初中数学专题复习因式分解(含答案)
- 格式:doc
- 大小:94.20 KB
- 文档页数:4
(专题精选)初中数学因式分解经典测试题附答案解析一、选择题1.下列各式从左到右的变形中,属于因式分解的是( )A .m (a +b )=ma +mbB .a 2+4a ﹣21=a (a +4)﹣21C .x 2﹣1=(x +1)(x ﹣1)D .x 2+16﹣y 2=(x +y )(x ﹣y )+16【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 不符合题意;B 、没把一个多项式转化成几个整式积的形式,故B 不符合题意;C 、把一个多项式转化成几个整式积的形式,故C 符合题意;D 、没把一个多项式转化成几个整式积的形式,故D 不符合题意;故选C .【点睛】本题考查了因式分解的意义,判断因式分解的标准是把一个多项式转化成几个整式积的形式.2.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .x 2﹣1=(x+1)(x ﹣1)C .x 2﹣x+2=x (x ﹣1)+2D .x 2+2x ﹣1=(x ﹣1)2【答案】B【解析】试题分析:根据提公因式法分解因式,公式法分解因式对各选项分析判断利用排除法求解.解:A 、x 3﹣x=x (x 2﹣1)=x (x+1)(x ﹣1),故本选项错误;B 、x 2﹣1=(x+1)(x ﹣1),故本选项正确;C 、x 2﹣x+2=x (x ﹣1)+2右边不是整式积的形式,故本选项错误;D 、应为x 2﹣2x+1=(x ﹣1)2,故本选项错误.故选B .考点:提公因式法与公式法的综合运用.3.把代数式322363x x y xy -+分解因式,结果正确的是( )A .(3)(3)x x y x y +-B .223(2)x x xy y -+C .2(3)x x y -D .23()x x y -【答案】D【解析】 此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.解答:解:322363x x y xy -+,=3x (x 2-2xy+y 2),=3x (x-y )2.故选D .4.下列等式从左到右的变形是因式分解的是( )A .2x (x +3)=2x 2+6xB .24xy 2=3x •8y 2C .x 2+2xy +y 2+1=(x +y )2+1D .x 2﹣y 2=(x +y )(x ﹣y )【答案】D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符合题意;C 、不是因式分解,故本选项不符合题意;D 、是因式分解,故本选项符合题意;故选D .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.5.下列分解因式正确的是( )A .x 2-x+2=x (x-1)+2B .x 2-x=x (x-1)C .x-1=x (1-1x )D .(x-1)2=x 2-2x+1 【答案】B【解析】【分析】根据因式分解的定义对各选项分析判断后利用排除法求解.【详解】A 、x 2-x+2=x (x-1)+2,不是分解因式,故选项错误;B 、x 2-x=x (x-1),故选项正确;C 、x-1=x (1-1x),不是分解因式,故选项错误;D 、(x-1)2=x 2-2x+1,不是分解因式,故选项错误.故选:B .【点睛】本题考查了因式分解,把一个多项式写成几个整式的积的形式叫做因式分解,也叫做分解因式.掌握提公因式法和公式法是解题的关键.6.若三角形的三边长分别为a 、b 、c ,满足22230a b a c b c b -+-=,则这个三角形是( )A .直角三角形B .等边三角形C .锐角三角形D .等腰三角形 【答案】D【解析】【分析】首先将原式变形为()()()0b c a b a b --+=,可以得到0b c -=或0a b -=或0a b +=,进而得到b c =或a b =.从而得出△ABC 的形状.【详解】∵22230a b a c b c b -+-=,∴()()220a b c b c b -+-=,∴()()220b c a b --=,即()()()0b c a b a b --+=,∴0b c -=或0a b -=或0a b +=(舍去),∴b c =或a b =,∴△ABC 是等腰三角形.故选:D .【点睛】本题考查了因式分解-提公因式法、平方差公式法在实际问题中的运用,注意掌握因式分解的步骤,分解要彻底.7.多项式x 2y (a -b )-xy (b -a )+y (a -b )提公因式后,另一个因式为( ) A .21x x -+B .21x x ++C .21x x --D .21x x +-【答案】B【解析】解:x 2y (a -b )-xy (b -a )+y (a -b )= y (a -b )(x 2+x +1).故选B .8.已知a ﹣b =2,则a 2﹣b 2﹣4b 的值为( )A .2B .4C .6D .8【答案】B【解析】【分析】原式变形后,把已知等式代入计算即可求出值.【详解】∵a ﹣b =2,∴原式=(a +b )(a ﹣b )﹣4b =2(a +b )﹣4b =2a +2b ﹣4b =2(a ﹣b )=4.故选:B .【点睛】此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.9.已知x ﹣y =﹣2,xy =3,则x 2y ﹣xy 2的值为( )A .2B .﹣6C .5D .﹣3 【答案】B【解析】【分析】先题提公因式xy ,再用公式法因式分解,最后代入计算即可.【详解】解:x 2y ﹣xy 2=xy (x ﹣y )=3×(﹣2)=﹣6,故答案为B .【点睛】本题考查了因式分解,掌握先提取公因式、再运用公式法的解答思路是解答本题的关键.10.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误; C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.11.将多项式x 2+2xy+y 2﹣2x ﹣2y+1分解因式,正确的是( )A .(x+y )2B .(x+y ﹣1)2C .(x+y+1)2D .(x ﹣y ﹣1)2【答案】B【解析】【分析】此式是6项式,所以采用分组分解法.【详解】 解:x 2+2xy+y 2﹣2x ﹣2y+1=(x 2+2xy+y 2)﹣(2x+2y )+1=(x+y )2﹣2(x+y )+1=(x+y ﹣1)2.故选:B12.已知a ,b ,c 满足3a b c ++=,2224a b c ++=,则222222222a b b c c a c a b+++++=---( ). A .0B .3C .6D .9【答案】D【解析】【分析】将等式变形可得2224+=-a b c ,2224+=-b c a ,2224+=-a c b ,然后代入分式中,利用平方差公式和整体代入法求值即可.【详解】解:∵2224a b c ++=∴2224+=-a b c ,2224+=-b c a ,2224+=-a c b∵3a b c ++= ∴222222222+++++---a b b c c a c a b=222444222---++---c a b c a b=()()()()()()222222222-+-+-+++---c c a a b b c ab=222+++++c a b=()6+++c a b=6+3=9故选D .【点睛】 此题考查的是分式的化简求值题和平方差公式,掌握分式的基本性质和平方差公式是解决此题的关键.13.下列从左边到右边的变形,属于因式分解的是( )A .2(1)(1)1x x x +-=-B .221(2)1x x x x -+=-+C .224(4)(4)x y x y x y -=+-D .26(2)(3)x x x x --=+-【答案】D【解析】A. 和因式分解正好相反,故不是分解因式;B. 结果中含有和的形式,故不是分解因式;C. 22x 4y -=(x+2y)(x−2y),解答错误;D. 是分解因式。
初中数学因式分解知识点复习一、选择题1.下列因式分解中:①32(2)x xy x x x y ++=+;②2244(2)x x x ++=+;③22()()x y x y y x -+=+-;④329(3)x x x x -=-,正确的个数为( )A .1个B .2个C .3个D .4个 【答案】B【解析】【分析】将各项分解得到结果,即可作出判断.【详解】①322(2+1)x xy x x x y ++=+,故①错误;②2244(2)x x x ++=+,故②正确;③2222()()x y y x x y y x -+=-=+-,故③正确;④39(+3)(3)x x x x x -=-故④错误.则正确的有2个.故选:B.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.2.多项式x 2y (a -b )-xy (b -a )+y (a -b )提公因式后,另一个因式为( ) A .21x x -+B .21x x ++C .21x x --D .21x x +-【答案】B【解析】解:x 2y (a -b )-xy (b -a )+y (a -b )= y (a -b )(x 2+x +1).故选B .3.已知4821-可以被在60~70之间的两个整数整除,则这两个数是( )A .61、63B .61、65C .61、67D .63、65 【答案】D【解析】【分析】由()()()()()()24242412686421212121221121=+-=+++--,多次利用平方差公式化简,可解得.【详解】解:原式()()24242121=+-,()()()()()()()()()24121224126624122121212121212163652121=++-=+++-=⨯⨯++ ∴这两个数是63,65.选D.【点睛】本题考查的是因式分解的应用,熟练掌握平方差公式是解题的关键.4.已知a ﹣b =2,则a 2﹣b 2﹣4b 的值为( )A .2B .4C .6D .8 【答案】B【解析】【分析】原式变形后,把已知等式代入计算即可求出值.【详解】∵a ﹣b =2,∴原式=(a +b )(a ﹣b )﹣4b =2(a +b )﹣4b =2a +2b ﹣4b =2(a ﹣b )=4.故选:B .【点睛】此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.5.下列等式从左边到右边的变形,属于因式分解的是( )A .2ab(a-b)=2a 2b-2ab 2B .x 2+1=x(x+1x )C .x 2-4x+3=(x-2)2-1D .a 2-b 2=(a+b)(a-b)【答案】D【解析】【分析】把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式).分解因式与整式乘法为相反变形.【详解】解:A.不是因式分解,而是整式的运算B.不是因式分解,等式左边的x 是取任意实数,而等式右边的x ≠0C.不是因式分解,原式=(x -3)(x -1)D.是因式分解.故选D.故答案为:D.【点睛】因式分解没有普遍适用的法则,初中数学教材中主要介绍了提公因式法、公式法、分组分解法、十字相乘法、配方法、待定系数法、拆项法等方法.6.下列各式分解因式正确的是( )A .2112(12)(12)22a a a -=+-B .2224(2)x y x y +=+C .2239(3)x x x -+=-D .222()x y x y -=- 【答案】A【解析】【分析】根据因式分解的定义以及平方差公式,完全平方公式的结构就可以求解.【详解】 A. 2112(12)(12)22a a a -=+-,故本选项正确; B. 2222224(2)(2)=+44x y x y x y x xy y +≠+++,,故本选项错误;C. 222239(3)(3)=69x x x x x x -+≠---+,,故本选项错误;D. ()22()x y x y x y -=-+,故本选项错误. 故选A.【点睛】此题考查提公因式法与公式法的综合运用,解题关键在于掌握平方差公式,完全平方公式.7.下列各式从左到右的变形中,属于因式分解的是( )A .m (a +b )=ma +mbB .a 2+4a ﹣21=a (a +4)﹣21C .x 2﹣1=(x +1)(x ﹣1)D .x 2+16﹣y 2=(x +y )(x ﹣y )+16【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 不符合题意;B 、没把一个多项式转化成几个整式积的形式,故B 不符合题意;C 、把一个多项式转化成几个整式积的形式,故C 符合题意;D 、没把一个多项式转化成几个整式积的形式,故D 不符合题意;故选C .【点睛】本题考查了因式分解的意义,判断因式分解的标准是把一个多项式转化成几个整式积的形式.8.把代数式2x 2﹣18分解因式,结果正确的是( )A .2(x 2﹣9)B .2(x ﹣3)2C .2(x +3)(x ﹣3)D .2(x +9)(x ﹣9)【答案】C【解析】 试题分析:首先提取公因式2,进而利用平方差公式分解因式得出即可.解:2x 2﹣18=2(x 2﹣9)=2(x+3)(x ﹣3).故选C .考点:提公因式法与公式法的综合运用.9.下列分解因式,正确的是( )A .()()2x 1x 1x 1+-=+B .()()29y 3y y 3-+=+- C .()2x 2x l x x 21++=++ D .()()22x 4y x 4y x 4y -=+- 【答案】B【解析】【分析】把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.据此作答.【详解】A. 和因式分解正好相反,故不是分解因式;B. 是分解因式;C. 结果中含有和的形式,故不是分解因式;D. x 2−4y 2=(x+2y)(x−2y),解答错误.故选B.【点睛】本题考查的知识点是因式分解定义和十字相乘法分解因式,解题关键是注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.10.若△ABC 三边分别是a 、b 、c ,且满足(b ﹣c )(a 2+b 2)=bc 2﹣c 3 , 则△ABC 是( )A .等边三角形B .等腰三角形C .直角三角形D .等腰或直角三角形【答案】D【解析】试题解析:∵(b ﹣c )(a 2+b 2)=bc 2﹣c 3,∴(b ﹣c )(a 2+b 2)﹣c 2(b ﹣c )=0,∴(b ﹣c )(a 2+b 2﹣c 2)=0,∴b ﹣c=0,a 2+b 2﹣c 2=0,∴b=c或a2+b2=c2,∴△ABC是等腰三角形或直角三角形.故选D.11.下列因式分解结果正确的是( ).A.10a3+5a2=5a(2a2+a)B.4x2-9=(4x+3)(4x-3)C.a2-2a-1=(a-1)2D.x2-5x-6=(x-6)(x+1)【答案】D【解析】【分析】A可以利用提公因式法分解因式(必须分解到不能再分解为止),可对A作出判断;而B符合平方差公式的结构特点,因此可对B作出判断;C不符合完全平方公式的结构特点,因此不能分解,而D可以利用十字相乘法分解因式,综上所述,即可得出答案.【详解】A、原式=5a2(2a+1),故A不符合题意;B、原式=(2x+3)(2x-3),故B不符合题意;C、a2-2a-1不能利用完全平方公式分解因式,故C不符合题意;D、原式=(x-6)(x+1),故D符合题意;故答案为D【点睛】此题主要考查了提取公因式法以及公式法和十字相乘法分解因式,正确掌握公式法分解因式是解题关键.12.某天数学课上,老师讲了提取公因式分解因式,放学后,小华回到家拿出课堂笔记,认真复习老师课上讲的内容,他突然发现一道题:-12xy2+6x2y+3xy=-3xy•(4y-______)横线空格的地方被钢笔水弄污了,你认为横线上应填写()A.2x B.-2x C.2x-1 D.-2x-l【答案】C【解析】【分析】根据题意,提取公因式-3xy,进行因式分解即可.【详解】解:原式=-3xy×(4y-2x-1),空格中填2x-1.故选:C.【点睛】本题考查用提公因式法和公式法进行因式分解的能力.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止,同时要注意提取公因式后各项符号的变化.13.下列各因式分解的结果正确的是( )A .