六年级奥数全部知识点
- 格式:docx
- 大小:37.70 KB
- 文档页数:6
六年级奥数知识点大纲一、整数和有理数1. 正整数、负整数和零的概念2. 实数的概念和表示方法3. 实数的比较和大小关系4. 整数的加减法和乘除法运算5. 有理数的概念和性质6. 有理数的运算规律和运算法则二、分数与百分数1. 分数的概念与表示方法2. 分数的简化与约分3. 分数的加减法和乘除法运算4. 分数的比较与大小关系5. 百分数的概念和应用6. 百分数的转化与运算7. 分数与百分数在生活中的应用三、图形与几何1. 点、线、面的基本概念2. 基本图形的性质和特征3. 三角形的分类和性质4. 四边形的分类和性质5. 正多边形的特征和性质6. 圆的性质和计算7. 直角、锐角和钝角的概念8. 直线、射线和线段的区别和特征四、代数与方程1. 代数式的概念和表示方法2. 一元一次方程的解法和应用3. 同类项的合并和多项式的展开4. 方程的解与方程的应用5. 数列的概念和特征6. 等差数列和等比数列的计算和应用五、函数与图像1. 函数的概念和表示方法2. 函数的定义域和值域3. 一次函数和二次函数的图像和性质4. 函数关系的建立和分析5. 函数的应用和实际问题解决六、概率与统计1. 实验和事件的概念和表示2. 事件的概率和实际意义3. 基本统计量的计算和分析4. 数据的图表表示和分析5. 问题解决中的概率和统计方法以上为六年级奥数的知识点大纲,通过学习这些知识点,同学们可以更好地掌握数学的基础概念和方法,提高解决问题的能力。
希望同学们能够认真学习,并在奥数竞赛中取得优异的成绩!。
六年级奥数知识点汇总一、数论1. 质数与合数- 定义- 质数的判定方法- 质数的性质2. 因数与倍数- 因数分解- 最大公约数和最小公倍数- 质因数分解3. 整数的性质- 奇偶性- 整数的四则运算性质- 整数的不等式二、分数1. 分数的基本概念- 真分数与假分数- 带分数与混合数2. 分数的运算- 加减乘除- 分数的通分与约分- 分数的比较3. 分数的应用- 分数在实际问题中的应用- 比例问题三、几何1. 平面几何- 点、线、面的基本性质 - 角的概念及分类- 三角形的性质- 四边形的性质- 圆的基本性质2. 立体几何- 立体图形的认识- 体积和表面积的计算 - 空间图形的投影四、代数1. 代数表达式- 字母表示数- 单项式与多项式- 代数式的加减运算2. 方程与不等式- 一元一次方程- 不等式及其解集- 方程与不等式的解法五、逻辑与推理1. 逻辑推理- 条件与结论- 逻辑运算2. 数列与序列- 等差数列- 等比数列- 数列的求和3. 证明方法- 直接证明- 反证法- 归纳法六、组合数学1. 排列与组合- 排列组合的基本概念- 排列组合的计算公式2. 概率- 概率的基本概念- 事件的概率计算3. 简单的计数问题- 加法原理- 乘法原理- 排列组合的应用请注意,以上内容是一个概要,每个部分都需要进一步扩展和详细解释,以形成一个完整的知识点汇总。
您可以根据这个框架添加更多的细节和例子,以帮助学生更好地理解和掌握这些概念。
完成后,您可以使用Word文档的样式和格式功能来增强文档的可读性和专业性。
六年级课后奥数知识点奥数,即奥林匹克数学竞赛,是一项全球性的数学竞赛活动。
它旨在提高学生的数学思维能力和解决问题的能力。
在六年级,奥数的相关知识点将为学生打下坚实的数学基础。
以下是六年级课后奥数的一些重要知识点及解题技巧。
一、分数与小数转化1. 将小数转化为分数:当小数的位数较少时,可以根据小数点后的数字位数进行相应分数转换。
例如,0.5可以转化为1/2,0.25可以转化为1/4。
2. 将分数转化为小数:将分子除以分母即可得到小数表示。
例如,3/4可以转化为0.75,2/5可以转化为0.4。
二、数的性质及运算1. 质数和合数:质数是指大于1且只能被1和自身整除的数,如2、3、5、7等。
合数是指大于1且不是质数的数,如4、6、8、9等。
2. 互质数:两个数的最大公因数为1,则它们互为互质数。
例如,8和9是互质数。
3. 奇数和偶数:能被2整除的数为偶数,不能被2整除的数为奇数。
4. 除法的应用:利用除法可以判断一个数是否能被其他数整除,以及计算商和余数。
三、平方数与平方根1. 平方数:一个数的平方,即这个数与自身相乘的结果。
如4的平方为16,5的平方为25。
2. 平方根:一个数的平方根是指与这个数相乘并得到平方的数。
如16的平方根为4,25的平方根为5。
四、倍数和约数1. 倍数:一个数如果可以被另一个数整除,那么前一个数就是后一个数的倍数。
如6是3的倍数,10是5的倍数。
2. 约数:能够整除某个数的因子称为约数。
如6的约数为1、2、3和6本身。
五、几何图形与空间1. 三角形:三边之和等于180°,分为等边三角形、等腰三角形和普通三角形。
2. 正方形与长方形:正方形是四边长度相等且内角均为90°的四边形;长方形是四边长度不等且相对的内角均为90°的四边形。
3. 立方体和长方体:立方体和长方体都是由矩形面拼接而成的空间图形,立方体的六个面积相等,长方体的相对两个面积分别相等。
第一讲循环小数与分数第二讲和差倍分问题第三讲行程问题第五讲质数与合数第六讲工程问题第七讲牛吃草问题第八讲包含与排除第九讲整数的拆分第十讲逻辑推理第十一讲通分与裂项第十二讲几何综合第十三讲植树问题第十五讲余数问题第十六讲直线面积第十七讲圆与扇形第十八讲数列与数表综合第十九讲数字迷综合第二十讲计数综合第二十一讲行程与工程第二十二讲复杂工程问题第二十三讲运用比例求解行程问题第二十四讲应用题综合第二十五讲数论综合2第二十六讲进位制问题第二十七讲取整问题第二十八讲数论综合3第二十九讲数论综合4第三十讲几何综合2第三十一讲图形变换第三十二讲勾股定理第三十三讲计数综合第三十四讲最值问题第三十五讲构造与论证1第三十六讲构造与论证2第一讲循环小数与分数循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题.1.真分数7a化为小数后,如果从小数点后第一位的数字开始连续若干个数字之和是1992,那么a 是多少?【分析与解】17=0.142857 ,27=0.285714 ,37=0.428571 ,47=0.571428 ,57=0.714285 , 67=0.857142. 