,BC=10,把△ABC 绕点A 旋转到△ADE 的位置,DE 交BC 于点M ,连接AM .(1)求证:∠AMB=∠AME ;(2)如图2,AD 交BC 于H ,在边AE 上取一点G ,使DH=EG,连接GC ,求点A 到直线CG 的距离3.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;…,按此规律继续旋转,直至得到点P2014为止.则AP2014= .三、几何变换与点的坐标例3.在平面直角坐标系中,O为原点,点A(-2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF 绕点O顺时针旋转,得正方形OE’D’F’,记旋转角为α.(Ⅰ)如图①,当α=90°,求AE’,BF’ 的长;(Ⅱ)如图②,当α=135°,求证AE’ =BF’,且AE’ ⊥BF’;(Ⅲ)若直线AE’与直线BF’相交于点P,求点P的纵坐标的最大值(直接写出结果即可)练习:1.点A的坐标为(2,0),把点A绕着坐标原点旋转135º到点B,那么点B的坐标是_________ .2.如图,直线443y x=-+与x轴、y轴分别交于A、B两点,把AOB△绕点A顺时针旋转90°后得到AO B''△,则直线A B'的解析式是.3.(2013•武汉)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请直接写出旋转中心的坐标;(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.四、综合题例4. (2015•连云港)在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△GHE与△BHD 面积之和的最大值,并简要说明理由.练习:(2015北京东城)已知:Rt△A′BC′和Rt△ABC重合,∠A′C′B=∠ACB=90°,∠BA′C′=∠BAC=30°,现将Rt△A′BC′绕点B按逆时针方向旋转角α(60°≤α≤90°),设旋转过程中射线C′C和线段AA′相交于点D,连接BD.(1)当α=60°时,A’B 过点C,如图1所示,判断BD和A′A之间的位置关系,不必证明;BA C (2)当α=90°时,在图2中依题意补全图形,并猜想(1)中的结论是否仍然成立,不必证明;(3)如图3,对旋转角α(60°<α<90°),猜想(1)中的结论是否仍然成立;若成立,请证明你的结论;若不成立,请说明理由.【典型练习基础篇】一、选择题:( ) 1.如图所示的图案绕旋转中心旋转后能够与自身重合,那么它的旋转角可能是A .60ºB .90ºC .72ºD .120º()2.如图,△ABC 绕A 按逆时针方向旋转一定的角度后成为△AB′C′.则下列等式中:①BC=B′C′;②∠BAB′=∠CAC′;③∠ABC=∠AB′C′; ④△ABB′≌△ACC′.其中正确的结论有( )A .1个B .2个C .3个D .4个( )3.在“线段、等腰三角形、等边三角形、矩形、菱形、圆”这几个图形中,既是中心对称图形,又是轴对称图形的个数是 A .6个 B .5个 C .4个 D .3个( )4.在图形旋转中,下列说法错误的是A.图形上各对应点的旋转角度相同;B.对应点到旋转中心距离相等;C.由旋转得到的图形也一定可以由平移得到;D.旋转不改变图形的大小、形状( )5.在平面直角坐标系中,已知点C (0,3),D (1,7),将线段CD 绕点M (3,3)旋转180°后,得到线段AB ,则线段AB 所在直线的函数解析式是A .y=3x+15B .y=3x-15C .y=15x-3D .y=-15x+3( )6. 在等边△ABC 中,D 是边AC 上一点,连接BD ,将△BCD 绕点B 逆时针旋转60°,得到△BAE ,连接ED ,若BC=5,BD=4.则下列结论错误的是A .AE ∥BC ;B .∠ADE=∠BDC ; C .△BDE 是等边三角形;D . △ADE 的周长是9二、填空题7.如图,将Rt △ABC 绕直角顶点C 点逆时针旋转得到△A'CB',若∠A'CB=160º,则此图形旋转角是 度.