()321a a a a -=-B .2()b ab b b b a ++=+C .2212(1)x x x -+=-D .22()()x y x y x y +=+-【答案】C【解析】【分析】将多项式写成整式乘积的形式即是因式分解,且分解到不能再分解为止,根据定义依次判断即可.【详解】 ()321a a a a -=-=a (a+1)(a-1),故A 错误; 2(1)b ab b b b a ++=++,故B 错误;2212(1)x x x -+=-,故C 正确;22x y +不能分解因式,故D 错误,故选:C .【点睛】此题考查因式分解的定义,熟记定义并掌握因式分解的方法及分解的要求是解题的关键.14.已知a b >,a c >,若2M a ac =-,N ab bc =-,则M 与N 的大小关系是( ) A .M N <B .M N =C .M N >D .不能确定 【答案】C【解析】【分析】计算M-N 的值,与0比较即可得答案.【详解】∵2M a ac =-,N ab bc =-,∴M-N=a(a-c)-b(a-c)=(a-b)(a-c),∵a b >,a c >,∴a-b >0,a-c >0,∴(a-b)(a-c)>0,∴M >N ,故选:C .【点睛】本题考查整式的运算,熟练掌握运算法则并灵活运用“作差法”比较两式大小是解题关键.15.将下列多项式因式分解,结果中不含有因式(a+1)的是( )A .a 2-1B .a 2+aC .a 2+a-2D .(a+2)2-2(a+2)+1【答案】C【解析】试题分析:先把四个选项中的各个多项式分解因式,即a 2﹣1=(a+1)(a ﹣1),a 2+a=a (a+1),a 2+a ﹣2=(a+2)(a ﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,观察结果可得四个选项中不含有因式a+1的是选项C ;故答案选C .考点:因式分解.16.已知三个实数a ,b ,c 满足a ﹣2b +c <0,a +2b +c =0,则( )A .b >0,b 2﹣ac ≤0B .b <0,b 2﹣ac ≤0C .b >0,b 2﹣ac ≥0D .b <0,b 2﹣ac ≥0【答案】C【解析】【分析】根据a ﹣2b +c <0,a +2b +c =0,可以得到b 与a 、c 的关系,从而可以判断b 的正负和b 2﹣ac 的正负情况.【详解】∵a ﹣2b +c <0,a +2b +c =0,∴a +c =﹣2b ,∴a ﹣2b +c =(a +c )﹣2b =﹣4b <0,∴b >0,∴b 2﹣ac =222222a c a ac c ac +++⎛⎫-= ⎪⎝⎭=2222042a ac c a c -+-⎛⎫= ⎪⎝⎭…, 即b >0,b 2﹣ac ≥0,故选:C .【点睛】 此题考查不等式的性质以及因式分解的应用,解题的关键是明确题意,判断出b 和b 2-ac 的正负情况.17.已知a 、b 、c 为ABC ∆的三边长,且满足222244a c b c a b -=-,则ABC ∆是( )A .直角三角形B .等腰三角形或直角三角形C .等腰三角形D .等腰直角三角形【答案】B【解析】【分析】移项并分解因式,然后解方程求出a、b、c的关系,再确定出△ABC的形状即可得解.【详解】移项得,a2c2−b2c2−a4+b4=0,c2(a2−b2)−(a2+b2)(a2−b2)=0,(a2−b2)(c2−a2−b2)=0,所以,a2−b2=0或c2−a2−b2=0,即a=b或a2+b2=c2,因此,△ABC等腰三角形或直角三角形.故选B.【点睛】本题考查了因式分解的应用,提取公因式并利用平方差公式分解因式得到a、b、c的关系式是解题的关键.18.把x2-y2-2y-1分解因式结果正确的是().A.(x+y+1)(x-y-1) B.(x+y-1)(x-y-1)C.(x+y-1)(x+y+1) D.(x-y+1)(x+y+1)【答案】A【解析】【分析】由于后三项符合完全平方公式,应考虑三一分组,然后再用平方差公式进行二次分解.【详解】解:原式=x2-(y2+2y+1),=x2-(y+1)2,=(x+y+1)(x-y-1).故选A.19.下列从左到右的变形属于因式分解的是()A.(x+1)(x-1)=x2-1 B.m2-2m-3=m(m-2)-3C.2x2+1=x(2x+1x) D.x2-5x+6=(x-2)(x-3)【答案】D 【解析】【分析】根据因式分解的定义,因式分解是把多项式写出几个整式积的形式,对各选项分析判断后利用排除法求解.【详解】解:A 、(x+1)(x-1)=x 2-1不是因式分解,是多项式的乘法,故本选项错误; B 、右边不全是整式积的形式,还有减法,故本选项错误;C 、右边不是整式积的形式,分母中含有字母,故本选项错误;D 、x 2-5x +6=(x -2)(x -3)符合因式分解的定义,故本选项正确.故选:D .【点睛】本题主要考查了因式分解的定义,因式分解与整式的乘法是互为逆运算,要注意区分.20.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 【答案】A【解析】试题分析:把多项式分别进行因式分解,多项式2mx m -=m (x+1)(x-1),多项式221x x -+=()21x -,因此可以求得它们的公因式为(x-1).故选A考点:因式分解。
初中数学因式分解50题专题训练含答案学校:___________姓名:___________班级:___________考号:___________一、解答题1.分解因式(1)()()22-1-41-m m m (2)()()23812a a b b a ---2.把下列各式分解因式:(1)22344x y xy y -+;(2)41x -.3.因式分解(1) 322m -8mn(2)a (a+4)+44.因式分解:(1)x 2﹣9(2)4y 2+16y+165.分解因式:(1)22242x xy y -+ (2)()()2m m n n m -+-6.把下列各式因式分解:(1)216y -(2)32232a b a b ab -+7.计算(1))10122-⎛⎫-- ⎪⎝⎭(2)分解因式:()222224a b a b +-8.分解因式:(1) 3x x -(2) 2363x y xy y -+9.把下列各式分解因式:(1)2221218a ab b -+; (2)222(2)(12)x y y ---.10.因式分解:(1)()()35a x y b y x --- (2)32231025ab a b a b -+11.把下列各式进行因式分解(1)22818x y - (2)322a b a b ab -+12.因式分解:(1) 33a b ab -; (2) 44-b a13.因式分解:(1)3m 2n-12mn+12n ; (2)a 2(x-y)+9(y-x)14.分解因式:(1)269y y -+(2)228x -15.因式分解(1)4a 2-25b 2(2)-3x 3y 2+6x 2y 3-3xy 416.把下面各式分解因式:(1)x 2﹣4xy +4y 2;(2)3a 3﹣27a .17.将下列各式因式分解:(1)x 3﹣x ;(2)x 4﹣8x 2y 2+16y 4.18.分解因式:(1)ax 2﹣9a ; (2)4ab 2﹣4a 2b ﹣b 3.19.因式分解:(1)ax 2-9a ;(2)(y+2)(y+4)+1.20.分解因式:(1)()()22x x y y y x -+-(2)324812x x x -++21.因式分解:(1)()()323x x x --- ;(2)3231827a a a -+-22.因式分解:(1)m 2(x +y )﹣n 2(x +y );(2)x 4﹣2x 2+1.23.因式分解(1)2(2)(2)m a m a -+- (2)()222224a b a b +-24.(1)分解因式:22344a b ab b -+(2)解方程:1224x x x x -=--25.因式分解:(1)9x 2﹣1 (2)3a 2﹣18a+27.参考答案1.(1)(m -1)(m -2)2;(2) 4(a -b )2(5a -3b )【解析】【分析】(1)先提公因式,再用完全平方公式;(2)提公因式法分解因式.【详解】解:(1)原式()()2=-1-44m m m + ()()2=-1-2m m ;(2)原式()()22-343a b a a b -+= ()()245-3a b a b =-.【点睛】本题考查因式分解的方法,熟练掌握提公因式法和完全平方公式是关键..2.(1)2(2)y x y -;(2)2(1)(1)(1)x x x ++-.【解析】【分析】(1)先提公因式,然后了利用完全平方公式进行因式分解,解题得到答案.(2)利用平方差公式进行因式分解,即可得到答案.【详解】解:(1)原式=22(44)y x xy y -+=2(2)y x y -; (2)原式=22(1)(1)x x +-=2(1)(1)(1)x x x ++-.【点睛】本题考查了因式分解的方法,解题的关键是熟练掌握提公因式法、公式法进行因式分解. 3.(1)2m (m+2n )(m-2n );()22a +.【解析】【分析】本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
第四讲 因式分解 【基础知识回顾】一、因式分解的定义:1、把一个 式化为几个整式 的形式,叫做把一个多项式因式分解。
2、因式分解与整式乘法是 运算,即:多项式 整式的积 【名师提醒:判断一个运算是否是因式分解或判断因式分解是否正确,关键看等号右边是否为 的形式。
】二、因式分解常用方法:1、提公因式法:公因式:一个多项式各项都有的因式叫做这个多项式各项的公因式。
提公因式法分解因式可表示为:ma+mb+mc= 。
【名师提醒:1、公因式的选择可以是单项式,也可以是 ,都遵循一个原则:取系数的 ,相同字母的 。
2、提公因式时,若有一项被全部提出,则括号内该项为 ,不能漏掉。
3、提公因式过程中仍然要注意符号问题,特别是一个多项式首项为负时,一般应先提取负号,注意括号内各项都要 。
】2、运用公式法:将乘法公式反过来对某些具有特殊形式的多项式进行因式分解,这种方法叫做公式法。
①平方差公式:a 2-b 2= ,②完全平方公式:a 2±2ab+b 2= 。
【名师提醒:1、运用公式法进行因式分解要特别掌握两个公式的形式特点,找准里面的a 与b 。
如:x 2-x+14符合完全平方公式形式,而x 2- x+12就不符合该公式的形式。
】三、因式分解的一般步骤1、 一提:如果多项式的各项有公因式,那么要先 。
2、 二用:如果各项没有公因式,那么可以尝试运用 法来分解。
3、 三查:分解因式必须进行到每一个因式都不能再分解为止。
【名师提醒:分解因式不彻底是因式分解常见错误之一,中考中的因式分解题目一般为两步,做题时要特别注意,另外分解因式的结果是否正确可以用整式乘法来检验】【重点考点例析】考点一:因式分解的概念例1 (•株洲)多项式x 2+mx+5因式分解得(x+5)(x+n ),则m= ,n= .思路分析:将(x+5)(x+n )展开,得到,使得x 2+(n+5)x+5n 与x 2+mx+5的系数对应相等即可.解:∵(x+5)(x+n )=x 2+(n+5)x+5n ,∴x 2+mx+5=x 2+(n+5)x+5n ∴555n m n +=⎧⎨=⎩,∴16n m =⎧⎨=⎩, 故答案为6,1.点评:本题考查了因式分解的意义,使得系数对应相等即可.对应训练1.(•河北)下列等式从左到右的变形,属于因式分解的是( )( ) ( )A.a(x-y)=ax-ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3 D.x3-x=x(x+1)(x-1)1.D考点二:因式分解例2 (•无锡)分解因式:2x2-4x= .思路分析:首先找出多项式的公因式2x,然后提取公因式法因式分解即可.解:2x2-4x=2x(x-2).故答案为:2x(x-2).点评:此题主要考查了提公因式法分解因式,关键是掌握找公因式的方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.例3 (•南昌)下列因式分解正确的是()A.x2-xy+x=x(x-y)B.a3-2a2b+ab2=a(a-b)2C.x2-2x+4=(x-1)2+3 D.ax2-9=a(x+3)(x-3)思路分析:利用提公因式法分解因式和完全平方公式分解因式进行分解即可得到答案.解:A、x2-xy+x=x(x-y+1),故此选项错误;B、a3-2a2b+ab2=a(a-b)2,故此选项正确;C、x2-2x+4=(x-1)2+3,不是因式分解,故此选项错误;D、ax2-9,无法因式分解,故此选项错误.故选:B.点评:此题主要考查了公式法和提公因式法分解因式,关键是注意口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.例4 (•湖州)因式分解:mx2-my2.思路分析:先提取公因式m,再对余下的多项式利用平方差公式继续分解.解:mx2-my2,=m(x2-y2),=m(x+y)(x-y).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.对应训练2.(•温州)因式分解:m2-5m= .2.m(m-5)3.(•西宁)下列分解因式正确的是()A.3x2-6x=x(3x-6)B.-a2+b2=(b+a)(b-a)C.4x2-y2=(4x+y)(4x-y)D.4x2-2xy+y2=(2x-y)23.B4.(•北京)分解因式:ab2-4ab+4a= .4.a(b-2)2考点三:因式分解的应用例5 (•宝应县一模)已知a+b=2,则a2-b2+4b的值为.思路分析:把所给式子整理为含(a+b)的式子的形式,再代入求值即可.解:∵a+b=2,∴a2-b2+4b=(a+b)(a-b)+4b=2(a-b)+4b=2a+2b=2(a+b)=2×2=4.故答案为:4. 点评:本题考查了利用平方差公式分解因式,利用平方差公式和提公因式法整理出a+b 的形式是求解本题的关键,同时还隐含了整体代入的数学思想.对应训练5.(•鹰潭模拟)已知ab=2,a-b=3,则a 3b-2a 2b 2+ab 3= .5.18【聚焦山东中考】1.(•临沂)分解因式4x-x 2= .1.x (4-x )2.(•滨州)分解因式:5x 2-20= .2.5(x+2)(x-2)3.(•泰安)分解因式:m 3-4m= .3.m (m-2)(m+2)4.(•莱芜)分解因式:2m 3-8m= .4.2m (m+2)(m-2)5.(•东营)分解因式:2a 2-8b 2= .5.2(a-2b )(a+2b )6.(•烟台)分解因式:a 2b-4b 3= .6.b (a+2b )(a-2b )7.(•威海)分解因式:-3x 2+2x-13= . 7.21(31)3x --8.(•菏泽)分解因式:3a 2-12ab+12b 2= .8.3(a-2b )2【备考真题过关】一、选择题1.(•张家界)下列各式中能用完全平方公式进行因式分解的是() A .x 2+x+1 B .x 2+2x-1 C .x 2-1D .x 2-6x+9 1.D2.(•佛山)分解因式a 3-a 的结果是( )A .a (a 2-1)B .a (a-1)2C .a (a+1)(a-1)D .(a 2+a )(a-1) 2.C3.(•恩施州)把x 2y-2y 2x+y 3分解因式正确的是( )A .y (x 2-2xy+y 2)B .x 2y-y 2(2x-y )C .y (x-y )2D .y (x+y )23.C二、填空题4.(•自贡)多项式ax 2-a 与多项式x 2-2x+1的公因式是 .4.x-15.(•太原)分解因式:a 2-2a= .5.a (a-2)6.(•广州)分解因式:x 2+xy= .6.x (x+y )7.(2013•盐城)因式分解:a 2-9= .7.(a+3)(a-3)8.(•厦门)x2-4x+4=()2.8.x-29.(•绍兴)分解因式:x2-y2= .9.(x+y)(x-y)10.(•邵阳)因式分解:x2-9y2= .11.(x+3y)(x-3y)12.(•南充)分解因式:x2-4(x-1)= .12.(x-2)213.(•遵义)分解因式:x3-x= .13.x(x+1)(x-1)14.(•舟山)因式分解:ab2-a= .14.a(b+1)(b-1)15.(•宜宾)分解因式:am2-4an2= .15.a(m+2n)(m-2n)16.(•绵阳)因式分解:x2y4-x4y2= .16.x2y2(y-x)(y+x)17.(•内江)若m2-n2=6,且m-n=2,则m+n= .17.318.(•廊坊一模)已知x+y=6,xy=4,则x2y+xy2的值为.18.2419.(•凉山州)已知(2x-21)(3x-7)-(3x-7)(x-13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b= .19.-31。