因此,真分数7a化为小数后,从小数点第一位开始每连续六个数字之和都是1+4+2+8+5+7=27,又因为1992÷27=73……21,27-21=6,而6=2+4,所以7a =0..857142 ,即a =6.评注:7a的特殊性,循环节中数字不变,且顺序不变,只是开始循环的这个数有所变化.2.某学生将1.23乘以一个数a 时,把1.23 误看成1.23,使乘积比正确结果减少0.3.则正确结果该是多少?【分析与解】 由题意得:1.23 a -1.23a =0.3,即:0.003 a =0.3,所以有:3390010a =.解得a = 90,所以1.23a =1.23 × 90=123290-×90=11190× 90=111.3.计算:0.1+0.125+0.3+0.16,结果保留三位小数. 【分析与解】 方法一:0.1+0.125+0.3+0.16≈-0.1111+0.1250+0.3333+0.1666=0.7359≈0.736方法二:0.1+0.125+0.3+0.16113159899011118853720.7361=+++=+== ≈0.7364.计算:0.010.120.230.340.780.89+++++ 【分析与解】 方法一:0.010.120.230.340.780.89+++++ =1121232343787898909090909090-----+++++ =11121317181909090909090+++++ =21690=2.4方法二:0.010.120.230.340.780.89+++++ =0+0.1+0.2+0.3+0.7+0.8+(0.010.020.030.040.080.09+++++ ) =2.1+0.01×(1+2+3+4+8+9) =2.1+190×27 =2.1+0.3 =2.4方法三:如下式, 0.011111… 0.122222... 0.233333... 0.344444...(1+2+3+4+8+9=27) 0.788888...+0.899999... 2.399997...注意到,百万分位的7是因为没有进位造成,而实际情况应该是2.399999…=2.39 =2.4.评注:0.9=99=1 ,0.09 =919010=.5.将循环小数0.027与0.179672 相乘,取近似值,要求保留一百位小数,那么该近似值的最后一位小数是多少?【分析与解】0.×0.179672=27179672117967248560.00485699999999937999999999999⨯=⨯== 循环节有6位,100÷6=16……4,因此第100位小数是循环节中的第4位8,第10l 位是5.这样四舍五入后第100位为9.6.将下列分数约成最简分数:166********66666666664【分析与解】 找规律:161644=,16616644=,1666166644= ,166661666644=,…所以1666666666666666666664=14评注:类似问题还有38538853888538888538888888885234 (29729972999729999729999999997)+⨯+⨯+⨯++.7.将下列算式的计算结果写成带分数:0.523659119⨯⨯【分析与解】0.523659119⨯⨯=11859119⨯=1(1)119-×59=59-59119=58601198.计算:744808333÷2193425909÷11855635255【分析与解】 744808333÷2193425909÷11855635255=62811259093525583332193453811⨯⨯ =373997131993564111136412119973331993⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=7523⨯⨯=5569.计算:1111111 81282545081016203240648128 ++++++【分析与解】原式1111111 81288128406420321016508254 =++++++2111118128406420321016508254 =+++++ 1111114064406420321016508254 =+++++ 11111203220321016508254=++++111110161016508254=+++111508508254=++11254254=+1127=10.计算:153219(4.85 3.6 6.153) 5.5 1.75(1) 4185321⎡⎤⨯÷-+⨯+-⨯+⎢⎥⎣⎦【分析与解】原式=1757193.6(4.851 6.15)5.5443421⨯⨯-++-⨯-⨯=135193.610 5.5412+⨯⨯+-=9+5.5-4.5 =1011.计算: 41.2×8.1+11×194+537×0.19【分析与解】原式=412×0.81+11×9.25+0.19×(412+125) =412×(0.81+0.19)+11×9.25+0.19×125 =412+11×8+11×1.25+19×1.25=412+88+1.25×30=500+37.5=537.512.计算:2255 (97)() 7979+÷+【分析与解】原式=656555 ()() 7979+÷+=[]555513()()137979⨯+÷+=13.计算:12324648127142113526104122072135⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯【分析与解】 原式=33333333123(1247)1232135(1247)1355⨯⨯⨯+++⨯⨯==⨯⨯⨯+++⨯⨯14.(1)已知等式0.126×79+1235×□-6310÷25=10.08,那么口所代表的数是多少? (2)设上题答案为a .在算式(1993.81+a )×○的○内,填入一个适当的一位自然数,使乘积的个位数字达到最小值.问○内所填的数字是多少? 【分析与解】 (1)设口所代表的数是x ,0.126×79+1235x -6310÷25=10.08,解得:x =0.03,即口所代表的数是0.03.(2)设○内所填的数字是y ,(1993.81+O.03)×y =1993.84×y ,有当y 为8时1993.84×y =1993.84×8=15050.94,所以○内所填的数字是8.15.