第7题 第8题 第9题8.如图,在Rt △ABC 中,∠ACB=90°,∠B=60°,BC=2,△A′B′C 可以由△ABC 绕点C 顺时针旋转得到,其中点A′与点A 是对应点,点B′与点B 是对应点,连接AB′,且A 、B′、A′在同一条直线上,则AA′的长为9.如图,P 是正三角形ABC 内的一点,且PA=6,PB=•8,•PC=10,若将△PAC 绕点A 逆时针旋转后,•得到△P •′AB ,•则点P •与点P •′之间的距离为_____,∠APB=_______°.10.若点(a +l ,3)与点(-2,b -2)关于x 轴对称,则点P(-a ,b)关于原点的对称点坐标是 .三、解答题第1题图 第2题图第5题图 第6题图11.(1)点(1,2)绕原点O 逆时针旋转90°得到的点的坐标是 ;(2)直线y=2x 绕原点O 逆时针旋转90°得到的直线解析式是 ;(3)求直线y=2x+3绕原点O 逆时针旋转90°得到的直线解析式.12.(2015•武汉)如图,已知点A (﹣4,2),B (﹣1,﹣2),平行四边形ABCD 的对角线交于坐标原点O .(1)请直接写出点C 、D 的坐标;(2)写出从线段AB 到线段CD 的变换过程;(3)直接写出平行四边形ABCD 的面积.13.如图,正方形ABCD 和平行四边形CPEF ,点P 在射线AB 上,点E 在边AD 上,作FG ⊥AD 于G 。
初二数学讲义第三讲 旋转对称图形与中心对称图形一、主要知识点1.把—个图形绕旋转中心旋转一定(小于周角)角度后,所得图形能够与自身重合,这种图形称为旋转对称图形。
2.中心对称图形是绕某一中心点旋转180°后能与自身重合的旋转对称图形,这个中心点叫做对称中心;3.中心对称图形是旋转对称图形的特例。
4.中心对称的特征:如果两个图形成中心对称,那么对称中心在对应点的连线上且平分这条线段.两个图形的对应角相等,对应线段平行且相等,两个图形的形状和大小都一样。
5.中心对称与中心对称图形:中心对称与中心对称图形是两个不同的概念,它们既有区别又有联系。
区别:(1)中心对称是指两个图形的关系,中心对称图形是指一个具有某种性质的图形。
(2)成中心对称的两个图形的对称点分别在两个图形上,中心对称图形的对称点在一个图形上。
联系:若把中心对称图形的两部分看成两个图形,则它们成中心对称,若把中心对称的两个图形看成—个整体,则成为中心对称图形。
6.常见的中心对称图形有:①线段;②相交直线;③平行四边形;④矩形;⑤菱形;⑥正方形;⑦圆。
既是轴对称图形,又是中心对称图形的有:①线段;②相交直线;④矩形;⑤菱形;⑥正方形;⑦圆。
二、例题与练习例1.下列旋转对称图形中绕哪一个点旋转多少度与自身重合?答:例2.如图所示,该图按顺时针绕旋转中心旋转,可与自身重合的度数是 ( ) (A )60°; (B )180°; (C )120°; (D )320°。
答:(1)(3) (4) (5)例3.如图,△ABC 为等边三角形,D 为△ABC 内一点,△ABD 经过旋转后到达△ACE 的位置。
(1)旋转中心是点 ;(2)旋转角度是 ;(3)△ADE 是 三角形。
例4、如图,已知△ABC 和点O ,画出△A ’B ’C ’,使△A ’B ’C ’和△ABC 关于点O 成中心对称。
解:(1)连结 并延长 到 ,使 = ,于是得到点 的对称点 ;(2)同样画出点 和点 的对称点 和 ; (3)顺次连结 、 、 。
中心对称与旋转的联系和区别
中心对称和旋转都是几何变换中常见的概念,它们之间有一些联系和区别。
联系:
1. 中心对称和旋转都是二维平面上的变换操作,可以改变图形的位置、形状和方向。
2. 中心对称和旋转都是保持图形不变的操作,即变换后的图形与变换前的图形相似。
3. 在一些特定情况下,中心对称和旋转可以相互转化。
例如,一个图形绕着某个点旋转180度后,可以与它的中心对称图形重合。
区别:
1. 中心对称是将图形关于某个中心点进行对称,保持图形形状不变,但可能改变图形的位置和方向。
旋转是将图形绕着某个点旋转一定角度,保持图形位置不变,但可能改变图形的形状和方向。