中考数学复习《整式的乘法与因式分解》专项练习题--附带有答案一、选择题1.下列计算正确的是()A.(3a)2=6a2B.(a2)3=a5C.a6÷a2=a3D.a2⋅a=a32.若8x=21,2y=3,则23x−y的值是()A.7 B.18 C.24 D.633.计算(−2ab)(ab−3a2−1)的结果是()A.−2a2b2+6a3b B.−2a2b2−6a3b−2abC.−2a2b2+6a3b+2ab D.−2a2b2+6a3b−14.若(x−1)(x+4)=x2+ax+b,则a、b的值分别为().A.a=5,b=4 B.a=3,b=−4 C.a=3,b=4 D.a=55.下列变形中正确的是()A.(x+y)(−x−y)=x2−y2B.x2−4x−4=(x−2)2C.x4−25=(x2+5)(x2−5)D.(−2x+3y)2=4x2+12xy+9y26.下列分解因式正确的是()A.x2+2xy−y2=(x−y)2B.3ax2−6ax=3(ax2−2ax)C.m3−m=m(m−1)(m+1)D.a2−4=(a−2)27.图(1)是一个长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,小长方形的长为a,宽为b(a>b),然后按图(2)拼成一个正方形,通过计算,用拼接前后两个图形中阴影部分的面积可以验证的等式是()A.a2b2=(ab)2B.(a+b)2=(a−b)2+4abC.(a+b)2=a2+b2+2ab D.a2−b2=(a+b)(a−b)8.若x−y=−3,xy=5则代数式2x3y−4x2y2+2xy3的值为()A.90 B.45 C.-15 D.-30二、填空题9.若27×3x=39,则x的值等于10.计算:(√3−√2)(√3+√2)=.11.在实数范围内分解因式2x2+3x−1=.12.要使(y2−ky+2y)⋅(−y)的展开式中不含y2项,则k的值是.13.已知4y2−my+9是完全平方式,则m的值为.三、解答题14.计算:(2a−1)(a+2)−6a3b÷3ab.15.把下列多项式分解因式:(1)a4−8a2b2+16b4(2)x2(y2−1)+2x(y2−1)+(y2−1)16.已知a+b=5,ab=−6,求:(1)a2b+ab2的值;(2)a2+b2的值;(3)a-b的值.17.下面是某同学对多项式(x2−4x+2)(x2−4x+6)+4进行因式分解的过程解:设x2−4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2−4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的____(填序号).A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?.(填“是”或“否”)如果否,直接写出最后的结果.(3)请你模仿以上方法尝试对多项式(x2−2x)(x2−2x+2)+1进行因式分解.18.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)写出图2中所表示的数学等式;(2)根据整式乘法的运算法则,通过计算验证上述等式;(3)若a+b+c=10,ab+ac+bc=35利用得到的结论,求a2+b2+c2的值.参考答案1.D2.A3.C4.B5.C6.C7.B8.A9.610.111.2(x −−3+√174)(x −−3−√174)12.213.±1214.解:原式=2a 2+4a −a −2−2a 2=3a −2.15.(1)解:a 4−8a 2b 2+16b 4=(a 2−4b 2)2=(a +2b)2(a −2b)2(2)解:x 2(y 2−1)+2x(y 2−1)+(y 2−1)=(x 2+2x +1)(y 2−1)=(x +1)2(y +1)(y −1)16.(1)解:∵a +b =5,ab =−6∴a 2b +ab 2=ab(a +b)=−30(2)解: a 2+b 2=(a +b)2−2ab=25+12=37(3)解: (a −b)2=a 2+b 2−2ab=37+12=49故a−b=±7 .17.(1)C(2)否;(x−2)4(3)解:设x2−2x+1=y原式=(y−1)(y+1)+1=y2−1+1=y2=(x2−2x+1)2=[(x−1)2]2=(x−1)4.18.(1)解:∵边长为(a+b+c)的正方形的面积为:(a+b+c)2,分部分来看的面积为a2+b2+c2+2ab+ 2bc+2ac∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)解:∵(a+b+c)2=(a+b+c)(a+b+c)=a2+ab+ac+ab+b2+bc+ac+bc+c2=a2+b2+c2+2ab+2bc+2ac∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(3)解:∵a+b+c=10∴a2+b2+c2=(a+b+c)2−2ab−2bc−2ac=102−2×35=30∴a2+b2+c2的值为30.。
初一下数学期中复习因式分解一.因式分解-提公因式法1.把下列各式分解因式:(1)ax﹣ay+az;(2)6a2b﹣15ab2+30a2b2;(3)10a(x﹣y)2﹣5b(y﹣x);(4)x(a﹣x)(a﹣y)﹣y(x﹣a)(y﹣a).2.因式分解:(x+1)(x+3)﹣33.(2019秋•徐汇区校级期中)(x﹣3y)(x﹣y)﹣(﹣x﹣y)24.因式分解:2m(a﹣b)﹣3n(b﹣a)6.(2018秋•如皋市期中)因式分解:(1)x2﹣10x (2)﹣8ax2+16axy﹣8ay2 6.(2017春•天宁区校级月考)因式分解:2x2﹣4x.8.(2017春•滨海县期末)因式分解:(1)3a(x﹣y)﹣5b(y﹣x)(2)x6﹣x2y4.9.(2015春•新沂市期中)分解因式:3x(a﹣b)﹣6y(b﹣a)10.(2013春•常州期中)因式分解:3a2﹣6a2b+2ab.二.因式分解-运用公式法12.分解因式:(1)16x2﹣8xy+y2;(2)a2(x﹣y)﹣b2(x﹣y).13.(2019春•泰兴市期中)因式分解.(1)4x2﹣9y2 (2)x2+2xy+2y214.分解因式:(a2+1)2﹣4a2.15.(2018春•江宁区校级月考)分解因式.(1)(m+1)(m﹣9)+8m (2)(x2﹣x)2﹣(x﹣1)2 15.(2018春•工业园区期末)分解因式:x4﹣2x2+1.17.(2020春•灌云县期中)因式分解:(1)2m(a﹣b)﹣3n(b﹣a)(2)8a2﹣2b2 (3)4+12(x﹣y)+9(x﹣y)218.(2019秋•崇川区校级期末)分解因式:(1)4x2y﹣9y (2)(a2+4)2﹣16a219.因式分解(1)4a2﹣9;(2)3ax2+6axy+3ay2.20.分解因式:(1)9ax2﹣ay2;(2)2x3y+4x2y2+2xy3.21.(2020春•东台市期中)因式分解①2x2﹣8 ②x3﹣2x2y+xy2 ③(x2+4)2﹣16x2.四.因式分解-分组分解法23.分解因式:x2+y2+2xy﹣1.24.(2018春•玄武区校级期中)因式分解(1)m2(x﹣2)+m(2﹣x)(2)(x+y)2﹣4(x+y﹣1);(3)(x2+y2)2﹣4x2y2;(4)x3+x2y﹣xy2﹣y3.25.(2018秋•启东市期中)分解因式(1)16﹣a4 (2)y3﹣6xy2+9x2y(3)(m+n)2﹣4m(m+n)+4m2 (4)9﹣a2+4ab﹣4b2(1)a4﹣16 (2)x2﹣2xy+y2﹣9 (3)n2(m﹣2 )+(2﹣m)27.(2017春•苏州期中)分解因式:(1)2a3﹣8a(2)4a(x﹣y)﹣2b(y﹣x)(4)(x2+4)2﹣16x2(4)2xy﹣x2+1﹣y2.28.(2017春•江阴市校级月考)因式分解(1)x3﹣4x (2)﹣2a2+4a﹣2(3)x2﹣5x﹣6 (4)x2﹣4y2+x+2y.29.(2016春•鼓楼区校级期中)分解因式(1)4x2﹣36;(2)﹣4m3+8m2+32m;(4)(y2﹣1)2﹣6(y2﹣1)+9;(4)a2+ac﹣bc﹣b2.(1)3x﹣12x3 (2)a3﹣4ab2(3)(2x+y)2﹣(x+2y)2 (4)a2﹣4a+4﹣c2.31.(2016秋•张家港市校级月考)因式分解:(1)3ax﹣3ay2(2)(a+b)2﹣a2 (3)3a(x﹣y)+9(y﹣x)(4)x4﹣18x2+81 (5)x2﹣5x+6 (6)a2+2a+1﹣b2.32.(2016春•江阴市校级月考)因式分解:(1)3a5﹣12a4+9a3(2)3a2﹣6ab+3b2﹣12c2.五.因式分解-十字相乘法等33.(2019春•常熟市期末)将下列各式分解因式:(1)x2﹣5x﹣6;(2)8x2﹣8x+2;(3)a2(x﹣y)+b2(y﹣x).(1)9x2﹣25 (2)x4y4﹣8x2y2+16(3)a2(x﹣y)﹣b2(x﹣y)(4)x2﹣xy﹣6y235.(2019春•吴江区期中)分解因式:(1)ax2﹣6ax+9a (2)(m+1)(m﹣9)+8m (3)a4+3a2﹣436.(2019春•丹阳市期中)分解因式(1)6xz﹣9xy (2)8a3﹣8a2+2a(3)2ax2﹣18a3 (4)x2﹣4x﹣1237.(2019春•常熟市期中)分解因式:(1)3a2﹣6a+3;(2)a2﹣ab﹣6b2;(3)9a2(2x﹣y)+(y﹣2x)(1)x4﹣81 (2)x2﹣x﹣2 (3)2x2y﹣8xy+8y 39.分解因式:(a2+a)2﹣8(a2+a)+12.40.(2018春•玄武区校级月考)分解下列因式(1)a2(x﹣y)+b2(y﹣x)(2)16x4﹣8x2y2+y4 (3)(x2+4)2﹣16x2 (4)36(a+b)2﹣4(a﹣b)2 (5)x2﹣6x﹣1641.(2018春•常熟市期末)将下列各式分解因式(1)3x(a﹣b)﹣9y(b﹣a);(2)a2﹣4a﹣12;(3)81x4﹣72x2y2+16y442.(2018春•相城区期中)将下列各式分解因式:(1)2ax2﹣8a (2)x2﹣6xy+5y2(3)(2m﹣n)2﹣6n(2m﹣n)+9n2 (4)a2﹣b2+2b﹣1一.因式分解-提公因式法1.(1)ax﹣ay+az=a(x﹣y+z);(2)6a2b﹣15ab2+30a2b2=3ab(2a﹣5b+10ab);(3)10a(x﹣y)2﹣5b(y﹣x)=10a(x﹣y)2+5b(x﹣y)=5(x﹣y)[2a(x﹣y)+b] =5(x﹣y)(2ax﹣2ay+b);(4)x(a﹣x)(a﹣y)﹣y(x﹣a)(y﹣a)=x(a﹣x)(a﹣y)﹣y(a﹣x)(a﹣y)=(a﹣x)(a﹣y)(x﹣y).2.(x+1)(x+3)﹣3=x2+4x+3﹣3=x2+4x=x(x+4),3.(x﹣3y)(x﹣y)﹣(﹣x﹣y)2=x2﹣xy﹣3xy+y2﹣(x2+xy+y2),=x2﹣xy﹣3xy+y2﹣x2﹣xy﹣y2,=﹣xy+y2,=﹣y(x﹣y).4.2m(a﹣b)﹣3n(b﹣a)=2m(a﹣b)+3n(a﹣b)=(a﹣b)(2m+3n).5.3x2(x﹣2y)﹣18x(x﹣2y)﹣27(2y﹣x)=3x2(x﹣2y)﹣18x(x﹣2y)+27(x﹣2y)=3(x﹣2y)(x2﹣6x+9)=3(x﹣2y)(x﹣3)2.6.(1)x2﹣10x=x(x﹣10);(2)﹣8ax2+16axy﹣8ay2=﹣8a(x2﹣2xy+y2)=﹣8a(x﹣y)2.7.2x2﹣4x=2x(x﹣2).8.(1)3a(x﹣y)﹣5b(y﹣x)=(x﹣y)(3a+5b)(2)x6﹣x2y4=x2(x4﹣y4)=x2(x2﹣y2)(x2+y2)=x2(x﹣y)(x+y)(x2+y2)9.3x(a﹣b)﹣6y(b﹣a)=3x(a﹣b)+6y(a﹣b)=3(a﹣b)(x+2y).10.3a2﹣6a2b+2ab=a(3a﹣6ab+2b).11.6a(b﹣1)2﹣2(1﹣b)2=2(b﹣1)2(3a﹣1).二.因式分解-运用公式法12.(1)16x2﹣8xy+y2=(4x﹣y)2(2)a2(x﹣y)﹣b2(x﹣y)=(x﹣y)(a2﹣b2)=(x﹣y)(a+b)(a﹣b).13.(1)4x2﹣9y2=(2x+3y)(2x﹣3y)(2)x2+2xy+2y2=(x2+4xy+4y2)=(x+2y)2.14.(a2+1)2﹣4a2.=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2.15.(1)(m+1)(m﹣9)+8m=m2﹣8m﹣9+8m=m2﹣9=(m+3)(m﹣3);=(x+1)(x﹣1)3.16.x4﹣2x2+1=(x2﹣1)2=(x+1)2(x﹣1)2.三.提公因式法与公式法的综合运用17.(1)2m(a﹣b)﹣3n(b﹣a)=2m(a﹣b)+3n(a﹣b)=(a﹣b)(2m+3n)(2)8a2﹣2b2=2(4a2﹣b2)=2(2a+b)(2a﹣b)(3)4+12(x﹣y)+9(x﹣y)2=[2+3(x﹣y)]2=(2+3x﹣3y)218.(1)4x2y﹣9y=y(4x2﹣9)=y(2x+3)(2x﹣3)(2)(a2+4)2﹣16a2=(a2+4﹣4a)(a2+4+4a)=(a+2)2(a﹣2)219.(1)4a2﹣9=(2a+3)(2a﹣3)(2)3ax2+6axy+3ay2=3a(x2+2xy+y2)=3a(x+y)220.(1)9ax2﹣ay2=a(9x2﹣y2)=a(3x+y)(3x﹣y)(2)2x3y+4x2y2+2xy3=2xy(x2+2xy+y2)=2xy(x+y)221.①2x2﹣8=2(x2﹣4)=2(x﹣2)(x+2)②x3﹣2x2y+xy2═x(x2﹣2xy+y2)=x(x﹣y)2③(x2+4)2﹣16x2=(x2+4x+4)(x2﹣4x+4)=(x+2)2(x﹣2)222.(1)x2﹣4=(x+2)(x﹣2);(2)x3﹣2x2+x=x(x2﹣2x+1)=x(x﹣1)2.四.因式分解-分组分解法23.x2+y2+2xy﹣1=(x+y)2﹣1=(x+y﹣1)(x+y+1).24.(1)m2(x﹣2)+m(2﹣x)=m2(x﹣2)﹣m(x﹣2)=(x﹣2)(m2﹣m)=m(x﹣2)(m﹣1);(2)(x+y)2﹣4(x+y﹣1)=(x+y)2﹣4(x+y)+4=(x+y﹣2)2;(3)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2;(4)x3+x2y﹣xy2﹣y3=x2(x+y)﹣y2(x+y)=(x+y)(x2﹣y2)=(x+y)2(x﹣y).25.(1)16﹣a4=(4+a2)(4﹣a2)=(4+a2)(2+a)(2﹣a)(2)y3﹣6xy2+9x2y=y(y2﹣6xy+9x2)=y(y﹣3x)2(3)(m+n)2﹣4m(m+n)+4m2=(m+n﹣2m)2=(n﹣m)2(4)9﹣a2+4ab﹣4b2=9﹣(a﹣2b)2=(3﹣a+2b)(3+a﹣2b)26.(1)a4﹣16=(a2+4)(a2﹣4)=(a2+4)(a+2)(a﹣2)(2)x2﹣2xy+y2﹣9=(x﹣y)2﹣32=(x﹣y+3)(x﹣y﹣3)(3)n2(m﹣2 )+(2﹣m)=(m﹣2)(n2﹣1)=(m﹣2)(n+1)(n﹣1)27.(1)2a3﹣8a=2a(a2﹣4)=2a(a+2)(a﹣2);(2)4a(x﹣y)﹣2b(y﹣x)=2(x﹣y)(2a+b);(3)(x2+4)2﹣16x2=(x2+4+4x)(x2+4﹣4x)=(x+2)2(x﹣2)2;(4)2xy﹣x2+1﹣y2=1﹣(x﹣y)2=(1+x﹣y)(1﹣x+y).28.(1)x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2)(2)﹣2a2+4a﹣2=﹣2(a2﹣2a+1)=﹣2(a﹣1)2(3)x2﹣5x﹣6=(x﹣6)(x+1)(4)x2﹣4y2+x+2y=(x+2y)(x﹣2y)+(x+2y)=(x+2y)(x﹣2y+1)29.