求下述算式计算结果的整数部分:111111()38523571113+++++⨯ 【分析与解】原式=111111(38538538538538538523571113⨯+⨯+⨯+⨯+⨯+⨯≈192.5+128.3+77+55+35+29.6=517.4 所以原式的整数部分是517.第二讲 和差倍分问题各种具有和差倍分关系的综合应用题,重点是包含分数的问题.基本的解题方法是将已知条件用恰当形式写出或变形,并结合起来进行比较而求出相关的量,其中要注意单位“1”的恰当选取.1.有甲、乙两个数,如果把甲数的小数点向左移两位,就是乙数的18,那么甲数是乙数的多少倍?【分析与解】甲数的小数点向左移动两位,则甲数缩小到原来的1100,设这时的甲数为“1”,则乙数为1×8=8,那么原来的甲数=l×100=100,则甲数是乙数的100÷8=12.5倍.2.有三堆棋子,每堆棋子数一样多,并且都只有黑、白两色棋子.已知第一堆里的黑子和第二堆里的白子一样多,第三堆里的黑子占全部黑子的25.如果把这三堆棋子集中在一起,那么白子占全部棋子的几分之几?【分析与解】如下表所示:设全部黑子为“5”份,则第三堆里的黑子为“2”份,那么剩下的黑子占5-2=“3”份,而第一堆里的黑子和第二堆里的白子一样多,将第一堆黑子和第二堆白子调换,则第二堆全部为黑子.所以第二堆棋子总数为“3”份,三堆棋子总数为3×3=“9”份,其中黑子占“5”份,则白子占剩下的9-5=“4”份,那么白子占全部棋子的4÷9=49.3.甲、乙两厂共同完成一批机床的生产任务,已知甲厂比乙厂少生产8台机床,并且甲厂的生产量是乙厂的1213,那么甲、乙两厂一共生产了机床多少台?【分析与解】因为甲厂生产的是乙厂的1213,也就是甲厂为12份,乙厂为13份,那么甲厂比乙厂少1份=8台.总共=8×(12+13)=200台.4.足球赛门票15元一张,降价后观众增加了一半,收入增加了五分之一,那么一张门票降价多少元?【分析与解】设原来人数为“1”,则现在有1+0.5=1.5.原来收入为l×15=15,降价后收人为15×(1+15)=18元,那么降价后门票为18÷1.5=12元,则一张门票降价15-12=3元.5.李刚给军属王奶奶运蜂窝煤,第一次运了全部的38,第二次运了50块.这时,已运来的恰好是没运来的57.问还有多少块蜂窝煤没有运来?【分析与解】已经运来的是没有运来的57,则运来的是5份,没有运来的是7份,也就是运来的占总数的512.则共有50÷(512-38)=1200块,还剩下1200×712=700块.6.有两条纸带,一条长21厘米,一条长13厘米,把两条纸带都剪下同样长的一段以后,发现短纸带剩下的长度是长纸带剩下的长度的813.问剪下的一段长多少厘米?【分析与解】方法一:开始时,两条纸带的长度差为21-13=8厘米.因为两条纸带都剪去同样长度,所以两条纸带前后的长度差不变.设剪后短纸带长度为“8”份,长纸带即为“13”份,那么它们的差为13-8=5份,则每份为8÷5=1.6(厘米).所以,剪后短纸带长为1.6×8=12.8(厘米),于是剪去13-12.8=O.2(厘米).方法二:设剪下x厘米,则1382113xx-=-,交叉相乘得:13×(13-x)=8×(21-x),解得x=0.2,即剪下的一段长0.2厘米.7.为挖通300米长的隧道,甲、乙两个施工队分别从隧道两端同时相对施工.第一天甲、乙两队各掘进了10米,从第二天起,甲队每天的工作效率总是前一天的2倍,乙队每天的工作效率总是前一天的l 12倍.那么,两队挖通这条隧道需要多少天?【分析与解】如下表所示:天数工作量1 2 3 4 5甲10 20 40 80 160乙10 15 22.5 33.75 50.625 当天工作量20 35 62.5 113.75 210.625已完成工作量20 55 117.5 231.25 441.375 说明在第五天没有全天干活,则第四天干完以后剩下:300-231.25=68.75米,那么共用时间为4+68.75÷210.625=4110 337天.8.有一块菜地和一块麦地.菜地的一半和麦地的三分之一放在一起是13公顷.麦地的一半和菜地的三分之一放在一起是12公顷.那么菜地是多少公顷?【分析与解】如下表所示:菜地12麦地13⇒13公顷菜地3 麦地2 ⇒78公顷菜地2 麦地3 ⇒72公顷菜地13麦地12⇒12公顷即5倍菜地公顷数+5倍麦地公顷数=78+72=150,所以菜地与麦地共有150÷5=30(公顷).而菜地减去麦地,为78-72=6(公顷),所以菜地有(30+6)÷2=18(公顷).9.春风小学原计划栽种杨树、柳树和槐树共1500棵.植树开始后,当栽种了杨树总数的3 5和30棵柳树以后,又临时运来15棵槐树,这时剩下的3种树的棵数恰好相等.问原计划要栽植这三种树各多少棵?【分析与解】将杨树分为5份,以这样的一份为一个单位,则:杨树=5份;柳树=2份+30棵;槐树=2份-15棵,则一份为(1500-30+15)÷(2+2+5)=165棵,有:杨树=5×165=825棵;柳树=165×2+30=360棵;槐树=165×2-15=315棵.10.师徒二人共同加工170个零件,师傅加工零件个数的13比徒弟加工零件个数的14还多10个.那么,徒弟一共加工了多少个零件?【分析与解】我们用“师”表示师傅加工的零件个数,“徒”表示徒弟加工的零件个数,有:1 3“师”-14“徒”=10,4“师”- 3“徒”=120,而4“师”+4“徒”=170×4=680.那么有7“徒”=680-120=560,“徒”=80,徒弟一共加工了80个零件.11. 一批工人到甲、乙两个工地进行清理工作,甲工地的工作量是乙工地的工作量的11 2倍.上午去甲工地的人数是去乙工地人数的3倍,下午这批工人中有712的人去甲工地,其他人到乙工地.到傍晚时,甲工地的工作已做完,乙工地的工作还需4名工人再做1天.那么这批工人共有多少名?【分析与解】设甲工地的工作量为“1.5”,则乙工地的工作量为“1”.甲乙上午33134=+11134=+下午7121-712=512于是甲工地一整天平均用了这批工人的372()24123+÷=,乙工地一整天平均用了这批工人的1-21 33 =.这批工人的23完成了“1.5”的工作量,那么13的这批工人完成1.5÷2=“0.75”的工作量,于是乙工地还剩下1-0.75=“0.25”的工作量,这“0.25”的工作量需要4人工作1天.而甲、乙工地的工作量为1.5+1=2.5,那么需2.5÷0.25× 4=40人工作1天.