2. 中心对称的对称轴是直线,而旋转的旋转轴是一个点。
3. 中心对称的变换方式只有一种,即图形关于中心点的对称。
旋转的变换方式有多种,可以是顺时针或逆时针旋转,可以是任意角度的旋转。
4. 中心对称可以是任意次数的对称,而旋转可以是任意角度的旋转。
综上所述,中心对称和旋转虽然有一些联系,但在变换方式、变换效果和变换特点上都存在一些区别。
中心对称与旋转对称中心对称和旋转对称是几何学中常见的概念,它们在我们日常生活和各个领域中的应用非常广泛。
本文将从定义、特点以及实际应用等方面对中心对称和旋转对称进行探讨。
一、中心对称中心对称是指平面上的一个图形围绕一个点进行旋转180度后,仍能够与原来的图形完全重合。
中心对称具有如下特点:1. 对称中心:对于一个中心对称的图形,存在一个称为对称中心的点,该点与图形的每一个点都保持相等的距离。
图形中的任意一对对称点均位于对称中心的同一个直径上。
2. 对称轴:对称轴是通过对称中心和图形中任意一对对称点的直线。
对称轴上的任意一点到对称中心的距离与这个点的对称点到对称中心的距离相等。
3. 对称图形:中心对称图形是指具有中心对称性的图形,在进行180度旋转后能够与原来的图形完全重合。
中心对称在我们的日常生活中随处可见。
例如,花朵、雪花、蝴蝶等自然界中的许多图案都具有中心对称性。
此外,在建筑设计、艺术创作等领域中,中心对称也被广泛运用,以达到美观和平衡的效果。
二、旋转对称旋转对称是指平面上的一个图形按照某个点进行旋转一定角度后,可以与原来的图形完全重合。
旋转对称具有如下特点:1. 旋转中心:旋转对称图形的旋转中心是图形中心的一个点,通过该点进行旋转,使图形能够与原来的图形完全重合。
2. 旋转角度:旋转角度是指图形按照旋转中心进行旋转的角度,通常是90度、180度、270度等整数倍的角度。
3. 对称图形:具有旋转对称性的图形,在经过一次或多次旋转后,能够与原来的图形完全重合。
旋转对称在许多领域中都有广泛的应用。
例如,在几何学中,正多边形具有旋转对称性,同时也是中心对称的。
在艺术创作、标志设计等领域,旋转对称常被用于打造简洁而富有美感的图案。
总结:中心对称和旋转对称是几何学中非常重要的概念。
通过中心对称,我们可以实现图形的对称分布和平衡美感;通过旋转对称,我们可以创造出简洁而富有艺术感的图案。
在实际生活和各个领域中,中心对称和旋转对称都有着广泛的应用,丰富了我们的视觉体验。
旋转与中心对称旋转和中心对称是几何学中两种重要的变换方式。
它们在平面几何和立体几何中有广泛的应用,并且对于我们理解和解决几何问题具有重要意义。
一、旋转变换旋转是指以某一点为中心,按照一定的角度和方向将图形围绕中心点旋转。
在平面几何中,我们通常用角度来表示旋转的大小,用顺时针或逆时针来表示旋转的方向。
以平面上的一个点P为中心,逆时针旋转角度为θ的图形A,可以用记号R(θ,P)表示。
在旋转变换中,点P始终保持不变,而图形A的所有点按照相同的角度和方向绕点P旋转。
旋转变换有许多重要的性质。
首先,旋转变换保持长度不变。
也就是说,图形A经过旋转变换后,图形的任意两点之间的距离保持不变。
其次,旋转变换保持角度不变。
图形A中任意两线段之间的夹角,在旋转变换后仍然保持不变。
这些性质使得旋转变换在解决与角度和距离有关的几何问题时非常有用。
二、中心对称变换中心对称是指以某一点为对称中心,图形上对称的点与对称中心距离相等。
在平面几何中,中心对称分为对称轴在图形内部的内部中心对称和对称轴在图形外部的外部中心对称。
以点P为对称中心的内部中心对称变换,可以用记号S(P)表示。
对于任意点Q,它的对称点Q'在直线PQ上,并且PQ'=PQ。
图形A中的每一个点Q经过内部中心对称变换后得到的对称点Q',都在直线PQ 上,并且偏离对称中心的距离相等。
外部中心对称变换与内部中心对称变换类似,只不过对称轴在图形的外部。
以线段AB为外部对称轴,可以用记号S(AB)表示。
图形A 中的每一个点Q经过外部中心对称变换后得到的对称点Q',都在直线AB上,并且偏离对称轴的距离相等。
中心对称变换具有许多重要的性质。
首先,中心对称变换保持距离不变。