(1)4x2﹣36=4(x2﹣9)=4(x+3)(x﹣3)(2)﹣4m3+8m2+32m=﹣4m(m2﹣2m﹣8)=﹣4m(m+2)(m﹣4)(3)(y2﹣1)2﹣6(y2﹣1)+9=(y2﹣1﹣3)2=[(y+2)(y﹣2)]2=(y+2)2(y﹣2)2(4)a2+ac﹣bc﹣b2=(a+b)(a﹣b)+c(a﹣b)=(a﹣b)(a+b+c)30.(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x)(2)a3﹣4ab2=a(a2﹣4b2)=a(a+2b)(a﹣2b);(3)(2x+y)2﹣(x+2y)2=(2x+y﹣x﹣2y)(2x+y+x+2y)=(x﹣y)(3x+3y)=3(x﹣y)(x+y);(4)a2﹣4a+4﹣c2=(a﹣2)2﹣c2=(a﹣2+c)(a﹣2﹣c).31.(1)3ax﹣3ay2=3a(x﹣y2);(2)(a+b)2﹣a2=(a+b﹣a)(a+b+a)=b(2a+b);(3)3a(x﹣y)+9(y﹣x)=3(x﹣y)(a﹣3);(4)x4﹣18x2+81=(x2﹣9)2=(x+3)2(x﹣3)2;(5)x2﹣5x+6=(x﹣3)(x﹣2);(6)a2+2a+1﹣b2=(a+1)2﹣b2=(a+1+b)(a+1﹣b).32.(1)3a5﹣12a4+9a3=3a3(a2﹣4a+3)=3a3(a﹣3)(a﹣1)(2)3a2﹣6ab+3b2﹣12c2=3(a2﹣2ab+b2﹣4c2)=3[(a﹣b)2﹣4c2]=3(a﹣b+2c)(a﹣b﹣2c)五.因式分解-十字相乘法等33.(1)x2﹣5x﹣6=(x﹣6)(x+1)(2)8x2﹣8x+2=2(4x2﹣4x+1)=2(2x﹣1)2(3)a2(x﹣y)+b2(y﹣x)=(x﹣y)(a2﹣b2)=(x﹣y)(a+b)(a﹣b)34.(1)9x2﹣25=(3x+5)(3x﹣5)(2)x4y4﹣8x2y2+16=(x2y2﹣4)2=(xy+2)2(xy﹣2)2(3)a2(x﹣y)﹣b2(x﹣y)=(a2﹣b2)(x﹣y)=(a+b)(a﹣b)(x﹣y)(4)x2﹣xy﹣6y2=(x﹣3y)(x+2y)35.(1)ax2﹣6ax+9a=a(x2﹣6x+9)=a(x﹣3)2;(2)(m+1)(m﹣9)+8m=m2﹣8m﹣9+8m=m2﹣9=(m+3)(m﹣3);(3)a4+3a2﹣4=(a2﹣1)(a2+4)=(a﹣1)(a+1)(a2+4).36.(1)6xz﹣9xy=3x(2z﹣3y)(2)8a3﹣8a2+2a=2a(4a2﹣4a+1)=2a(2a﹣1)2(3)2ax2﹣18a3=2a(x2﹣9a2)=2a(x+3a)(x﹣3a)(4)x2﹣4x﹣12=(x﹣6)(x+2)37.(1)3a2﹣6a+3=3(a2﹣2a+1)=3(a﹣1)2;(2)a2﹣ab﹣6b2=(a﹣3b)(a+2b);(3)9a2(2x﹣y)+(y﹣2x)=9a2(2x﹣y)﹣(2x﹣y)=(2x﹣y)(9a2﹣1)=(2x﹣y)(3a+1)(3a﹣1).38.(1)x4﹣81=(x2+9)(x2﹣9)=(x2+9)(x+3)(x﹣3);(2)x2﹣x﹣2=(x+1)(x﹣2);(3)2x2y﹣8xy+8y=2y(x2﹣4x+4)=2y(x﹣2)2.39.(a2+a)2﹣8(a2+a)+12=(a2+a﹣2)(a2+a﹣6)=(a+2)(a﹣1)(a+3)(a﹣2).40.(1)a2(x﹣y)+b2(y﹣x)=a2(x﹣y)﹣b2(x﹣y)=(a2﹣b2)(x﹣y)=(x﹣y)(a+b)(a﹣b);(2)16x4﹣8x2y2+y4=(4x2﹣y2)2=(2x+y)2(2x﹣y)2;(3)(x2+4)2﹣16x2=(x2+4+4x)(x2+4﹣4x)=(x+2)2(x﹣2)2;(4)36(a+b)2﹣4(a﹣b)2=(6a+6b)2﹣(2a﹣2b)2=(6a+6b+2a﹣2b)(6a+6b﹣2a+2b)=(8a+4b)(4a+8b)=16(2a+b)(a+2b);(5)x2﹣6x﹣16=(x﹣8)(x+2).41.(1)3x(a﹣b)﹣9y(b﹣a)=3x(a﹣b)+9y(a﹣b)=3(a﹣b)(x+3y);(2)a2﹣4a﹣12=(a﹣6)(a+2);(3)81x4﹣72x2y2+16y4=(9x2﹣4y2)2=(3x+2y)2(3x﹣2y)2.42.(1)2ax2﹣8a=2a(x2﹣4)=2a(x+2)(x﹣2);(2)x2﹣6xy+5y2=(x﹣y)(x﹣5y);(3)(2m﹣n)2﹣6n(2m﹣n)+9n2=(2m﹣n﹣3n)2=4(m﹣2n)2;(4)a2﹣b2+2b﹣1=a2﹣(b﹣1)2=(a+b﹣1)(a﹣b+1).。
(专题精选)初中数学因式分解经典测试题及答案解析一、选择题1.下列变形,属于因式分解的有( )①x 2﹣16=(x +4)(x ﹣4);②x 2+3x ﹣16=x (x +3)﹣16;③(x +4)(x ﹣4)=x 2﹣16;④x 2+x =x (x +1)A .1个B .2个C .3个D .4个【答案】B【解析】【分析】【详解】解:①x 2-16=(x+4)(x-4),是因式分解;②x 2+3x-16=x (x+3)-16,不是因式分解;③(x+4)(x-4)=x 2-16,是整式乘法;④x 2+x =x (x +1)),是因式分解.故选B .2.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .x 2﹣1=(x+1)(x ﹣1)C .x 2﹣x+2=x (x ﹣1)+2D .x 2+2x ﹣1=(x ﹣1)2【答案】B【解析】试题分析:根据提公因式法分解因式,公式法分解因式对各选项分析判断利用排除法求解.解:A 、x 3﹣x=x (x 2﹣1)=x (x+1)(x ﹣1),故本选项错误;B 、x 2﹣1=(x+1)(x ﹣1),故本选项正确;C 、x 2﹣x+2=x (x ﹣1)+2右边不是整式积的形式,故本选项错误;D 、应为x 2﹣2x+1=(x ﹣1)2,故本选项错误.故选B .考点:提公因式法与公式法的综合运用.3.将3a b ab -进行因式分解,正确的是( )A .()2a a b b -B .()21ab a -C .()()11ab a a +-D .()21ab a - 【答案】C【解析】【分析】多项式3a b ab -有公因式ab ,首先用提公因式法提公因式ab ,提公因式后,得到多项式()21x -,再利用平方差公式进行分解.【详解】()()()32111a b ab ab a ab a a -=-=+-,故选:C .【点睛】此题主要考查了了提公因式法和平方差公式综合应用,解题关键在于因式分解时通常先提公因式,再利用公式,最后再尝试分组分解;4.多项式22ab bc a c -+-分解因式的结果是( )A .()()a c a b c -++B .()()a c a b c -+-C .()()a c a b c ++-D .()()a c a b c +-+【答案】A【解析】【分析】根据提取公因式和平方差公式进行因式分解即可解答.【详解】解:22))))))=((((((+)+(ab bc a c b a c a c a c a c b a c a c a b c -+--++-=-+=-+; 故选:A.【点睛】本题考查了利用提取公因式和平方差公式进行因式分解,熟练掌握是解题的关键.5.计算201200(2)(2)-+-的结果是( )A .2002-B .2002C .1D .2-【答案】A【解析】【分析】直接提取公因式进而计算得出答案.【详解】(-2)201+(-2)200=(-2)200×(-2+1)=-2200.故选:A .【点睛】此题考查提取公因式法分解因式,正确找出公因式是解题关键.6.下列从左边到右边的变形,属于因式分解的是( )A .2(1)(1)1x x x +-=-B .221(2)1x x x x -+=-+C .224(4)(4)x y x y x y -=+-D .26(2)(3)x x x x --=+-【答案】D【解析】A. 和因式分解正好相反,故不是分解因式;B. 结果中含有和的形式,故不是分解因式;C. 22x 4y -=(x+2y)(x−2y),解答错误;D. 是分解因式。
初中数学因式分解(分组分解法)练习100题及答案(1) 1027014ax ay bx by +--(2) 224981981848x y x y --++ (3) 22285132535a b ab bc ca --+-(4) 222712272015x y xy yz zx --+- (5) 60106010mn m n +--(6) 801006480xy x y -+-+(7) 22872124x y xy yz zx -++-(8) 22283251520a b ab bc ca +-+-(9) 20282535xy x y ----(10) 222141939x y xy yz zx ++--(11) 1070428xy x y -++-(12) 221510313521x y xy yz zx +--+(13) 2220358103a c ab bc ca -+-+(14) 60501815xy x y ----(15) 22365452511a c ab bc ca ---+(16) 226123417x z xy yz zx +-+-(17) 754935ab a b -+-(18) 16884xy x y -++-(19) 945945mx my nx ny --+(20) 22201839a c ca ++(21) 22672824a b ab bc ca -+--(22) 2235121220a b ab bc ca --+-(23) 9327ax ay bx by +--(24) 8016204mx my nx ny +++(25) 2231024x z xy yz zx ---+(26) 15502480xy x y ----(27) 221535464935x y xy yz zx ++++(28) 222035154928a b ab bc ca --+-(29) 632412mx my nx ny +--(30) 49214218xy x y +++(31) 4085ax ay bx by +--(32) 16364090xy x y -++-(33) 2220619624x y xy yz zx -+-+(34) 368368mn m n --+(35) 45633549ax ay bx by -+-(36) 2244363217a b a b --++ (37) 25304554mn m n -+-(38) 104156xy x y +++(39) 2221126432x z xy yz zx ++--(40) 24286070ab a b --+(41) 2249281840a b a b -+++(42) 223625652016a b ab bc ca +-+-(43) 226464489m n m ---(44) 223664369m n m ---(45) 224936568433a b a b -++-(46) 22331039a b ab bc ca +-+-(47) 226513510a b ab bc ca +-+-(48) 2294937x z xy yz zx ++--(49) 754935mn m n -+-(50) 2291018447a c ab bc ca +--+(51) 227221272129x z xy yz zx ---+(52) 530636mx my nx ny +--(53) 2249241827a b a b -+-+(54) 312624xy x y --++(55) 225625529x z xy yz zx -++-(56) 242065xy x y +++(57) 2282836x y xy yz zx ++--(58) 2216202548a c ab bc ca ++++(59) 22925204x y y ---(60) 2230736637a c ab bc ca --++(61) 221412461035x y xy yz zx +-+-(62) 2245425733x z xy yz zx -+--(63) 486486mn m n +++(64) 2210530627a c ab bc ca +-+-(65) 205164xy x y --++(66) 2272524331x z xy yz zx ----(67) 2293021353a c ab bc ca -++-(68) 848040ab a b +++(69) 81451810ab a b -+-(70) 223014354952x z xy yz zx +-+-(71)22123574a b ab bc ca-+--(72)222020mx my nx ny-+-(73)153357ab a b-+-(74)18126342mn m n+--(75)99010ax ay bx by+--(76)24241616mn m n-+-(77)16144035xy x y-+-(78)728455mx my nx ny-+-(79)5401080mx my nx ny+++(80)2254221212x y xy yz zx++++ (81)20503280xy x y--+(82)552020ax ay bx by+--(83)22124236x y xy yz zx----(84)18244864mn m n-+-(85)9020276ax ay bx by+--(86)222418391232a b ab bc ca----(87)2292142866x z xy yz zx+-+-(88)222581101a b a---(89) 24361624ax ay bx by --+(90) 20104020mn m n -+-(91) 229961x y y ---(92) 226416647265x y x y ----(93) 229424209m n m n ----(94) 2245220813a c ab bc ca --+- (95) 22449325648m n m n --++(96) 22481412648x y x y -++-(97) 22634276103x z xy yz zx +--+(98) 223030202461x z xy yz zx ++--(99) 221012352126a c ab bc ca +--+(100) 24275663ax ay bx by --+初中数学因式分解(分组分解法)练习100题答案(1)2(7)(5)a b x y-+(2)(798)(796)x y x y+---(3)(75)(45)a b a b c-+-(4)(935)(34)x y z x y+--(5)10(1)(61)m n-+(6)4(54)(45)x y-+-(7)(87)(3)x y x y z-+-(8)(75)(43)a b c a b---(9)(45)(57)x y-++(10)(3)(743)x y x y z++-(11)2(52)(7)x y---(12)(527)(35)x y z x y-+-(13)(45)(527)a c ab c-++ (14)(103)(65)x y-++(15)(95)(45)a c ab c+--(16)(34)(23)x z x y z---(17)(7)(75)a b+-(18)4(21)(21)x y---(19)9()(5)m n x y--(20)(56)(43)a c a c++(21)(4)(67)a b c a b--+(22)(53)(744)a b a b c-+-(23)(3)(9)a b x y-+(24)4(4)(5)m n x y++(25)(325)(2)x y z x z--+ (26)(58)(310)x y-++(27)(357)(57)x y z x y+++(28)(557)(47)a b c a b+--(29)3(4)(2)m n x y-+(30)(76)(73)x y++(31)(8)(5)a b x y-+(32)2(25)(49)x y---(33)(4)(566)x y x y z-++ (34)4(1)(92)m n--(35)(97)(57)a b x y+-(36)(2217)(221)a b a b+---(37)(59)(56)m n+-(38)(23)(52)x y++(39)(32)(726)x z x y z-+-(40)2(25)(67)a b--(41)(234)(2310)a b a b++-+(42)(45)(954)a b a b c---(43)(883)(883)m n m