所以原来这批工人共有40-4=36人.12.有一个分数,如果分子加1,这个分数就等于12;如果分母加1,这个分数就等于13.问原来的分数是多少?【分析与解】如果分子加1,则分数为12,设这时的分数为:2xx,则原来的分数为12xx-,分母加1后为:11213xx-=+,交叉相乘得:3(x-1)=2x+1,解得x=4,则原分数为38.13.图2-1是某市的园林规划图,其中草地占正方形的34,竹林占圆形的67,正方形和圆形的公共部分是水池.已知竹林的面积比草地的面积大450平方米.问水池的面积是多少平方米?【分析与解】因为水池是正方形的14,是圆的17,则正方形是水池的4倍,圆是水池的7倍,相差7-4=3倍,差450平方米,则水池=450÷3=150平方米.14.唐僧师徒四人吃了许多馒头,唐僧和猪八戒共吃了总数的12,唐僧和沙僧共吃了总数的13,唐僧和孙悟空共吃了总数的14.那么唐僧吃了总数的几分之几?【分析与解】唐+猪=12、唐+沙=13、唐+孙=14.(两边同时加减)唐+猪+唐+沙+唐+孙=2唐+(唐+猪+沙+孙)=2唐+1=12+13+14=1112.则:2唐=112,唐=124.唐僧吃了总数的124.15.小李和小张同时开始制作同一种零件,每人每分钟能制作1个零件,但小李每制作3个零件要休息1分钟,小张每制作4个零件要休息1.5分钟.现在他们要共同完成制作300个零件的任务,需要多少分钟?【分析与解】方法一:先估算出大致所需时间,然后再进行调整.因为小李、小张的工作效率大致相等,那么完成时小李完成300÷2=150个零件左右;小李完成150个零件需要150÷3×4=200分钟;在200分钟左右,198分钟是5.5的整数倍,此时乙生产198÷5.5×4=144个零件,并且刚休息完,所以在2分钟后,即200分钟时完成144+2=146个零件;那么在200分钟时,小李、小张共生产150+146=296个零件,还剩下4个零件未完成,所以再需2分钟,小李生产2个零件,小张生产2个零件,正好完成.所以共需202分钟才能完成.方法二:把休息时间包括进去,小李每4分钟做3个,小张每5.5分钟做4个.则在44分钟内小李做了:44÷4×3=33个,小张做了:44÷5.5×4=32个,他们一共做了:33+32=65个.300÷65=4……40,也就是他们共同做了4个44分钟即:44×4=176分钟后,还剩下40个零件没有做完.而22=4+4+4+4+4+2=5.5×4,所以22分钟内小李做了:3+3+3+3+3+2=17个,小张做了:4×2=16个,那么还剩下:40-17-16=7个,4分钟内小李做3个,小张做4个,共做4+3=7个,即这40个零件还需要26分钟.所以共用时间:44×4+26=202分钟.第三讲行程问题(1)涉及分数的行程问题.顺水速度、逆水速度与流速的关系,以及与此相关的问题.环形道路上的行程问题.解题时要注意发挥图示的辅助作用,有时宜恰当选择运动过程中的关键点分段加以考虑.1.王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时55千米.如果他想按时返回甲地,他应以多大的速度往回开?【分析与解】设甲地到乙地的路程为单位“1”,那么按时的往返一次需时间260,现在从甲到乙花费了时间1÷55=155千米,所以从乙地返回到甲地时所需的时间只能是211 605566-=.即如果他想按时返回甲地,他应以每小时66千米的速度往回开.2.甲、乙两地相距100千米,小张先骑摩托车从甲地出发,1小时后小李驾驶汽车从甲地出发,两人同时到达乙地.摩托车开始速度是每小时50千米,中途减速后为每小时40千米.汽车速度是每小时80千米,汽车曾在途中停驶1O 分钟.那么小张驾驶的摩托车减速是在他出发后的多少小时?【分析与解】 汽车从甲地到乙地的行驶时问为100÷80=1.25小时=1小时15分钟,加上中途停驶的10分钟,共用时1小时25分钟.而小张先小李1小时出发,但却同时到达,所以小张从甲到乙共用了2小时25分钟,即2最小时.以下给出两种解法:方法一:设小张驾驶的摩托车减速是在他出发后x 小时,有50×x +40×5210012x ⎛⎫-= ⎪⎝⎭,解得13x =. 所以小张驾驶的摩托车减速是在他出发后13小时. 方法二:如果全程以每小时50千米的速度行驶,需100÷50=2小时的时间,全程以每小时40千米的速度行驶,需100÷40=2.5小时.依据鸡兔同笼的思想知,小张以每小时50千米的速度行驶了52.521122.526-=-的路程,即行驶了10015010063⨯=千米的路程,距出发5015033÷=小时.3. 一位少年短跑选手,顺风跑90米用了10秒钟.在同样的风速下,逆风跑70米,也用了10秒钟.问:在无风的时候,他跑100米要用多少秒?【分析与解】 我们知道顺风速度=无风速度+风速,逆风速度=无风速度-风速. 有顺风时速度为90÷10=9米/秒,逆风速度为70÷10=7米/秒. 则无风速度=2顺风速度+逆风速度=982+7=米/秒 所以无风的时候跑100米,需100÷8=12.5秒.124.一条小河流过A ,B, C 三镇.A,B 两镇之间有汽船来往,汽船在静水中的速度为每小时11千米.B,C 两镇之间有木船摆渡,木船在静水中的速度为每小时3.5千米.已知A,C 两镇水路相距50千米,水流速度为每小时1.5千米.某人从A 镇上船顺流而下到B 镇,吃午饭用去1小时,接着乘木船又顺流而下到C 镇,共用8小时.那么A,B 两镇间的距离是多少千米?【分析与解】 如下画出示意图,有A →B 段顺水的速度为11+1.5=12.5千米/小时, 有B →C 段顺水的速度为3.5+1.5=5千米/小时. 而从A →C 全程的行驶时间为8-1=7小时. 设AB 长x 千米,有50712.55x x -+=,解得x =25. 所以A,B 两镇间的距离是25千米.5.一条大河有A,B 两个港口,水由A 流向B,水流速度是每小时4千米.甲、乙两船同时由A 向B 行驶,各自不停地在A,B 之间往返航行,甲船在静水中的速度是每小时28千米,乙船在静水中的速度是每小时20千米.已知两船第二次迎面相遇的地点与甲船第二次追上乙船(不算甲、乙在A 处同时开始出发的那一次)的地点相距40千米,求A,B 两个港口之间的距离.