也就是说,图形A经过中心对称变换后,图形的任意两点之间的距离保持不变。
其次,中心对称变换使得线段、角度和面积保持不变。
图形A中任意两线段之间的夹角,在中心对称变换后仍然保持不变。
旋转与中心对称知识点总结一、旋转的基本概念1. 旋转的定义旋转是指一个图形绕着一个固定的点(称为旋转中心)旋转一定角度,使得图形的每一点都按照相同的角度和方向进行旋转。
旋转是一种基本的变换方式,可以将一个图形变换成另一个图形。
2. 旋转的性质(1)旋转保持图形的大小不变,只改变其位置和方向。
(2)旋转是一种等距变换,即旋转前后图形上的任意两点的距离不变。
(3)旋转有方向性,即按照逆时针或者顺时针方向旋转。
(4)旋转的角度可以是正数、负数或者零。
3. 旋转的记法在表示旋转时,通常用“R(α, O)”来表示。
其中,R表示旋转的动作,α表示旋转的角度,O 表示旋转的中心。
4. 旋转的应用旋转在几何中有着广泛的应用,如在图形的相似性、对称性、平移和旋转组合变换等方面都有重要作用。
此外,旋转还在几何构造和设计中有着重要的应用价值。
二、中心对称的基本概念1. 中心对称的定义中心对称是指以某一点为中心进行对称变换,使得图形的每一点都关于这个中心对称,即以中心为轴,使得对称的两个部分分别对称于中心点的两侧。
2. 中心对称的性质(1)中心对称的图形和它的中心对称图形是全等的,即它们的形状和大小都完全相同。
(2)中心对称是一种等长变换,原图形中的任意一点到中心的距离和对称图形中的相对点到中心的距离相等。
(3)中心对称是一种对易变换,即进行两次中心对称等于原图形。
3. 中心对称的应用中心对称在几何中也有着重要的应用,如在图形的分类和性质判断、对称性的分析、几何构造等方面都有重要的应用。
此外,中心对称还在艺术设计和图案构图中有着重要的应用价值。
三、旋转与中心对称的关系1. 旋转与中心对称的联系旋转和中心对称在一定条件下是等价的,即通过旋转可以实现中心对称,通过中心对称也可以实现旋转。
这是因为旋转和中心对称都是一种对称性变换,它们都具有保持图形不变的性质。
2. 旋转与中心对称的应用旋转与中心对称在一些几何问题中常常结合使用,如在构造等边三角形、六边形等图形时,旋转和中心对称可以互相借助,以实现图形的变换和构造。
专题五图形的旋转与中心对称◎知识聚焦180 如果它能够与另一个图形重合,在平面内,把一个图形绕着某一点旋转,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点,在平面内,把一个图形绕着某一点旋转180o如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
关于中心对称的两个图形有下列性质:1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心平分.2.关于中心对称的两个图形是全等形,中心对称与中心对称图形之间的关系区别:①中心对称是指两个图形的关系,中心对称图形是指具有某种性质的图形.②成中心对称的两个图形的对称点分别在两个图形上,中心对称图形的对称点在一个图形上联系:若把中心对称图形的两部分看成两个图形,则它们成中心对称;若把成中心对称的两个图形看成一个整体,则这个整体就是中心对称图形.◎例题导航【例1】(2013.郴州)下列图案中,不是中心对称图形是( )点拨:根据中心对称图形的概念求解,解答:B.点评:本题考查了中心对称图形的知识,解题的关键是掌握中心对称图形的概念.【例2】 (2012.六盘水)将两块大小一样斜边为4且含o 30角的三角尺按如图所示的方式放置.将△CDE 绕点C 按逆时针方向旋转,当点E 恰好落在AB 上时,△CDE 旋转了 。