n+---(44)(683)(683)m n m n+---(45)(763)(7611)a b a b+--+(46)(3)(33)a b a b c---(47)(355)(2)a b c a b---(48)(9)(4)x z x y z-+-(49)(7)(75)m n+-(50)(92)(25)a c ab c+-+ (51)(97)(833)x z x y z+--(52)(56)(6)m n x y-+(53)(239)(233)a b a b++-+ (54)3(2)(4)x y--+(55)(5)(56)x z x y z++-(56)(41)(65)x y++(57)(423)(2)x y z x y+-+(58)(84)(25)a b c a c+++ (59)(352)(352)x y x y++--(60)(6)(567)a c ab c--+ (61)(72)(265)x y x y z---(62)(57)(96)x z x y z-++ (63)6(1)(81)m n++(64)(265)(5)a b c a c---(65)(54)(41)x y--+ (66)(935)(8)x y z x z--+(67)(35)(376)a c ab c++-(68)4(10)(21)a b++(69)(92)(95)a b+-(70)(672)(57)x y z x z---(71)(35)(47)a b c a b--+ (72)2(10)()m n x y+-(73)(37)(51)a b+-(74)3(27)(32)m n-+(75)(10)(9)a b x y-+ (76)8(32)(1)m n+-(77)(25)(87)x y+-(78)(85)(9)m n x y+-(79)5(2)(8)m n x y++(80)(922)(6)x y z x y+++ (81)2(58)(25)x y--(82)5(4)()a b x y-+(83)(643)(2)x y z x y--+ (84)2(38)(34)m n+-(85)(103)(92)a b x y-+(86)(83)(364)a b a b c+--(87)(7)(943)x z x y z---(88)(591)(591)a b a b+---(89)4(32)(23)a b x y--(90)10(2)(21)m n+-(91)(331)(331)x y x y++--(92)(845)(8413)x y x y++--(93)(321)(329)m n m n++--(94)(94)(52)a b c a c-+-(95)(2712)(274)m n m n+---(96)(296)(298)x y x y+--+ (97)(76)(97)x z x y z+-+(98)(645)(56)x y z x z+--(99)(53)(274)a c ab c+-+ (100)(37)(89)a b x y--。
2022年初二数学上册期末专题复习因式分解(人教版)-全国解答题3x(a-b)-6y(b-a).【答案】3(a-b)(x+2y)【解析】首先提取公因式3x(a-b),进而分解因式得出答案.解:3x(a-b)-6y(b-a)=3x (a-b)+6y(a-b)=3(a-b)(x+2y)解答题2x(a﹣b)﹣(b﹣a)【答案】(a﹣b)(2x+1)【解析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作把这个多项式分解因式。
本题直接找出公因式,进而提取公因式得出答案.原式= 2x(a﹣b)+(a﹣b)=(a﹣b)(2x+1)解答题分解因式:6a2b﹣4a3b3﹣2ab【答案】2ab(3a﹣2a2b2﹣1)【解析】运用提取公因式法因式分解.6a2b﹣4a3b3﹣2ab=2ab(3a﹣2a2b2﹣1).解答题利用因式分解计算:482-472【答案】95【解析】直接利用平方差公式因式分解得出答案.482-472=(48+47)(48-47)=95解答题3x2﹣12xy+12y2;【答案】3(x﹣2y)2【解析】首先提取公因式,然后利用完全平方公式因式分解.原式=3x2﹣12xy+12y2=3 (x2﹣4xy+4y2)=3(x﹣2y)2 解答题(x﹣y)2+16(y﹣x).【答案】(x﹣y)(x﹣y﹣16)【解析】把后面括号里的y-x提出-1,变为x-y,然后提取公因式.原式=(x﹣y)2-16(x﹣y)=(x﹣y)(x﹣y﹣16)解答题(x2+x)2﹣8(x2+x)+12.【答案】(x﹣1)(x+2)(x﹣2)(x+3)【解析】先把x2+x看做一个整体,然后根据十字相乘法的分解方法和特点分解因式,本题需要两次利用十字相乘法.原式=解:(x2+x)2-8(x2+x)+12,=(x2+x-2)(x2+x-6),=(x-1)(x+2)(x-2)(x+3).解答题(x2+2x)2-(2x+4)2.【答案】(x+2)3(x﹣2)【解析】原式=[ (x2+2x)+(2x+4) ] [ (x2+2x)-(2x+4) ]=(x+2)3(x﹣2) 解答题(x-1)(x-3)+1【答案】(x-2)2【解析】原式先利用整式乘法整理后,利用完全平方公式分解即可.原式=原式=x2-3x-x+4=x2-4x+4= =(x-2)2解答题18a3-2a;【答案】2a(3a+1)(3a-1)【解析】原式先提取公因式,再利用平方差公式分解即可.原式=2a(9a2-1)=2a(3a+1)(3a-1)解答题ab2﹣2ab+a【答案】a(b﹣1)2【解析】原式先提取公因式,再利用完全平方公式分解即可.原式= a(b2﹣2b+1)=a(b﹣1)2解答题分解因式:4x3y+4x2y2+xy3.【答案】xy(2x+y)2【解析】试题分析:先提取公因式,再用完全平方公式分解因式即可.试题解析:原式(略)(略)解答题-3x3+6x2y﹣3xy2.【答案】﹣3x(x﹣y)2【解析】先提公因式,再利用完全平方公式进行因式分解.原式)-3x3+6x2y-3xy2=-3x(x2-2xy+y2)=-3x(x-y)2.解答题m4﹣2m2+1.【答案】(m+1)2(m﹣1)2【解析】先利用完全平方公式,再利用平方差公式进行因式分解,是两个公式的综合运用.原式=(m2-1)2=[(m-1)(m+1)]2=(m+1)2(m﹣1)2解答题x2(a﹣2)+4(2﹣a)【答案】(a﹣2)(x+2)(x﹣2)【解析】根据先提取公因式、再平方差公式,可分解因式.原式= x2(a﹣2)-4(a﹣2)=(a﹣2)(x2-4)=(a﹣2)(x+2)(x﹣2)解答题ab(ab-6)+9【答案】(ab-3)2【解析】先根据单项式乘以多项式计算,再用完全平方公式进行因式分解即可.原式=a2b2-6ab+9=(ab-3)2解答题12x3-3x【答案】3x(2x+1)(2x-1)【解析】先提公因式,再根据平方差公式因式分解即可.原式=3x(4x2-1)=3x(2x+1)(2x-1)解答题2a3-12a2+18a【答案】2a(a-3)2【解析】先提公因式,再利用完全平方公式进行因式分解.原式=2a3-12a2+18a=2a(a2-6a+9)=2a(a-3)2解答题2(a-1)2-12(a-1)+18【答案】2(a-4)2【解析】先提公因式,再利用完全平方公式进行因式分解.原式=2 [(a-1)2-6(a-1)+9]=2(a-1-3)2=2(a-4)2解答题9a2(x﹣y)+4b2(y﹣x)【答案】(x﹣y)(3a+2b)•(3a﹣2b)【解析】先提公因式,再利用平方差公式进行因式分解.原式=9a2(x﹣y)-4b2(x﹣y)=(x﹣y)(9a2-4b2)=(x﹣y)(3a+2b)•(3a﹣2b)解答题9(a+b)2﹣25(a﹣b)2【答案】4(4b﹣a)(4a﹣b)【解析】先对所给多项式进行变形,然后套用公式a2-b2=(a+b)(a-b),再进一步分解因式.原式=)9(a+b)2-25(a-b)2,=[3(a+b)]2-[5(a-b)]2,=(8a-2b)(-2a+8b),=4 (4a﹣b) (4b﹣a)解答题﹣2a2x4+16a2x2﹣32a2【答案】﹣2a2(x+2)2(x﹣2)2【解析】先提公因式,再利用完全平方公式和平方差公式分解因式.﹣2a2x4+16a2x2﹣32a2=﹣2 a2(x4-8x2+16)=﹣2 a2(x2-4)2=﹣2 a2[(x+2) (x﹣2)]2=﹣2a2(x+2)2(x﹣2)2解答题利用因式分解计算:2022+202×196+982【答案】90000【解析】利用完全平方公式因式分解后即可很容易的得到结论.原式=2022+2×202×98+982=(202+98)2=3002=90000 解答题(a+1)(a-1)-8.【答案】(a+3)(a-3)【解析】先做多项式乘以多项式,再利用公式进行因式分解,即先去括号、合并,再利用平方差公式分解即可.原式=a2-1-8=a2-9=(a+3)(a-3).解答题4+12(x-y)+9(x-y)2.【答案】(3x-3y+2)2【解析】直接运用完全平方公式分解即可.4+12(x-y)+9(x-y)2,=[2+3(x-y)]2,=(3x-3y+2)2.解答题(a-3)(a-5)+1.【答案】(a-4)2【解析】解:①(a-3)(a-5)+1=a2-8a+15+1=a2-8a+16=(a-4)2解答题m4﹣16n4;【答案】(m2+4n2)(m+2n)(m﹣2n)【解析】连续运用平方差公式进行因式分解.原式=(m2+4n2)(m2-4n2)=(m2+4n2(m+2n)(m-2n). 解答题3m(2x-y)2-3mn2;【答案】3m(2x-y+n)(2x-y-n)【解析】先提公因式,再利用平方差公式分解因式.3m(2x-y)2-3mn2=3m [(2x-y)2-n2]=3m(2x-y+n)(2x-y-n)解答题分解因式:(a-b)m2+(b-a)n2;【答案】原式=(a-b)(m2-n2)=( a-b)(m+n)(m-n)【解析】先提取公因式,然后再利用平方差公式分解因式。
2018-2019学年初三数学专题复习因式分解一、单选题1.多项式﹣6x3y2﹣3x2y+12x2y2分解因式时,应先提的公因式是()A. 3xyB. ﹣3x2yC. 3xy2D. ﹣3x2y22.下列多项式中能用平方差公式分解因式的是()A. a2+(-b)2B. 5m2-20mnC. -x2-y2D. -x2+93.多项式6x3y2﹣3x2y2+12x2y3的公因式为()A. 3xyB. ﹣3x2yC. 3xy2D. 3x2y24.下列四个多项式,哪一个是2X2+5X-3的因式?()A. 2x-1B. 2x-3C. x-1D. x-35.下列各式从左到右的变形,是因式分解的是()A. x2-9+6x=(x+3)(x-3)+6xB. (x+5)(x-2)=x2+3x-10C. x2-8x+16=(x-4)2D. 6ab=2a.3b6.观察下面算962×95+962×5的解题过程,其中最简单的方法是( )A. 962×95+962×5=962×(95+5)=962×100=96200B. 962×95+962×5=962×5×(19+1)=962×(5×20) =96200C. 962×95+962×5=5×(962×19+962)=5×(18278+962)=96200D. 962×95+962×5=91390+4810=962007.把代数式xy2﹣9x分解因式,结果正确的是()A. x(y2﹣9)B. x(y+3)2C. x(y+3)(y﹣3)D. x(y+9)(y﹣9)8.计算(﹣2)2002+(﹣2)2001所得的正确结果是()A. 22001B. ﹣22001C. 1D. 29.下列分解因式错误的是()A. 15a2+5a=5a(3a+1)B. ﹣x2+y2=(y+x)(y﹣x)C. ax+x+ay+y=(a+1)(x+y)D. ﹣a2﹣4ax+4x2=﹣a(a+4x)+4x210.下列多项式中,能用提取公因式法分解因式的是()A. x2﹣yB. x2+2xC. x2+y2D. x2﹣xy+y211.下列由左边到右边的变形,属于分解因式的变形是()A. ab+ac+d=a(b+c)+dB. a2﹣1=(a+1)(a﹣1)C. 12ab2c=3ab•4bcD. (a+1)(a﹣1)=a2﹣112.分解因式(a2+1)2﹣4a2,结果正确的是()A. (a2+1+2a)(a2+1﹣2a)B. (a2﹣2a+1)2C. (a﹣1)4D. (a+1)2(a﹣1)213.把x2﹣xy2分解因式,结果正确的是()A. (x+xy)(x﹣xy)B. x(x2﹣y2)C. x(x﹣y2)D. x(x﹣y)(x+y)14.下列各式中,从左到右的变形是分解因式的是()A. x2﹣2=(x+1)(x﹣1)﹣1B. (x﹣3)(x+2)=x2﹣x+6C. a2﹣4=(a+2)(a﹣2)D. ma+mb+mc=m(a+b)+mc15.下列多项式中能用提公因式法分解的是()A. x2+y2B. x2-y2C. x2+2x+1D. x2+2x16.若a ,b ,c是三角形的三边之长,则代数式a-2ac+c-b的值()A. 小于0B. 大于0C. 等于0D. 以上三种情况均有可能二、填空题17.分解因式:a2+ab=________.18.分解因式:a2﹣9=________.19.将多项式x2y-2xy2+y3分解因式的结果是________.20.因式分解:2x2﹣18=________.21.已知m2+m﹣1=0,则m3+2m2+2017=________.三、计算题22.因式分解:(1);(2)23.先将代数式因式分解,再求值:2x(a﹣2)﹣y(2﹣a),其中a=0.5,x=1.5,y=﹣2.24.因式分解:3ab2+6ab+3a.25.把下列各式分解因式(1)3ax2+6axy+3ay2(2)a2(x﹣y)﹣b2(x﹣y)26.把下列各式分解因式:(1);(2).四、解答题27.仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n∴.解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21问题:仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.28.﹣x2+7x﹣10.五、综合题29.把下列各式因式分解(1)﹣36aby+12abx﹣6ab(2)9x2﹣12x+4;(3)4x2﹣9y2(4)3x3﹣12x2y+12xy2.30.因式分解:(1)5mx2﹣10mxy+5my2(2)x2(a﹣1)+y2(1﹣a)答案解析部分一、单选题1.【答案】B【解析】【解答】解:﹣6x3y2﹣3x2y+12x2y2=﹣3x2y(2xy+1﹣4y)故选:B.【分析】根据公因式的确定方法:①系数取最大公约数,②字母取公共的字母③指数取最小的,可得到答案;2.【答案】D【解析】【分析】能用平方差公式分解因式的式子特点是:两项平方项,符号相反.【解答】A、a2+(-b)2符号相同,不能用平方差公式分解因式,故错误;B、5m2-20mn两项不都是平方项,不能用平方差公式分解因式,故错误;C、-x2-y2符号相同,不能用平方差公式分解因式,故错误;D、-x2+9能用平方差公式分解因式,故正确.故选D.【点评】本题考查用平方差公式分解因式的式子特点,两平方项的符号相反.3.【答案】D【解析】【解答】解:6x3y2﹣3x2y2+12x2y3的公因式为3x2y2.故选:D.【分析】分别找出系数的最大公约数,相同字母的最低指数次幂,然后即可找出公因式.4.【答案】A【解析】【分析】利用十字相乘法将2x2+5x-3分解为(2x-1)(x+3),即可得出符合要求的答案.【解答】∵2x2+5x-3=(2x-1)(x+3),2x-1与x+3是多项式的因式,故选:A.【点评】此题主要考查了因式分解的应用,正确的将多项式因式分解是解决问题的关键.5.【答案】C【解析】【解答】解:A. 的右边不是积的形式,不是因式分解;故选项错误;B. 是多项式乘法,不是因式分解;故选项错误;C. 运用平方差公式因式分解,故选项正确;D. 不是把多项式化成整式积的形式,故选项错误.故选C.6.【答案】A【解析】【解答】解:计算962×95+962×5的值,最简单的方法先提取公因式962,即962×95+962×5=962×(95+5)=962×100=96200,故答案为:A.【分析】通过观察式子,两个加数项中分别存在一个962,所以采取的简便方法为提取公因式法,将962提出公因式,进行接下来的计算即可。