【分析与解】 设AB 两地的路程为单位“1”,则:甲、乙两人在A 、B 往返航行,均从A 点同时同向出发,则第n 次同向相遇时,甲、乙两人的路程差为2n ;甲、乙两人在A 、B 往返航行,均从A 点同时同向出发,则第n 次相向相遇时,甲、乙两人的路程和为2n ;甲、乙两人在A 、B 往返航行,分别从A 、B 两点相向出发,则第n 次同向相遇时,甲、乙两人的路程差为(2n -1);甲、乙两人在A 、B 往返航行,分别从A 、B 两点相向出发,则第n 次相向相遇时,甲、乙两人的路程和为(2n -1).有甲船的顺水速度为32千米/小时,逆水速度为24千米/小时, 乙船的顺水速度为24千米/小时,逆水速度为16千米/小时. 两船第二次迎面相遇时,它们的路程和为“4”;甲船第二次追上乙船时,它们的路程差为“4”.(一)第二次迎面相遇时,一定是甲走了2~3个AB 长度,乙走了2~1个AB 长度,设甲走了2+x 个AB 的长度,则乙走了2-x 个AB 的长度,有11322432x ++=112416x -+,解得13x =,即第二次迎面相遇的地点距A 点13AB 的距离.(二)①第二次甲追上乙时,有甲行走2y z +(y 为整数,z ≤1)个AB 的长度,则乙行走了24y z -+个AB 的长度,有322432y y z ++=22241624y y z --++,化简得320y z +=,显然无法满足y 为整数,z ≤1;②第二次甲追上乙时,有甲行走21y z ++(y 为整数,z ≤1)个AB 的长度,则乙行走了23y z -+个AB 的长度,有1322424y y z +++=12241616y y z--++,化简有3213y z +=,有0.5z =,4y =. 即第二次甲追上乙时的地点距B 点12AB 的距离,那么距A 也是12AB 的距离.所以,题中两次相遇点的距离为(111236⎛⎫-= ⎪⎝⎭AB ,为40千米,所以AB 全长为240千米.6.甲、乙两船分别在一条河的A ,B 两地同时相向而行,甲顺流而下,乙逆流而上.相遇时,甲乙两船行了相等的航程,相遇后继续前进,甲到达B 地、乙到达A 地后,都立即按原来路线返航,两船第二次相遇时,甲船比乙船少行1000米.如果从第一次相遇到第二次相遇的时间相隔为1小时20分,那么河水的流速为每小时多少千米? 【分析与解】 因为甲、乙第一次相遇时行驶的路程相等,所以有甲、乙同时刻各自到达B 、A 两地.接着两船再分别从B 、A 两地往AB 中间行驶.所以在第二次相遇前始终是一船逆流、一船顺流,那么它们的速度和始终等于它们在静水中的速度和.有:甲静水速度+水速=乙静水速度-水速.还有从开始到甲第一次到达B 地,乙第一次到达A 地之前,两船在河流中的速度相等.所以甲船比乙船少行驶的1000米是在甲、乙各自返航时产生的.甲乙返航时,有甲在河流中行驶的速度为:甲静水速度-水速,乙在河流中的速度为:乙静水速度+水速.它们的速度差为4倍水速.从第一次相遇到第二次相遇,两船共行驶了2AB 的路程,而从返航到第二次相遇两船共行驶了AB 的路程,需时间80÷2=40分钟. 有4倍水速=401000150060⎛⎫÷=⎪⎝⎭,有水速=375米/小时=0.375千米/小时. 即河水的流速为每小时0.375千米.7.甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行.现在已知甲走一圈的时间是70分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是多少分钟? 【分析与解】 甲行走45分钟,再行走70-45=25分钟即可走完一圈.而甲行走45分钟,乙行走45分钟也能走完一圈.所以甲行走25分钟的路程相当于乙行走45分钟的路程. 甲行走一圈需70分钟,所以乙需70÷25×45=126分钟.即乙走一圈的时间是126分钟.8.如图3-1,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【分析与解】 注意观察图形,当甲、乙第一次相遇时,甲乙共走完12圈的路程,当甲、乙第二次相遇时,甲乙共走完1+12=32圈的路程. 所以从开始到第一、二次相遇所需的时间比为1:3,因而第二次相遇时乙行走的总路程为第一次相遇时行走的总路程的3倍,即100×3=300米. 有甲、乙第二次相遇时,共行走(1圈-60)+300,为32圈,所以此圆形场地的周长为480米.9.甲、乙二人在同一条椭圆形跑道上作特殊训练:他们同时从同一地点出发,沿相反方向跑,每人跑完第一圈到达出发点后立即回头加速跑第二圈,跑第一圈时,乙的速度是甲速度的23.甲跑第二圈时速度比第一圈提高了13;乙跑第二圈时速度提高了15.已知沿跑道看从甲、乙两人第二次相遇点到第一次相遇点的最短路程是190米,那么这条椭圆形跑道长多少米? 【分析与解】设甲跑第一圈的速度为3,那么乙跑第一圈的速度为2,甲跑第二圈的速度为4,乙跑第二圈的速度为125. 如下图,第一次相遇地点逆时针方向距出发点35的跑道长度. 有甲回到出发点时,乙才跑了23的跑道长度.在乙接下来跑了13跑道的距离时,甲以“4”的速度跑了122433÷⨯=圈.所以还剩下13的跑道长度,甲以4的速度,乙以125的速度相对而跑,所以乙跑了112124355⎡⎤⎛⎫⨯÷+ ⎪⎢⎥⎝⎭⎣⎦18=圈.也就是第二次相遇点逆时针方向距出发点18圈.即第一次相遇点与第二次相遇点相差31195840-=圈, 所以,这条椭圆形跑道的长度为1919040040÷=米.10.如图3-2,在400米的环形跑道上,A,B 两点相距100米.甲、乙两人分别从A ,B 两点同时出发,按逆时针方向跑步.甲每秒跑5米,乙每秒跑4米,每人每跑100米,都要停10秒钟.那么甲追上乙需要时间是多少秒?【分析与解】 如果甲、乙均不休息,那么甲追上乙的时间为100÷(5-4)=100秒. 此时甲跑了100×5=500米,乙跑了100×4=400米.而实际上甲跑500米,所需的时间为100+4×10=140秒,所以140~150秒时甲都在逆时针距A 点500处.而乙跑400米所需的时间为100+3×10=130秒,所以130~140秒时乙走在逆时针距B点400处.显然从开始计算140秒时,甲、乙在同一地点,即甲追上乙需要时间是140秒.11.周长为400米的圆形跑道上,有相距100米的A ,B 两点.甲、乙两人分别从A ,B 两点同时相背而跑,两人相遇后,乙即转身与甲同向而跑,当甲跑到A 时,乙恰好跑到B .