,点拨:此题需根据含 30角的直角三角形的性质进行分析,即可求出答案.解答:,30,4O A D AB DE .2 BC EC 由旋转的性质可知,2 BC C E 又E BC B ,60 是等边三角形..30.60o E EC E BC 故答案为30.点评:此题考查了含o 30角的直角三角形,等边三角形的判定、旋转的性质.【例3】 (2013.襄阳)如图①,点A 是线段BC 上一点,△ABD 和△ACE 都是等边三角形.(1)连接BE 、CD ,求证:BE=CD;(2)如图②,将△ABD 绕点A 顺时针旋转得到.D B A ①当旋转角为 度边D A 落在AE 上;②在①的条件下,延长D D 交CE 于点P ,连接.、D C D B 当线段AB 、AC 满足什么数量关系时,D BD 与D CP 全等?并给予证明.点拨:(1)根据等边三角形的性质可得AB ,60,,o CAE BAD AC AE AD 进而得,.DAC BAE 再利用“边角边”证明△BAE 和△DAC 全等,根据全等三角形对应边相等即可得证;(2)①求出,DAE 即可得到旋转角的度数;②当AB AC 2 时,D BD 与D CP 全等.根据旋转的性质可得,D A D D BD AB 然后得到四边形D ABD 是菱形,根据菱形的对角线平分一组对角可得,30 D DB D AB 根据菱形的对边平行可得,//BC DP 根据等边三角形的性质可得,60, ACE AF AC 然后根据等腰三角形三线合一的性质求出,30o D AC D PC 从而得到D C D AC D D B D DB D AB ,30 P 然后利用“角边角”证明D BD 与D CP 全等,解答:(1)ABD 和ACE 都是等边三角形,.60,, CAE BAD AC AE AD AB ,DAE CAE DE BAD 即 BAE .DAC 在△BAE 和△DAC 中,,,,AC AE DAC BAE AD AB .).(CD BE SAS DAC BAE DAE CAE BAD o ,60①)2( .60260180o o o 边D A 落在AE 上, 旋转角为.60 DAE②当AB AC 2 时,D CP D BD 与全等.由旋转可知,B A 与AD 重合, DD BD AB .D A 四边形D ABD 是菱形.D AB .//,30602121BC DP ABD D DB o o △ACE 是等边三角形, ACE AE AC , D PC AD AE AB AC o .2,2.60 .30602121o ACE D AC 又//DP D AC D D B D DB D AB BC ,..30D C D B P D C D PC o 在D BD 和D CP中,.,,P D C D D B D BD D C D B D PC D DB ).(ASA D CP 点评:本题考查了全等三角形的判定与性质、等边三角形的性质以及旋转的性质,综合性较强,但难度不大,熟练掌握等边三角形的性质与全等三角形的判定是解题的关键.【例4】 如图,P 是等边三角形ABC 内的一点,连接PA 、PB 、PC ,以BP 为边作,60 PBQ 且,BP BQ 连接CQ.(1)观察并猜想AP 与CQ 之间的数量关系,并证明你的结论;(2)若,5:4:3:: PC PB PA 连接PQ ,试判断△PQC 的形状,并说明理由, 点拨:对于第(2)题,先利用图形旋转的性质,把三条线段转化到同一个三角形中,然后根据线段长度的比,运用勾股定理的逆定理作出判断.解答:..)1(ABC CQ AP 是等边三角形,.60, ABC CB AB 又,60o PBQ PBQ PBC ABC PBQ ABC .,PBC 即.CBQ ABP 又,BQ BP ..CQ AP CBQ ABP(2)△PQC 是直角三角形,理由: PBQ PBQ BP BQ ,,60 是等边三角形. PQ .PB 又::::,PB PA PC PQ CQ AP CQ .5:4:3 PC 根据勾股定理的逆定理,可得△PQC 是直角三角形.点评:因为旋转不改变图形的形状和大小,所以旋转前后的图形全等,解与旋转相关的问题常用到全等三角形的知识,而利用旋转过程中的不变量、不变性则是解决问题的关键.通过图形的旋转可以把部分图形搬到新的位置,使问题的条件相对集中,从而使条件与待求结论之间的关系明朗化,有利于解决问题,【例5】 (2012.北京)在△ABC 中,,BC BA , BAC M 是AC 的中点,P 是线段BM 上的动点,将线段PA 绕点P 顺时针旋转2a 得到线段PQ.