中考数学《因式分解》专题训练(附带答案)一、单选题1.下列分解因式中,完全正确的是()A.x3-x=x(x2-1)B.4a2-4a+1=4a(a-1)+1C.x2+y2=(x+y)2D.6a-9-a2=-(a-3)22.下列等式正确的是()A.(a﹣b)2=a2﹣b2B.9a2﹣b2+6ab=(3a﹣b)2C.3a2+2ab﹣b2=(3a﹣b)(a+b)D.3.把多项式x2+3x−54分解因式,其结果是()A. (x+6 ) (x−9 )B. (x−6 ) (x+9 )C. (x+6 ) (x+9 )D. (x−6 ) (x−9 )4.下列多项式中,不能用公式法因式分解的是()A.x2+xy B.x2+2xy+y2C.﹣x2+y2D.14x2﹣xy+y25.下列各式的变形中,属于因式分解的是( )A.(x+1)(x−3)=x2−2x−3B.x2−y2=(x+y)(x−y)C.x2−xy−1=x(x−y)D.x2−2x+2=(x−1)2+16.边长为a,b的长方形,它的周长为14,面积为10,则a2b+ab2的值为( ) A.35B.70C.140D.2807.把x2﹣4x+c分解因式得:x2﹣4x+c=(x﹣1)(x﹣3),则c的值为()A.3B.4C.﹣3D.﹣48.下列由左边到右边的变形,属于分解因式的变形是()A.ab+ac+d=a(b+c)+d B.a2﹣1=(a+1)(a﹣1)C.12ab2c=3ab•4bc D.(a+1)(a﹣1)=a2﹣19.下列各式中,从左边到右边的变形是因式分解的是()A.(x+2y)(x﹣2y)=x2﹣4y2B.x2y﹣xy2﹣1=xy(x﹣y)﹣1C.a2﹣4ab+4b2=(a﹣2b)2D.ax+ay+a=a(x+y)10.下列因式分解错误的是()A.x2+xy=x(x+y)B.x2−y2=(x+y)(x−y)C.x2+6x+9=(x+3)2D.x2+y2=(x+y)211.把代数式ax2-4ax+4a因式分解,下列结果中正确的是()A.a(x-2)2B.a(x+2)2C.a(x-4)2D.a(x+2)(x-2)12.下列因式分解正确的是( )A .x 2+9=(x+3)2B .a 2+2a+4=(a+2)2C .a 3-4a 2=a 2(a-4)D .1-4x 2=(1+4x )(1-4x )二、填空题13.分解因式:x 2﹣3x ﹣4= ;(a+1)(a ﹣1)﹣(a+1)= . 14.因式分解:x 2−8x −9= .15.把多项式a 3-4a 分解因式的结果是 。
初中数学竞赛辅导资料因式分解甲内容提要和例题我们学过因式分解的四种基本方法:提公因式法,运用公式法,十字相乘法,分组分解法。
下面再介紹两种方法1.添项拆项。
是.为了分组后,能运用公式(包括配方)或提公因式例1因式分解:①x4+x2+1②a3+b3+c3-3abc①分析:x4+1若添上2x2可配成完全平方公式解:x4+x2+1=x4+2x2+1-x2=(x2+1)2-x2=(x2+1+x)(x2+1-x)②分析:a3+b3要配成(a+b)3应添上两项3a2b+3ab2解:a3+b3+c3-3abc=a3+3a2b+3ab2+b3+c3-3abc-3a2b-3ab2=(a+b)3+c3-3ab(a+b+c)=(a+b+c)[(a+b)2-(a+b)c+c2]-3 ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-ac-bc)例2因式分解:①x3-11x+20②a5+a+1①分析:把中项-11x拆成-16x+5x 分别与x5,20组成两组,则有公因式可提。
(注意这里16是完全平方数)②解:x3-11x+20=x3-16x+5x+20=x(x2-16)+5(x+4)=x(x+4)(x-4)+5(x+4) =(x+4)(x2-4x+5)③分析:添上-a2和a2两项,分别与a5和a+1组成两组,正好可以用立方差公式解:a5+a+1=a5-a2+a2+a+1=a2(a3-1)+ a2+a+1=a2(a-1)( a2+a+1)+ a2+a+1= (a2+a+1)(a3-a2+1)2.运用因式定理和待定系数法定理:⑴若x=a时,f(x)=0, [即f(a)=0],则多项式f(x)有一次因式x-a⑵若两个多项式相等,则它们同类项的系数相等。
例3因式分解:①x 3-5x 2+9x -6 ②2x 3-13x 2+3①分析:以x=±1,±2,±3,±6(常数6的约数)分别代入原式,若值为0,则可找到一次因式,然后用除法或待定系数法,求另一个因式。
中考数学总复习《因式分解-十字相乘法》专项提升训练(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列因式分解结果正确的是( ) A .32(1)x x x x -=-B .229(9)(9)x y x y x y -=+-C .232(3)2x x x x -+=-+D .()()22331x x x x --=-+2.分式 212x x x ---有意义, 则( ) A .2x ≠ B .1x ≠- C .2x ≠或1x ≠- D .2x ≠且1x ≠- 3.下列多项式中是多项式243x x -+的因式的是( )A .1x -B .xC .2x +D .3x +4.已知甲、乙、丙均为x 的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘的积为29x -,乙与丙相乘的积为26x x +-,则甲与丙相减的结果是( )A .5-B .5C .1D .1-5.将下列各式分解因式,结果不含因式()2x +的是( )A .22x x +B .24x -C .()()21211x x ++++D .3234x x x -+ 6.甲、乙两位同学在对多项式2x bx c ++分解因式时甲看错了b 的值,分解的结果是()()45x x -+,乙看错了c 的值,分解的结果是()()34x x +-,那么2x bx c ++分解因式正确的结果为( )A .()()54x x --B .()()45x x +-C .()()45x x -+D .()()45x x ++ 7.如果多项式432237x x ax x b -+++能被22x x +-整除,那么:a b 的值是( )A . 2-B . 3-C .3D .6 8.若分解因式()()2153x mx x x n +-=--则m 的值为( )A .5-B .5C .2-D .2二、填空题9.因式分解26a a +-的结果是 .三、解答题21424x x -+ 解:24(2)(12)=-⨯- (2)(12)14-+-=-21424(2)(12)x x x x ∴-+=-- 解:原式222277724x x =-⋅⋅+-+2(7)4924x =--+2(7)25x =-- (75)(75)x x =-+--(2)(12)x x =-- (1)按照材料一提供的方法分解因式:22075x x -+;(2)按照材料二提供的方法分解因式:21228x x +-.20.利用整式的乘法运算法则推导得出:()()()2ax b cx d acx ad bc x bd ++=+++.我们知道因式分解是与整式乘法方向相反的变形,利用这种关系可得()()()2acx ad bc x bd ax b cx d +++=++.通过观察可把()2acx ad bc x bd +++看作以x 为未知数,a 、b 、c 、d 为常数的二次三项式,此种因式分解是把二次三项式的二项式系数ac 与常数项bd 分别进行适当的分解来凑一次项的系数,分解过程可形象地表述为“竖乘得首、尾,叉乘凑中项”,如图1,这种分解的方法称为十字相乘法.例如,将二次三项式221112x x ++的二项式系数2与常数项12分别进行适当的分解,如图2,则()()221112423x x x x ++=++.根据阅读材料解决下列问题:(1)用十字相乘法分解因式:2627x x +-;(2)用十字相乘法分解因式:2673x x --;(3)结合本题知识,分解因式:220()7()6x y x y +++-.参考答案: 1.D【分析】本题考查了因式分解;根据因式分解-十字相乘法,提公因式法与公式法的综合运用,进行分解逐一判断即可. 【详解】解:A 、()()32(1)11x x x x x x x -=-=+-故本选项不符合题意;B 、229(3)(3)x y x y x y -=+-故本选项不符合题意;C 、()()23221x x x x -+=--故本选项不符合题意;D 、223(3)1)x x x x --=-+(故本选项符合题意; 故选:D .2.D【分析】本题考查的是分式有意义的条件,利用十字乘法分解因式,根据分式有意义的条件:分母不为零可得 ²20x x --≠,再解即可. 【详解】解:由题意得: ²20x x --≠ 210x x解得: 2x ≠且1x ≠-故选: D .3.A【分析】本题考查的是利用十字乘法分解因式,掌握十字乘法是解本题的关键.【详解】解:()()24313x x x x -+=--;∴1x -是多项式243x x -+的因式;故选A4.D【分析】此题考查了十字相乘法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.把题中的积分解因式后,确定出各自的整式,相减即可.【详解】解:∴甲与乙相乘的积为29(3)(3)x x x -=+-,乙与丙相乘的积为()262(3)x x x x +-=-+,甲、乙、丙均为x 的一次多项式,且其一次项的系数皆为正整数 ∴甲为3x -,乙为3x +,丙为2x则甲与丙相减的差为:()(3)21x x ---=-;故选:D5.D【分析】本题主要考查了分解因式,正确把每个选项中的式子分解因式即可得到答案.【详解】解:A 、()222x x x x +=+故此选项不符合题意;B 、()()2422x x x -=+-故此选项不符合题意;C 、()()()()2221211112x x x x ++++=++=+故此选项不符合题意;D 、()()323441x x x x x x =+-+-故此选项符合题意; 故选:D .6.B【分析】本题主要考查了多项式乘以多项式以及因式分解,根据甲分解的结果求出c ,根据乙分解的结果求出b ,然后代入利用十字相乘法分解即可.【详解】解:∴()()24520x x x x -+=+-∴20c =-∴()()23412x x x x +-=--∴1b∴2x bx c ++220x x =--()()45x x =+-故选:B .7.A【分析】由于()()2221+-=+-x x x x ,而多项式432237x x ax x b -+++能被22x x +-整除,则432237x x ax x b -+++能被()()21x x +-整除.运用待定系数法,可设商是A ,则()()43223721x x ax x b A x x -+++=+-,则2x =-和1x =时4322370x x ax x b -+++=,分别代入,得到关于a 、b 的二元一次方程组,解此方程组,求出a 、b 的值,进而得到:a b 的值.【详解】解:∴()()2221+-=+-x x x x∴432237x x ax x b -+++能被()()21x x +-整除设商是A .则()()43223721x x ax x b A x x -+++=+-则2x =-和1x =时右边都等于0,所以左边也等于0.当2x =-时43223732244144420x x ax x b a b a b -+++=++-+=++= ∴当1x =时43223723760x x ax x b a b a b -+++=-+++=++= ∴-①②,得3360a +=∴12a =-∴66b a =--=.∴:12:62a b =-=-故选:A .【点睛】本题主要考查了待定系数法在因式分解中的应用.在因式分解时一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.本题关键是能够通过分析得出2x =-和1x =时原多项式的值均为0,从而求出a 、b 的值.本题属于竞赛题型,有一定难度.8.D【分析】已知等式右边利用多项式乘以多项式法则计算,再利用多项式相等的条件求出m 的值即可.【详解】解:已知等式整理得:()()()2215333x mx x x n x n x n +-=--=+--+可得3m n =-- 315n =-解得:2m = 5n =-故答案为:D .【点睛】此题考查了因式分解-十字相乘法,熟练掌握运算法则是解本题的关键. 9.(3)(2)a a +-【分析】解:本题考查了公式法进行因式分解,掌握2()()()x p q x pq x p x q +++=++进行因式分解是解题的关键.【详解】26(3)(2)a a a a +-=+-故答案为:(3)(2)a a +-.10.(2)(3)y y y --【分析】本题考查提公因式法,十字相乘法,掌握提公因式法以及2()()()x p q x pq x p x q +++=++是正确解答的关键.先提公因式y ,再利用十字相乘法进行因式分解即可.【详解】解:原式2(56)y y y =-+(2)(3)y y y =--.故答案为:(2)(3)y y y --.11.()()21a a a --/()()12a a a --【分析】先去括号合并后,直接提取公因式a ,再利用十字相乘法分解因式即可.本题考查了用提公因式法和十字相乘法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止【详解】解:2(3)2a a a -+3232a a a -+=()232a a a =-+(2)(1)a a a =--.故答案为:(2)(1)a a a --.12.1±或5±【分析】此题考查因式分解—十字相乘法,解题关键在于理解()()()2x a b x ab x a x b +++=++.把6-分成3和2-,3-和2,6和1-,6-和1,进而得到答案.【详解】解:当()()2632x mx x x +-=+-时()321m =+-=当()()2632x mx x x +-=-+时321m =-+=-当()()2661x mx x x +-=-+时615m =-+=-当()()2661x mx x x +-=+-时615m =-=综上所述:m 的取值是1±或5±故答案为:1±或5±.13.6±【分析】本题考查十字相乘法进行因式分解,根据5可以分成15⨯或()()15-⨯-即可求解.【详解】解:155⨯= ()()155-⨯-=()()21565x x x x ++=++ ()()26515x x x x =---+∴如果关于x 的二次三项式25x kx ++可以用十字相乘法进行因式分解,那么整数k 等于6±. 故答案为:6±.14.()()21x x +-【分析】本题主要考查了根与系数的关系、十字相乘法因式分解的知识点,先根据根与系数的关系确定b 、c 的值,然后再运用十字相乘法因式分解即可.【详解】解:∴关于x 的一元二次方程20x bx c ++=的两个实数根分别为1和2- 根据根与系数的关系可得:()12b -=+- ()12c =⨯-∴1b = 2c =-∴()()22221x bx c x x x x ++=+-=+-故答案为:()()21x x +-.15.()()211x x --【分析】本题考查了一元二次方程的解及因式分解,将1x =代入原方程,求出m 的值,然后再进行因式分解是解决问题的关键.【详解】解:∴关于x 的一元二次方程2210x mx ++=有一个根是1∴把1x =代入,得210m ++=解得:3m =-.则()()2221231211x mx x x x x ++=-+=--故答案为:()()211x x --.16.()()23x x +-【分析】根据一元二次方程的根与系数的关系求出p q ,,再进行因式分解即可.【详解】解:∴方程20x px q ++=的两个根分别是2和3-∴23p -=- ()23q ⨯-=∴1,6p q ==-∴()()2623x x x x --=+-;故答案为()()23x x +-.【点睛】本题主要考查一元二次方程根与系数的关系,因式分解,熟练掌握一元二次方程根与系数的关系是解题的关键.17.(1)()()322x x x +-(2)()23y x y --(3)()()26x x +-【分析】本题考查因式分解的知识,解题的关键是掌握因式分解的方法:提公因式法,公式法和十字相乘法,即可.(1)先提公因式3x ,然后根据()()22a b a b a b -=+-,即可; (2)先提公因式y -,再根据()2222a b a ab b ±=±+,即可;(3)根据十字相乘法,进行因式分解,即可.【详解】(1)3312x x -()234x x =- ()()322x x x =+-;(2)22369xy x y y --()2269y xy x y =--++()2296y x xy y =--+ ()23y x y =--; (3)2412x x --()()26x x =+-.18.3a b += 2ab =.【详解】解:因为()()()2x a x b x a b x ab ++=+++,且232x x ++因式分解的结果是()()x a x b ++所以3a b += 2ab =.19.(1)(5)(15)x x --(2)(14)(2)x x +-【分析】本题考查了因式分解,解答本题的关键是理解题意,明确题目中的分解方法. (1)仿照题目中的例子进行分解即可得出答案;(2)仿照题目中的例子进行分解即可得出答案.【详解】(1)解:75(5)(15)=-⨯- (5)(15)20-+-=-22075(5)(15)x x x x ∴-+=--;(2)解:原式222266628x x =+⋅⋅+--2(6)3628x =+--2(6)64x =+-(68)(68)x x =+++-(14)(2)x x =+-.20.(1)()()39x x -+(2)()()2331x x -+(3)()()443552x y x y +++-【分析】本题主要考查多项式乘多项式,因式分解,解答的关键是对相应的知识的掌握与运用.(1)利用十字相乘法进行求解即可;(2)利用十字相乘法进行求解即可;(3)先分组,再利用十字相乘法进行求解即可.【详解】(1)解:2627x x +-第 11 页 共 11 页 ()()39x x =-+;(2)解:2673x x -- ()()2331x x =-+;(3)解:220()7()6x y x y +++- ()()4352x y x y ⎡⎤⎡⎤=+++-⎣⎦⎣⎦ ()()443552x y x y =+++-.。