如果以后甲、乙跑的速度和方向都不变,那么甲追上乙时,甲从出发开始,共跑了多少米? 【分析与解】 如下图,记甲乙相遇点为C.当甲跑了AC 的路程时,乙跑了BC 的路程;而当甲跑了400米时,乙跑了2BC 的路程. 由乙的速度保持不变,所以甲、乙第一次相向相遇所需的时间是甲再次到达A 点所需时间的12. 即AC=12×400=200(米),也就是甲跑了200米时,乙跑了100米,所以甲的速度是乙速度的2倍.那么甲到达A ,乙到达B 时,甲追上乙时需比乙多跑400-100=300米的路程,所以此后甲还需跑300÷(2-1)×2=600米,加上开始跑的l 圈400米.所以甲从出发到甲追上乙时,共跑了600+400=1000米.12.如图3-3,一个长方形的房屋长13米,宽8米.甲、乙两人分别从房屋的两个墙角出发,甲每秒钟行3米,乙每秒钟行2米.问:经过多长时间甲第一次看见乙?【分析与解】 开始时,甲在顺时针方向距乙8+13+8=29米.因为一边最长为 13、所以最少要追至只相差13,即至少要追上29-13=16米. 甲追上乙16米所需时间为16÷(3-2)=16秒,此时甲行了3×16=48米,乙行了2×16=32米.甲、乙的位置如右图所示:显然甲还是看不见乙,但是因为甲的速度比乙快,所以甲能在乙离开上面 的那条边之前到达上面的边,从而看见乙.而甲要到达上面的边,需再跑2米,所需时间为2÷3=23秒. 所以经过16+23=1623秒后甲第一次看见乙.13.如图3-4,学校操场的400米跑道中套着300米小跑道,大跑道与小跑道有200米路程相重.甲以每秒6米的速度沿大跑道逆时针方向跑,乙以每秒4米的速度沿小跑道顺时针方向跑,两人同时从两跑道的交点A 处出发,当他们第二次在跑道上相遇时,甲共跑了多少米?【分析与解】 如下图,甲、乙只可能在大跑道上相遇.并且只能在AB 顺时针的半跑道上.易知小跑道AB 逆时针路程为100,顺时针路程为200,大跑道上AB 的顺、逆时针路程均是200米.我们将甲、乙的行程状况分析清楚.当甲第一次到达B 时,乙还没有到达B 点,所以第一次相遇一定在逆时针的BA 某处.而当乙第一次到达B 点时,所需时间为200÷4=50秒,此时甲跑了50×6=300米,在B 点300-200=100米处.乙跑出小跑道到达A 需100÷4=25秒,则甲又跑了25×6=150米,在A 点左边(100+150)-200=50米处.所以当甲到达B 处时,乙还未到B 处,那么甲必定能在B 点右边某处与乙第二次相遇. 从乙再次到达A 处开始计算,还需(400-50)÷(6+4)=35秒,甲、乙第二次相遇,此时甲共跑了50+25+35=110秒.所以,从开始到甲、乙第二次相遇甲共跑了110×6=660米.14.如图3-5,正方形ABCD 是一条环形公路.已知汽车在AB 上时速是90千米,在BC 上的时速是120千米,在CD 上的时速是60千米,在DA 上的时速是80千米.从CD 上一点P,同时反向各发出一辆汽车,它们将在AB 中点相遇.如果从PC 的中点M,同时反向各发出一辆汽车,它们将在AB 上一点N 相遇.问A 至N 的距离除以N 至B 的距离所得到的商是多少?【分析与解】 如下图,设甲始终顺时针运动,乙始终逆时针运动,并设正方形ABCD 的边长为单位“1”.有甲从P 到达AB 中点O 所需时间为608090PD DA AO ++10.5608090PD =++. 乙从P 到达AB 中点O 所需时间为6012090PC BC BO ++10.56012090PD =++. 有甲、乙同时从P 点出发,则在AB 的中点O 相遇,所以有:16080PD +=160120PC +且有PD=DC-PC=1-PC,代入有116080PC -+160120PC =+,解得PC=58. 所以PM=MC=516,DP=38.现在甲、乙同时从PC 的中点出发,相遇在N 点,设AN 的距离为x .有甲从M 到达N 点所需时间为608090MD DA AN ++351816608090x+=++; 乙从M 到达N 点所需时间为6012090MC CB BN ++511166012090x-=++. 有351816608090x +++511166012090x -=++,解得132x =.即AN=132. 所以AN ÷BN 1313232=÷131=15.如图3-6,8时10分,有甲、乙两人以相同的速度分别从相距60米的A ,B 两地顺时针方向沿长方形ABCD 的边走向D 点.甲8时20分到D 点后,丙、丁两人立即以相同速度从D 点出发.丙由D 向A 走去,8时24分与乙在E 点相遇;丁由D 向C 走去,8时30分在F 点被乙追上.问三角形BEF 的面积为多少平方米?【分析与解】 如下图,标出部分时刻甲、乙、丙、丁的位置.先分析甲的情况,甲10分钟,行走了AD 的路程;再看乙的情况,乙的速度等于甲的速度,乙14分钟行走了60+AE 的路程,乙20分钟走了60+AD+DF 的路程.所以乙10分钟走了(60+AD+DF)-(AD)=60+DF 的路程.有601014AD AE +=6010DF +=,有()()607560AD DFAE ED AE =+⎧⎪⎨-=+⎪⎩然后分析丙的情况,丙4分钟,行了走ED 的路程,再看丁的情况,丁的速度等于丙的速度,丁10分钟行走了DF 的距离.。
数学奥数知识点六年级数学是一门重要的学科,而数学奥赛则是培养学生逻辑思维和数学能力的重要途径。
在六年级的数学奥数竞赛中,学生需要掌握一些重要的知识点。
本文将介绍六年级数学奥数竞赛的一些关键知识点。
一、整数与小数整数和小数是数学中最基础的概念。
学生要熟悉整数和小数的基本运算规则,包括加减乘除。
此外,学生还需要了解负数的概念和负数在数轴上的表示。
例如,学生需要掌握计算以下算式的能力:-1.5 + 2.8 = ?6.9 × (-0.5) = ?-2.4 ÷ 0.3 = ?二、分数与比例分数是数学奥数竞赛中的常见考点。
学生需要掌握分数的基本运算规则,包括分数的加减乘除和转化为小数的方法。
此外,学生还需要理解比例的概念和比例在实际问题中的应用。
例如,学生需要解决以下问题:1/4 + 3/8 = ?2/3 × 4/5 = ?5/6 ÷ 2/3 = ?如果一辆车以每小时60公里的速度行驶,那么3个小时能行驶多远?三、平方与开方平方和开方是数学奥数竞赛中的高阶考点。
学生需要了解平方的概念和计算平方的方法,以及开方的概念和计算开方的方法。