(1)若o 60 且点P 与点M 重合(如图①),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出CDB 的度数;(2)在图②中,点P 不与点B 、M 重合,线段CQ 的延长线与射线BM 交于点D ,猜想CDB 的大小(用含a 的代数式表示),并加以证明;(3)对于适当大小的a ,当点P 在线段BM 上运动到某一位置(不与点B 、M 重合)时,能使线段CQ 的延长线与射线BM 交于点D ,且,QD PQ 请直接写出a 的范围.点拨:(1)利用图形旋转的性质以及等边三角形的判定得出△CMQ 是等边三角形,即可得出答案;(2)首先利用已知得出,CPD APD 进而得出,180o PQD PQC PQD PAD 即可求出;(3)由(2)得出,90 CDB 且 PQ QD ,进而得出 CDB PQC PCQ PAD 2,2180 o 得出a 的取值范围即可,解答:(1)补全图形如图③所示,.30 CDB(2)如图④,连接PC 、AD .M BC AB , 是AC 的中点,,AC BM 即BD 为AC 的垂直平分线..,CP AP CD AD 在△APD 与△CPD 中,,).(,.PC PA ADB x CPD MPD PD PD CD AD .21.,ADC CDB PCD PAD CDB 又PCQ PQC PC PQ PA PQ ., PQD PQC PQD PAD PAD . .180 在四边形APQD 中, ADC APQ o ADC PQD PAD 180.180)(360),2180(21,2180 CDB APQ 即.90 o CDB,90)3( o CDB 且,QD QP1802CDB PQC PCQ PAD .2 点P 不与点B 、M 重合, PAD BAD .MAD 易求得 , MAD 点P 在线段BM 上运动,PAD 最大为PAD ,2 最小等于a ,.6045.21802点评:此题考查了旋转的性质以及全等三角形的判定与性质,得出 o ADC APQ 360o PQD PAD 180)( 是解题的关键.◎培优训练能力达标1.(2013.潍坊)下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是( )2.(2013.荆门)在平面直角坐标系中,线段OP 的两个端点坐标分别是O(0,O)、P(4,3),将线段OP 绕点0逆时针旋转o 90到P O 位置,则点P 的坐标为 ( )A .(3,4)B .(-4,3)C .(-3,4)D .(4,-3)3.(2013.天津)如图,在△ABC 中,,BC AC 点D 、E 分别是边AB 、AC 的中点,将△ADE 绕点E 旋转 180得△CFE ,则四边形ADCF 一定是( )A .矩形B .菱形C .正方形D .梯形4.(2013.南昌)如图,将△ABC 绕点A 逆时针旋转一定角度,得到△ADE ,若 E CAE ,65 ,70o 且,BC AD 则BAC 的度数为( )60.Ao B 75.85.Co D 90.5.(2013.枣庄)在方格纸中,选择有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是 .6.(2013.广州)如图,Rt△ABC 的斜边,16 AB Rt△A BC 绕点O 顺时针旋转后得到,C B A Rt 则C B A Rt 的斜边B A 上的中线D C 的长度为 .7.(2013.毕节)四边形ABCD 是正方形,E 是DC 上一点,F 是CB 延长线上的点,且,BF DE 连接AE 、AF 、EF .(1)求证:;ABF ADE(2)填空:△ABF 可以由△ADE 绕旋转中心 点,按顺时针方向旋转 度 得到;(3)若,6,8 DE BC 求△AEF 的面积.8.(2013.娄底)某校九年级学习小组在探究学习过程中,用两块完全相同的且含 60角的直角三角尺ABC 与AFE 按如图①所示的位置放置,现将Rt△AEF 绕点A 按逆时针方向旋转角o 0( ),90 如图②,AE 与BC 交于点M ,AC 与EF 交于点N ,BC 与EF 交于点P.