因式分解专项复习☞解读考点 知 识 点 名师点晴因式分解的概念就是把一个多项式化为几个整式的乘积的形式.因式分解与整式乘法是互逆运算.因式分解是将一个多项式化成几个整式积的形式的恒等变形,若结果不是积的形式,则不是因式分解,还要注意分解要彻底.因式分解的方法1.提取公因式法:ma +mb -mc=m (a+b-c ) 确定好公因式是解题的关键2.公式法:(1)平方差公式:a2-b2=(a+b )(a-b ); (2)完全平方公式:a2±2ab +b2=(a ±b )2.要熟记公式的特点,两项式时考虑平方差公式,三项式进考虑完全平方公式化.3.十字相乘法:x2+(p+q )x+pq=(x+p )(x+q )这个是课后的内容,不做硬性的要求,熟练运用在高中学习就会轻松许多.一定要熟记公式的特点.因式分解的步骤一“提”(取公因式),二“用”(公式). 一“提”(取公因式),二“用”(公式). 要分解到不能在分解为止.☞2年中考 【2015年题组】1.(2015北海)下列因式分解正确的是( )A .24(4)(4)x x x -=+-B .221(2)1x x x x ++=++C .363(6)mx my m x y -=-D .242(2)x x +=+ 【答案】D .考点:1.因式分解-运用公式法;2.因式分解-提公因式法.2.(2015贺州)把多项式22344x y xy x --分解因式的结果是( )A .34()xy x y x --B .2(2)x x y --C .22(44)x xy y x --D .22(44)x xy y x --++ 【答案】B . 【解析】试题分析:原式=22(44)x x xy y --+=2(2)x x y --,故选B .考点:提公因式法与公式法的综合运用.3.(2015宜宾)把代数式3231212x x x -+分解因式,结果正确的是( )A .23(44)x x x -+B .23(4)x x -C .3(2)(2)x x x +-D .23(2)x x -【答案】D . 【解析】试题分析:原式=23(44)x x x -+=23(2)x x -,故选D .考点:提公因式法与公式法的综合运用. 4.(2015毕节)下列因式分解正确的是( ) A .4322269(69)a b a b a b a b a a -+=-+ B .2211()42x x x -+=-C .2224(2)x x x -+=-D .224(4)(4)x y x y x y -=+- 【答案】B . 【解析】试题分析:A .4322269(69)a b a b a b a b a a -+=-+=22(3)a b a -,错误;B .2211()42x x x -+=-,正确;C .224x x -+不能分解,错误;D .224(2)(2)x y x y x y -=+-,错误; 故选B .考点:1.因式分解-运用公式法;2.因式分解-提公因式法.5.(2015临沂)多项式2mx m -与多项式221x x -+的公因式是( ) A .1x - B .1x + C .21x - D .()21x -【答案】A .考点:公因式.6.(2015枣庄)如图,边长为a ,b 的矩形的周长为14,面积为10,则22a b ab +的值为( )A .140B .70C .35D .24 【答案】B . 【解析】试题分析:根据题意得:a+b=14÷2=7,ab=10,∴22a b ab +=ab (a+b )=10×7=70;故选B .考点:因式分解的应用.7.(2015烟台)下列等式不一定成立的是( )A .(0)a a b b b =≠B .3521a a a -•= C .224(2)(2)a b a b a b -=+- D .326(2)4a a -=【答案】A .考点:1.二次根式的乘除法;2.幂的乘方与积的乘方;3.因式分解-运用公式法;4.负整数指数幂.8.(2015杭州)下列各式的变形中,正确的是( )A .22()()x y x y x y ---+=- B .11xx xx --= C .2243(2)1x x x -+=-+ D .21()1x x x x ÷+=+【答案】A . 【解析】试题分析:A .22()()x y x y x y ---+=-,正确;B .211x x xx --=,错误; C .2243(2)1x x x -+=--,错误; D .21()1x x x x ÷+=+,错误;故选A .考点:1.平方差公式;2.整式的除法;3.因式分解-十字相乘法等;4.分式的加减法. 9.(2015南京)分解因式()(4)a b a b ab --+的结果是 .【答案】2(2)a b -.【解析】试题分析:()(4)a b a b ab --+=2254a ab b ab -++=2244a ab b -+=2(2)a b -.故答案为:2(2)a b -.考点:因式分解-运用公式法.10.(2015巴中)分解因式:2242a a -+= .【答案】22(1)a -.【解析】试题分析:原式=22(21)a a -+=22(1)a -.故答案为:22(1)a -.考点:提公因式法与公式法的综合运用.11.(2015绵阳)在实数范围内因式分解:23x y y -= .【答案】)3)(3(-+x x y . 【解析】试题分析:原式=2(3)y x -=)3)(3(-+x x y ,故答案为:)3)(3(-+x x y . 考点:实数范围内分解因式.12.(2015内江)已知实数a ,b 满足:211a a +=,211b b +=,则2015a b-|= .【答案】1.考点:1.因式分解的应用;2.零指数幂;3.条件求值;4.综合题;5.压轴题.13.(2015北京市)分解因式:325105x x x -+= .【答案】25(1)x x -.【解析】试题分析:原式=25(21)x x x -+=25(1)x x -.故答案为:25(1)x x -.考点:提公因式法与公式法的综合运用.14.(2015甘南州)已知210a a --=,则322015a a a --+= .【答案】2015. 【解析】 试题分析:∵210a a --=,∴21a a -=,∴322015a a a --+=2()+2015a a a a --=2015a a -+=2015,故答案为:2015.考点:1.因式分解的应用;2.条件求值;3.代数式求值;4.综合题.15.(2015株洲)因式分解:2(2)16(2)x x x ---= .【答案】(2)(4)(4)x x x -+-. 【解析】试题分析:原式=2(2)(16)x x --=(2)(4)(4)x x x -+-.故答案为:(2)(4)(4)x x x -+-.考点:提公因式法与公式法的综合运用.16.(2015东营)分解因式:2412()9()x y x y +-+-= . 【答案】2(332)x y -+.考点:因式分解-运用公式法.17.(2015菏泽)若2(3)()x x m x x n ++=-+对x 恒成立,则n= .【答案】4. 【解析】试题分析:∵2(3)()x x m x x n ++=-+,∴22(3)3x x m x n x n ++=+--,故31n -=,解得:n=4.故答案为:4.考点:因式分解-十字相乘法等.18.(2015重庆市)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再加22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字x (1≤x ≤4,x 为自然数),十位上的数字为y ,求y 与x 的函数关系式.【答案】(1)四位“和谐数”:1221,1331,1111,6666…(答案不唯一),能;(2)y=2x (1≤x ≤4,x 为自然数).考点:1.因式分解的应用;2.规律型:数字的变化类;3.新定义.【2014年题组】1.(2014年常德中考)下面分解因式正确的是()A.x2+2x+1=x(x+2)+1 B. (x2﹣4)x=x3﹣4xC. ax+bx=(a+b)xD. m2﹣2mn+n2=(m+n)2【答案】C.【解析】试题分析:A、x2+2x+1=x(x+2)+1,不是因式分解,故错误;B、(x2﹣4)x=x3﹣4x,不是因式分解,故错误;C、ax+bx=(a+b)x,是因式分解,故正确;D、m2﹣2mn+n2=(m﹣n)2,故错误.故选C.考点:1.因式分解-运用公式法;2.因式分解-提公因式法.2.(2014年海南中考)下列式子从左到右变形是因式分解的是()A.()2a4a21a a421+-=+- B.()()2a4a21a3a7+-=-+C.()()2a3a7a4a21-+=+- D.()22a4a21a225+-=+-【答案】B.考点:因式分解的意义.3.(2014年无锡中考)分解因式:x3﹣4x= .【答案】()() x x2x2+-.【解析】试题分析:()()() 32x4x x x4x x2x2 -=-=+-.考点:提公因式法和应用公式法因式分解.4.(2014年株洲中考)分解因式:x2+3x(x﹣3)﹣9=【答案】(x﹣3)(4x+3).【解析】试题分析: x2+3x(x﹣3)﹣9=x2﹣9+3x(x﹣3)=(x﹣3)(x+3)+3x(x﹣3)=(x﹣3)(x+3+3x)=(x﹣3)(4x+3).考点:因式分解.5.(2014年徐州中考)若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于.【答案】﹣2.【解析】试题分析:∵ab=2,a﹣b=﹣1,∴a2b﹣ab2=ab(a﹣b)=2×(﹣1)=﹣2.考点:1.求代数式的值;2.提公因式法因式分解;3.整体思想的应用.6.(2014年眉山中考)分解因式:225xy x-=__________________.【答案】x(y+5)(y﹣5).【解析】试题分析:原式=x(y2﹣25)=x(y+5)(y﹣5).考点:提公因式法与公式法的综合运用.7.(2014年绍兴中考)分解因式:2a a- = .【答案】() a a1-.【解析】试题分析:() 2a a a a1-=-.考点:提公因式法因式分解.8.(2014年台州中考)因式分解3a 4a -的结果是 .【答案】()()a a 2a 2+-.考点:提公因式法和应用公式法因式分解.9.(2014年泸州中考)分解因式:23a 6a 3++= .【答案】()23a 1+.【解析】 试题分析:()()2223a 6a 33a 2a 13a 1++=++=+.考点:提公因式法和应用公式法因式分解.10.(2014年北海中考)因式分解:x2y ﹣2xy2= . 【答案】()xy x 2y -.【解析】 试题分析:()22x y 2xy xy x 2y -=-.考点:提公因式法因式分解. ☞考点归纳归纳 1:因式分解的有关概念 基础知识归纳:因式分解:把一个多项式化成几个整式的积的形式,叫做因式分解,因式分解与整式乘法是互逆运算. 注意问题归纳:符合因式分解的等式左边是多项式,右边是整式积的形式. 2.因式分解与整式乘法是互逆运算.【例1】下列式子从左到右变形是因式分解的是( )()2a 4a 21a a 421+-=+- B .()()2a 4a 21a 3a 7+-=-+ C .()()2a 3a 7a 4a 21-+=+- D .()22a 4a 21a 225+-=+-【答案】B .考点:因式分解的有关概念.归纳 2:提取公因式法分解因式基础知识归纳:将多项式各项中的公因式提出来这个方法是提公因式法,公因式系数是各项系数的最大公约数,相同字母取最低次幂.提取公因式法:ma+mb-mc=m(a+b-c)注意问题归纳:提公因式要注意系数;要注意查找相同字母,要提净.【例2】若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于.【答案】﹣2.考点:因式分解-提公因式法.【例3】因式分解:2a3ab+=.【答案】() a a3+.【解析】() 2a3ab a a3+=+.考点:因式分解-提公因式法.归纳 3:运用公式法分解因式基础知识归纳:运用平方差公式:a2-b2=(a+b)(a-b);运用完全平方公式:a2±2ab+b2=(a±b)2.注意问题归纳:首先要看是否有公因式,有公因式必须要先提公因式,然后才能运用公式,注意公式的特点,要选项择合适的方法进行因式分解.【例4】3x2y-27y= ;【答案】3y(x+3)(x-3).【解析】原式=3y(x2-9)=3y(x+3)(x-3).考点:提公因式法与公式法的综合运用.【例5】将多项式m2n-2mn+n因式分解的结果是.【答案】n(m-1)2.【解析】m2n-2mn+n,=n(m2-2m+1),=n(m-1)2.考点:提公因式法与公式法的综合运用.归纳 4:综合运用多种方法分解因式基础知识归纳:因式分解的步骤为:一提公因式;二看公式.公式包括平方差公式与完全平方公式,要能用公式法分解必须有平方项,如果是平方差就用平方差公式来分解,如果是平方和需要看还有没有两数乘积的2倍,如果没有两数乘积的2倍还不能分解.解答这类题时一些学生往往因分解因式的步骤、方法掌握不熟练,对一些乘法公式的特点记不准确而误选其它选项.注意问题归纳:可以提取公因式的要先提取公因式,注意一定要分解彻底.【例6】分解因式:x2+3x(x﹣3)﹣9=【答案】(x﹣3)(4x+3).考点:因式分解-分组分解法.【例】7分解因式:x3-5x2+6x=【答案】x(x-3)(x-2).【解析】x3-5x2+6x=x(x2-5x+6)=x(x-3)(x-2).考点:因式分解-十字相乘法.☞1年模拟1.(2015届四川省成都市外国语学校中考直升模拟)若多项式x4+mx3+nx-16含有因式(x-2)和(x-1),则mn的值是()A.100 B.0 C.-100 D.50【答案】C.【解析】试题分析:设x4+mx3+nx-16=(x-1)(x-2)(x2+ax+b),则x4+mx3+nx-16=x4+(a-3)x3+(b-3a+2)x2+(2a-3b)x+2b.比较系数得:a-3=m,b-3a+2=0,2a-3b=n,2b=-16,解得:a=-2,b=-8,m=-5,n=20,所以mn=-5×20=-100.故选C.考点:因式分解的意义.2.(2015届广东省佛山市初中毕业班综合测试)因式分解2x2-8的结果是()A.(2x+4)(x-4) B.(x+2)(x-2)C.2 (x+2)(x-2) D.2(x+4)(x-4)【答案】C .【解析】试题分析:2x2-8=2(x2-4)2(x+2)(x-2).故选C .考点:提公因式法与公式法的综合运用.3.