此外,学生还需要学习解决与平方和开方相关的问题的能力。
例如,学生需要计算以下问题:3² = ?√25 = ?45的平方根是多少?一块土地的面积是16平方米,边长是多少米?四、几何图形六年级的数学奥数竞赛还涉及几何图形的知识点。
学生需要熟悉常见几何图形的特征和计算周长、面积的方法。
此外,学生还需要解决与几何图形相关的实际问题。
例如,学生需要解决以下问题:一个矩形的长是3cm,宽是5cm,它的周长和面积分别是多少?一个圆的半径是8cm,它的周长和面积分别是多少?一个正方形的边长是12cm,它的周长和面积分别是多少?五、数据分析数据分析是数学奥数竞赛中的一项重要能力。
学生需要学习收集、整理、展示和分析数据的方法,以及解决与数据分析相关的问题的能力。
六年级奥数知识点及题型一、分数运算相关1. 知识点:分数的简便运算裂项相消法题型:计算公式解析:我们知道公式。
所以原式公式可以发现中间项都可以消去,最后得到公式。
2. 知识点:分数的混合运算题型:计算公式解析:先计算括号内的值,公式,公式。
再进行除法运算,公式。
二、比和比例相关3. 知识点:比例的基本性质题型:已知公式,公式,求公式。
解析:因为公式(将公式中的公式化为公式,公式,公式)。
公式(将公式中的公式化为公式,公式,公式)。
所以公式。
4. 知识点:按比例分配题型:有一批图书按照3:4:5的比例分给甲、乙、丙三个班,已知甲班分得60本,求这批图书一共有多少本?解析:设一份为公式本,因为甲班占公式份,且甲班分得公式本,所以公式,解得公式。
这批图书一共有公式本。
三、工程问题相关5. 知识点:工程问题基本公式(工作总量=工作效率×工作时间)题型:一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作需要多少天完成?解析:把这项工程的工作量看作单位“公式”。
甲的工作效率是公式,乙的工作效率是公式。
两人合作的工作效率是公式。
合作完成需要的时间是公式天。
6. 知识点:工程问题中的分干合想与合干分想题型:甲、乙两队合作一项工程,12天可以完成。
如果甲队先做3天,乙队再做5天,共完成这项工程的公式,乙队单独做这项工程需要多少天?解析:设甲队的工作效率为公式,乙队的工作效率为公式。
根据两队合作12天完成工程,可得公式,即公式。
又因为甲队先做3天,乙队再做5天,共完成这项工程的公式,可得公式。
由公式可得公式,代入公式中,公式。
解得公式,所以乙队单独做需要公式天。
四、行程问题相关7. 知识点:相遇问题(路程和=速度和×相遇时间)题型:甲、乙两人分别从A、B两地同时出发,相向而行,甲的速度是每小时5千米,乙的速度是每小时4千米,经过3小时两人相遇,求A、B两地的距离。
解析:速度和为公式千米/小时。
一、整数的加减乘除运算1.完成含有复杂运算的整数计算,包括加减乘除。
2.正整数和负整数的加减乘除运算。
3.多个整数相加(减)。
二、分数的加减乘除运算1.分数和整数相加(减)。
2.分数相加(减)。
3.分数的乘法和除法运算。
4.分数的化简与约分。
三、小数的加减乘除运算1.完成小数的加减乘除运算。
2.整数与小数相加(减)。
3.小数与小数相加(减)。
四、百分数的运算1.将百分数转化为小数和分数。
2.将百分数转化为小数进行运算。
3.完成包含百分数的加减乘除运算。
4.将小数转化为百分数。
五、图形的认识和计算1.熟悉各种常见图形的名称和性质。
2.利用图形的性质解决问题。
3.利用图形的面积和周长进行计算。
4.利用图形的相似性进行计算。
六、数的性质和运算规律1.数的倍数和约数。
2.数与数的关系。
3.运用数的性质解决问题。
4.运用数的规律进行计算。
七、代数方程1.利用已知条件建立简单的代数方程。
2.运用代数方程解决问题。
3.运用等式交换法则解决问题。
八、图形的位置关系和运动1.图形的位置关系,包括平行、垂直、相交等。
2.利用图形的位置关系解决问题。
3.图形的旋转和对称运动。
九、时间和空间的问题1.计算机算时间的进退。
2.计算车速、工作效率等问题。
3.解决包括时间、速度、距离、容积等单位转化的问题。
4.运用公式解决时间和空间的问题。
十、排列组合和概率1.利用排列组合的原理解决问题。
2.运用概率解决问题。
3.了解数学中的一些常见概率概念。
十一、逻辑推理和解决问题1.运用逻辑推理解决问题。
2.运用问题解决方法解决数学问题。
3.运用直觉猜想解决问题。
六年级奥数知识点大汇总1、六年级奥数知识点讲解:不定方程2、六年级奥数知识点:约数与倍数3、六年级奥数知识点:数的整除4、六年级奥数知识点:余数及其应用5、六年级奥数知识点:余数问题6、六年级奥数知识点:分数与百分数的应用7、六年奥级数知识点:分数大小的比较8、六年级奥数知识点:完全平方数9、六年级奥数知识点讲解:称球问题10、六年级奥数知识点讲解:质数与合数11、六年级奥数知识点讲解:二进制及其应用12、六年级奥数知识点讲解:定义新运算13、六年级奥数知识点讲解:周期循环数14、六年级奥数知识点讲解:牛吃草问题15、六年级奥数知识点讲解:鸡兔同笼问题16、六年级奥数知识点讲解:归一问题17、六年级奥数知识点讲解:逻辑推理问题18、六年级奥数知识点讲解:几何面积19、六年级奥数知识点讲解:时钟问题20、六年级奥数知识点讲解:浓度与配比21、六年级奥数知识点讲解:经济问题22、六年级奥数知识点讲解:简单方程23、六年级奥数知识点讲解:循环小数24、六年级奥数知识点:综合行程问题25、六年级奥数知识点讲解:工程问题26、六年级奥数知识点讲解:比和比例27、六年级奥数知识点讲解:加法原理28、六年级奥数知识讲解:数列求和29、六年级奥数知识讲解:抽屉原理30、六年级奥数知识点讲解:平均数问题31、六年级奥数知识点讲解:盈亏问题32、六年级奥数知识点讲解:植树问题33、六年级奥数知识点讲解:年龄问题的三大特征34、小学奥数知识点总结之:和差倍问题35、小学奥数知识点总结之:分数拆分1、六年级奥数知识点讲解:不定方程不定方程一次不定方程:含有两个未知数的一个方程,叫做二元一次方程,由于它的解不唯一,所以也叫做二元一次不定方程;常规方法:观察法、试验法、枚举法;多元不定方程:含有三个未知数的方程叫三元一次方程,它的解也不唯一;多元不定方程解法:根据已知条件确定一个未知数的值,或者消去一个未知数,这样就把三元一次方程变成二元一次不定方程,按照二元一次不定方程解即可;涉及知识点:列方程、数的整除、大小比较;解不定方程的步骤:1、列方程;2、消元;3、写出表达式;4、确定范围;5、确定特征;6、确定答案;技巧总结:A、写出表达式的技巧:用特征不明显的未知数表示特征明显的未知数,同时考虑用范围小的未知数表示范围大的未知数;B、消元技巧:消掉范围大的未知数;2、六年级奥数知识点:约数与倍数约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。