(1)求证:;AN AM(2)当旋转角o 30 时,四边形ABPF 是什么样的特殊四边形?并说明理由,拓展提升9.(2012.泰安)如图,菱形OABC 的顶点O 在坐标原点,顶点A 在x 轴上,,2(),120 A B o 将菱形OABC 绕原点0顺时针旋转o 105到C B A O 的位置,则点B 的坐标为( ))2,2.( A)2,2.( B)2,2.( C )3,3.( D10.(2013.黄石)把一副三角尺如图甲所示放置,其中 D A DEC ACB o ,45,90 ,30o 斜边,7,6 DC AB 把三角尺DCE 绕着点C 顺时针旋转o 15得到11CE D (如图乙),此时AB 与1CD 交于点0,则线段1AD 的长度为( )23.A5.B4.C31.D11.(2013.鄂州)如图,在△AOB 中,,90o AOB AOB BO AO ,6,3绕顶点0逆时针旋转到B O A 处,此时线段.B A 与BO 的交点E 为BO 的中点,则线段E B 的长度为 .12.(2013.达州)通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的,下面是一个案例,请补充完整.原题:如图①,点E 、F 分别在正方形ABCD 的边 BC 、CD 上,45o EAF 连接F,F ,则 EF ,DF BE 试说明理由.(1)思路梳理,AD AB∴把△ABE 绕点A 逆时针旋转O 90至.ADG 可使AB 与AD 重合.,90 B ADC,180c FED 点F 、D 、G 共线. 根据 ,易证 AFG ,得.DF BF EF(2)类比引申如图②,在四边形ABCD 中. BAD AD AB ,,90o 点E 、F 分别在边BC 、CD 上,EAF .45o 若D B 、都不是直角,则当B 与D 满足等量关系 时.仍有 EF .DF BE(3)联想拓展如图③,在△ABC 中,,,90AC AB BAC 点D 、E 均在边BC 上,且.45 DAE 猜想BD 、DE 、EC 满足的等量关系,并写出推理过程.13.(2013.益阳)如图①,在△ABC 中,,36o A 、,ABC AC AB 的平分线BE 交AC 于点E .(1)求证:;BC AE(2)如图②,过点E 作BC EF //交AB 于点F ,将△AEF 绕点A 逆时针旋转)1440(o o 得到.F E A 连接,、F B E C求证:;F B E C (3)在(2)的旋转过程中是否存在?//AB E C 若存在,求出相应的旋转角a ;若不存在,请说明理由,◎魔法赛场【例】 如图①,已知点P 是正方形ABCD 内的一点,连接PA 、PB 、PC.(1)将△PAB 绕点B 按顺时针方向旋转 90CB P 的位置(如图①).若,4,2 PB PA ,135 APB 求PC 的长;(2)如图②,若,2222PB PC PA 请说明点P 必在对角线AC 上.点拨:对于(1),连接,P P 可转化为在直角三角形中求线段PC 的长;对于(2),可用几何知识证.180 APB BPC解答:(1)如图①,连接,P P 由旋转的性质知 BPA C P B PA C P BP P B ,2,4P PB P PB o o .90,135为等腰直角三角形..90.45,24C P P P P B P P o .62)24(2222 C P P P PC(2)如图②,将△PAB 绕点B 按顺时针方向旋转o 90到CB P 的位置,由(1)知 C P PB P P ,2.,APB C P B PA 由,2222PB PC PA 得 .90,222 CP P P P PC C P 四边形CPP B 的内角和为 360,360 C P B BPC ,180o CP P BP P 即 C P B BPC .180.180 APB BPC o 点P 在对角线AC 上.点评:当图形中出现正方形或等边三角形时,常用到旋转变换,且旋转角一般为o 90或.60思考题如图,等边三角形A13C 的边长,31225 a P 是△ABC 内的一点,且,222PC PB PA 若 PC 5,求PA 、PB 的长.。