(2015届河北省中考模拟二)现有一列式子:①552-452;②5552-4452;③55552-44452…则第⑧个式子的计算结果用科学记数法可表示为( )A .1.1111111×1016B .1.1111111×1027C .1.111111×1056D .1.1111111×1017【答案】D .考点:1.因式分解-运用公式法;2.科学记数法—表示较大的数.4.(2014-2015学年山东省潍坊市诸城市实验中学中考三模)分解因式:2x2﹣12x+32= .【答案】2(x ﹣8)(x+2).【解析】试题分析:原式提取2,再利用十字相乘法分解,原式=2(x2﹣6x+16)=2(x ﹣8)(x+2).故答案为:2(x ﹣8)(x+2).考点:提公因式法与公式法的综合运用.5.(2015届北京市平谷区中考二模)把a ﹣4ab2分解因式的结果是 .【答案】a (1+2b )(1﹣2b ).【解析】试题分析:先提取公因式,再利用平方差公式法,进而分解因式得出即可.考点:提公因式法与公式法的综合运用.6.(2015届北京市门头沟区中考二模)分解因式:29ax a -= .【答案】(3)(3)a x x -+.【解析】试题分析:29ax a - =2(9)a x -=(3)(3)a x x -+.故答案为:(3)(3)a x x -+. 考点:提公因式法与公式法的综合运用.7.(2015届四川省成都市外国语学校中考直升模拟)若a2-3a+1=0,则3a3-8a2+a+231a += .【答案】2.考点:1.因式分解的应用;2.条件求值.8.(2015届安徽省安庆市中考二模)因式分解:﹣3x2+3x ﹣= .【答案】﹣3(x ﹣21)2.【解析】试题分析:原式=﹣3(x2﹣x+41)=﹣3(x ﹣21)2.故答案为:﹣3(x ﹣21)2. 考点:提公因式法与公式法的综合运用.9.(2015届山东省威海市乳山市中考一模)分解因式:a3b-2a2b2+ab3= .【答案】ab (a-b )2.【解析】试题解析:a3b-2a2b2+ab3=ab (a2-2ab+b2)=ab (a-b )2.故答案为:ab (a-b )2. 考点:提公因式法与公式法的综合运用.10.(2015届山东省济南市平阴县中考二模)分解因式:3ax2-3ay2= .【答案】3a (x+y )(x-y ).【解析】试题分析:3ax2-3ay2=3a (x2-y2)=3a (x+y )(x-y ).故答案为:3a (x+y )(x-y ). 考点:提公因式法与公式法的综合运用.11.(2015届山东省聊城市中考模拟)因式分解:4a3-12a2+9a= .【答案】a (2a-3)2.【解析】试题分析:4a3-12a2+9a=a (4a2-12a+9)=a (2a-3)2.故答案为:a (2a-3)2. 考点:提公因式法与公式法的综合运用.12.(2015届山东省潍坊市昌乐县中考一模)把3x3-6x2y+3xy2分解因式的结果是 .【答案】3x (x-y )2.13.(2015届广东省广州市中考模拟)分解因式:x2+xy= .【答案】x(x+y).【解析】试题分析:x2+xy=x(x+y).故答案为:x(x+y).考点:因式分解-提公因式法.14.(2015届广东省深圳市龙华新区中考二模)因式分解:2a3-8a= .【答案】2a(a+2)(a-2).【解析】试题分析:2a3-8a=2a(a2-4)=2a(a+2)(a-2).故答案为:2a(a+2)(a-2).考点:提公因式法与公式法的综合运用.15.(2015届江苏省南京市建邺区中考一模)若a-b=3,ab=2,则a2b-ab2= .【答案】6.【解析】试题分析:∵a-b=3,ab=2,∴a2b-ab2=ab(a-b)=2×3=6.故答案为:6.考点:因式分解-提公因式法.16.(2015届河北省中考模拟二)若M=(2015-1985)2,O=(2015-1985)×(2014-1986),N=(2014-1986)2,则M+N-2O的值为.【答案】4.【解析】试题分析:∵M=(2015-1985)2,O=(2015-1985)×(2014-1986),N=(2014-1986)2,∴M+N-2O=(2015-1985)2-2(2015-1985)×(2014-1986)+(2014-1986)2=[(2015-1985)-(2014-1986)]2=4.故答案为:4.考点:因式分解-运用公式法.17.(2015届浙江省宁波市江东区4月中考模拟)分解因式:a3﹣9a= .【答案】a(a+3)(a﹣3).考点:提公因式法与公式法的综合运用.18.(2015届湖北省黄石市6月中考模拟)分解因式:xy2﹣2xy+x=__________.【答案】x(y-1)2.【解析】试题分析:先提公因式x,再对剩余项利用完全平方公式分解因式.即xy2-2xy+x=x(y2-2y+1)=x(y-1)2.故答案为:x(y-1)2.19.(2015届浙江省宁波市江东区4月中考模拟)如图1是一种包装盒的表面展开图,将它围起来可得到一个几何体的模型.(1)这个几何体模型的名称是.(2)如图2是根据a,b,h的取值画出的几何体的主视图和俯视图(图中实线表示的长方形),请在网格中画出该几何体的左视图.(3)若h=a+b,且a,b满足14a2+b2﹣a﹣6b+10=0,求该几何体的表面积.【答案】(1)长方体或底面为长方形的直棱柱;(2)图形略;(3)62.考点:1.因式分解的应用;2.由三视图判断几何体;3.作图-三视图.。
2024届初中数学重难点题型专项(因式分解)练习题型一:因式分解的概念因式分解的概念(1)定义:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.(2)原则:①分解必须要彻底(即分解之后因式均不能再做分解);②结果最后只留下小括号③结果的多项式首项为正。
1.下列各式由左边到右边的变形中,正确因式分解的是( )A .232(3)2a a a a -+=-+B .2(1)a x a a ax -=-C .()22393x x x ++=+D .()()2141414a a a -=+-2.下列因式分解中,正确的是( )A .()211x x x +=+B .()()2222x x x -=+-C .()22693x x x -+=-D .()()21644x x x x x +-=+-+3.下列四个式子从左到右的变形是因式分解的为( )A .()()22x y x y y x --=--B .23231226a b a b ⋅=C .()()()442281933x y x y x y x y -++-=D .()()()()222222*********a a a a a a a a +-++++-+=题型二:提公因式法提公因式法的定义(1)定义:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.(2)理论依据:乘法分配律的逆运算)(c b a ac ab +=+.4.已知a −b =3,ab =2,则22a b ab -的值为____________.5.分解因式:x (x -3)-x +3=_______________________.6.因式分解:()()26a x y b y x ---=________.题型三:用平方差公式分解因式公式法(1)公式法的定义:逆用乘法公式将一个多项式分解因式的方法叫做公式法.(2)方法归纳:①平分差公式))((22b a b a b a -+=-;②完全平方公式222)(2b a b ab a ±=+±.7.下列多项式中,既能用提取公因式又能用平方差公式进行因式分解的是( )A .22a b --B .24a -+C .34a a -D .24a a + 8.在下列各式中,能用平方差公式因式分解的是( )A .24a +B .24a -C .24a --D .22a m +9.在实数范围内分解因式:425x -=________________________________.10.分解因式:()2249a b +-=________.11.因式分解:2()25()x m n n m -+-.12.因式分解:()()2222x y x y +-+.13.因式分解(1)336m m - (2)()222224m n m n +-14.分解因式:(1)2()4()x a b b a -+- (2)22(2)(2)a b a b +--题型四:用完全平方公式分解因式15.下列各式中,能用完全平方公式分解因式的是( )A .241x -B .221x x +-C .221x x ++D .22x xy y -+16.下列各式:①22x y --;②22114a b -+;③22a ab b ++;④222x xy y -+-;⑤2214mn m n -+,能用公式法分解因式的有( )A .2个B .3个C .4个D .5个17.下列各式能用完全平方公式进行分解因式的是( )A .21x +B .221x x --C .239x x ++D .214x x -+ 18.分解因式:3222a a b ab -+=_________________.19.已知多项式29(6)4x m x -++可以按完全平方公式进行因式分解,则m =________________. 20.若多项式29x kx ++可以用完全平方公式进行因式分解,则k =_________.21.分解因式:am 2﹣2amn +an 2=_____.22.分解因式:﹣8a 3b +8a 2b 2﹣2ab 3=_____.23.分解因式:﹣x 2y +6xy ﹣9y =___.24.分解因式24(21)x x +-=________.题型五:用十字相乘法分解因式十字相乘法(一)二次项系数为1的二次三项式直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解.特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和.(二)二次项系数不为1的二次三项式——c bx ax ++2条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++25.分解因式:2-2-8a a =______.26.分解因式:x 2﹣5x ﹣6=_____.27.因式分解:2412x x --=_______.28.因式分解:2a 2‐4a ‐6=________.29.把多项式2412ab ab a --分解因式的结果是_________.30.在实数范围内分解因式:2252x x -+=________.31.分解因式:3243a a a -+=__________.32.分解因式:32514x x x --=__________.33.在实数范围内分解因式:x 4﹣2x 2﹣3=_____.题型六:分组分解法34.分解因式:2224a ab b -+-=________________.35.因式分解:22421x y y ---=__________.36.已知a 、b 、c 为ABC ∆的三边,且满足222244a c b c a b -=-,试判断ABC ∆的形状( )A .直角三角形B .等腰三角形C .直角或等腰三角形D .直角或等边三角形37.分解因式:22424x xy y x y --++= .38.已知2226100a b a b ++-+=,求ab 的值.39.已知a ,b ,c 是ABC ∆的三边,且满足222222a b c ab ac ++=+,试判断ABC ∆的形状,并说明理由.40.已知a ,b ,c 为ABC ∆的三边,若2222220a b c ac bc ++--=,判断ABC ∆的形状?41.三角形ABC 的三条边长a ,b ,c 满足222166100a b c ab bc --++=,求证:2a c b +=.参考答案题型一:因式分解的概念因式分解的概念(1)定义:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.(2)原则:①分解必须要彻底(即分解之后因式均不能再做分解);②结果最后只留下小括号③结果的多项式首项为正。
第5课因式分解
目的:了解因式分解的意义,区别因式分解与整式乘法,掌握因式分解的方法,能选择适当方法进行因式分解.
中考基础知识
1.因式分解定义:把一个多项式化成几个_______式乘积的形式.•因式分解与整式的乘法是互为________.
2.因式分解的方法
(1)提取公因式法(首先考虑的方法)、应用公式法、分组分解法、十字相乘法.(2)公式:a2-b2=_______,a2±2ab+b2=_______,a3+b3=________,a3-b3=________.(3)二次三项式ax2+bx+c在实数范围分解为:ax2+bx+c=a(x-x1)(x-x2),其中x1、x2•是方程ax2+bx+c=0的二根.
3.因式分解的一般步骤
先看有没有公因式,若有立即提出;然后看看是几项式,•若是二项式则用平方差、立方或立方差公式;若是三项式用完全平方公式或十字相乘法;若是四项及以上的式子用分组分解法,要注意分解到不能再分解为止,还要注意题目要求什么范围内分解.如x4-4=(x2+2)(x2-2)(在有理数范围内分解)
=(x2+2)((x(在实数范围内分解)
一般没有作说明,都只分解到有理数范围内.
4.因式分解是式的变形的基本功,用处很大,必须熟练掌握,分解时要快而准.
备考例题指导
例1.分解因式
(1)m2(m-n)2-4(n-m)2.
解:原式=m2(m-n)2-4(m-n)2
=(m-n)2(m2-4)
=(m-n)2(m+2)(m-2)
(2)2a(x-y)3+2a3(y-x).
解:原式=2a(x-y)[(x-y)2-a2]
=2a(x-y)(x-y+a)(x-y-a)
例2.分解因式
(1)-2x3+3x2-x.
解:原式=-x(2x2-3x+1)
=-x(2x-1)(x-1)
(2)-x n+4+x n+1.
解:原式=-x n+1(x3-1)
=-x n+1(x-1)(x2+x+1)
说明:首项为负要提出负号,提取公因式时,另一个因式中不要漏掉1.例3.在实数范围内分解因式
(1)2x4-19x2+9.
解:2x2-1
x2-9
原式=(2x2-1)(x2-9)
=))(x+3)(x-3),
(2)2x2-8x+5.
解:原式=2(x-x1)(x-x2)
=2(x(x.
例4.若3x2-4x+2m在实数范围内可分解因式,求m的取值范围.
解:△=(-4)2-4×3×2m≥0,
即m≤2
3
.
备考巩固练习
1.选择题
(1)(2005,绵阳)对x2-3x+2分解因式,结果为()
(A)x(x-3)+2 (B)(x-1)(x-2)
(C)(x-1)(x+2)(D)(x+1)(x-2)
(2)(2005,盐城)下列因式分解中,结果正确的是()
(A)x2-4=(x+2)(x-2)(B)1-(x+2)2=(x+1)(x+3)
(C)2m2n-8n3=2n(m2-4n2)(D)x2-x+1
4
=x2(1-
1
x
+
2
1
4x
)
(3)(2005,四川)把多项式ac-bc+a2-b2分解因式的结果是()(A)(a-b)(a+b+c)(B)(a-b)(a+b+c)
(C)(a+b)(a-b-c)(D)(a+b)(a-b+c)
(4)下列因式分解中,错误的是()
(A)2a3-8a2+12a=2a(a2-4a+6)(B)x3-5x-6=(x-2)(x-3)(C)-x3+3x2-x=x(2x-1)(x-1)(D)x2+xy+xz+yz=(x+y)(x+z)2.在实数范围内分解
(1)x4-11x2+18
(2)2x2+7xy-y2
3.若(x-3)是kx4+10x-192的一个因式,求k的值.
4.若3,-2是一元二次方程4x2+bx+c=0的二根,则二次三项式4x2+bx+c•可分解成什么.
5.计算:(1)(a-b;(2)(.
6.(1)解一元二次方程x2-5x+6=0.(2)分解因式kx2-(k+m)x+m.
7.要使二次三项式x2+mx-6能在整数范围内分解因式,求整数m的值.
答案:
1.(1)B (2)A (3)A (4)B
2.(1)原式=(x2-2)(x2-9)=(((x+3)(x-3)
(2)原式=2(y)(y)(不要忘了带上y)
3.令kx4+10x-192=0,则x=3是这个方程的一个根.把x=3代入得k=2 4.4x2+6x+c=4(x-3)(x+2)
5.(1)原式=
(2)原式=2
6.(1)(x-2)(x-3)=0,x1=2,x2=3
(2)∴原式=(kx-m)(x-1)(用十字相乘法)
7.∵-6可分解为:-6×1,-1×6,-2×3,-3×2
∴m=-6+1,-1+6,-2+3,-3+2
m=-5,5,1,-1.。