六年级奥数必备知识点1. 自然数和整数在六年级奥数中,自然数和整数是非常重要的基础概念。
自然数是从1开始的所有正整数,表示为N={1, 2, 3, ...};而整数包括自然数、0以及它们的负数,表示为Z={..., -3, -2, -1, 0, 1, 2, 3, ...}。
学生需要掌握自然数和整数的性质,能够进行加减乘除等基本运算。
2. 分数和小数分数和小数是数学中常见的数形式。
分数由一个分子和一个分母组成,分子表示被分割的部分,分母表示整体的份数。
学生需要学会分数的四则运算,如加减乘除,并能将分数化简和转化为小数形式。
小数是带有小数点的数,可以是有限小数或无限循环小数,学生需要学会比较大小、四则运算以及小数和分数的相互转化。
3. 小学乘除法运算在六年级奥数中,乘法和除法运算是必不可少的。
学生需要掌握乘法口诀表,快速计算两位数和一位数的乘法,以及带有括号的复合乘法。
除法运算涉及到整除和带余除法,学生需要学会求商和求余数,解决实际问题。
4. 图形的认识和计算图形的认识和计算是六年级奥数中的一个重要内容。
学生需要明确不同图形的性质和特点,如正方形、长方形、三角形、圆等,并能够计算图形的周长和面积。
此外,还需要了解坐标系的基本知识,掌握平面坐标的表示和运算。
5. 小学代数表达式代数是数学中的一门重要分支,对于六年级奥数来说也是必备知识点。
学生需要理解代数中常见的符号、变量和常数的含义,掌握整式、多项式和方程式的基本形式和运算规则。
此外,还需要学会利用代数式解决实际问题,提高问题的抽象和解决能力。
6. 数字的进制转换数字的进制转换是六年级奥数中的一项考察内容。
学生需要了解二进制、八进制、十进制和十六进制之间的关系和转换规则,能够将一个进制的数转化为其他进制表示并进行运算。
这项知识点在计算机领域中具有重要应用。
总结:以上列举的六年级奥数必备知识点,涵盖了数学中的基础概念和常见运算方法,对学生的数学基本能力和解决问题的能力有着重要的提升作用。
六年级奥数知识点大汇总1、六年级奥数知识点讲解:不定方程2、六年级奥数知识点:约数与倍数3、六年级奥数知识点:数的整除4、六年级奥数知识点:余数及其应用5、六年级奥数知识点:余数问题6、六年级奥数知识点:分数与百分数的应用7、六年奥级数知识点:分数大小的比较8、六年级奥数知识点:完全平方数9、六年级奥数知识点讲解:称球问题10、六年级奥数知识点讲解:质数与合数11、六年级奥数知识点讲解:二进制及其应用12、六年级奥数知识点讲解:定义新运算13、六年级奥数知识点讲解:周期循环数14、六年级奥数知识点讲解:牛吃草问题15、六年级奥数知识点讲解:鸡兔同笼问题16、六年级奥数知识点讲解:归一问题17、六年级奥数知识点讲解:逻辑推理问题18、六年级奥数知识点讲解:几何面积19、六年级奥数知识点讲解:时钟问题20、六年级奥数知识点讲解:浓度与配比21、六年级奥数知识点讲解:经济问题22、六年级奥数知识点讲解:简单方程23、六年级奥数知识点讲解:循环小数24、六年级奥数知识点:综合行程问题25、六年级奥数知识点讲解:工程问题26、六年级奥数知识点讲解:比和比例27、六年级奥数知识点讲解:加法原理28、六年级奥数知识讲解:数列求和29、六年级奥数知识讲解:抽屉原理30、六年级奥数知识点讲解:平均数问题31、六年级奥数知识点讲解:盈亏问题32、六年级奥数知识点讲解:植树问题33、六年级奥数知识点讲解:年龄问题的三大特征34、小学奥数知识点总结之:和差倍问题35、小学奥数知识点总结之:分数拆分1、六年级奥数知识点讲解:不定方程不定方程一次不定方程:含有两个未知数的一个方程,叫做二元一次方程,由于它的解不唯一,所以也叫做二元一次不定方程;常规方法:观察法、试验法、枚举法;多元不定方程:含有三个未知数的方程叫三元一次方程,它的解也不唯一;多元不定方程解法:根据已知条件确定一个未知数的值,或者消去一个未知数,这样就把三元一次方程变成二元一次不定方程,按照二元一次不定方程解即可;涉及知识点:列方程、数的整除、大小比较;解不定方程的步骤:1、列方程;2、消元;3、写出表达式;4、确定范围;5、确定特征;6、确定答案;技巧总结:A、写出表达式的技巧:用特征不明显的未知数表示特征明显的未知数,同时考虑用范围小的未知数表示范围大的未知数;B、消元技巧:消掉范围大的未知数;2、六年级奥数知识点:约数与倍数约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a 的约数。
六年级奥数全部知识点
一、整数
整数是由正整数、负整数和零组成的数集。
在六年级奥数中,整数涉及到以下几个重要知识点:
1. 整数的概念和性质
整数包括正整数、负整数和零,它们可以用于表示温度、海拔高度、债务等。
2. 整数的比较
对于两个整数的比较,可以利用它们在数轴上的位置关系来判断大小。
3. 整数的加法和减法
整数的加法和减法要遵循正数加正数仍为正数,负数加负数仍为负数,正数加负数要看绝对值大小确定结果的规则。
4. 整数的乘法和除法
整数的乘法遵循正数乘正数为正数,负数乘负数为正数,正数乘负数为负数的规则。
整数的除法要注意被除数不为零的情况。
5. 整数的运算律
整数运算中常用的运算律有交换律、结合律和分配律。
二、分数
在六年级奥数中,分数是一个重要的数学概念,涉及到以下几个知识点:
1. 分数的概念
分数由分子和分母组成,表示了一部分与整体的关系。
2. 分数的化简与约分
分数可以化简为最简形式,即分子与分母没有公约数。
约分时需要找到分子和分母的最大公约数进行约分。
3. 分数的比较
对于两个分数的比较,可以通过找到它们的公共分母,然后比较分子的大小来判断大小关系。
4. 分数的加法和减法
分数的加法和减法要先找到它们的公共分母,然后按照分子的规律进行运算。
5. 分数的乘法和除法
分数的乘法就是分子相乘、分母相乘,分数的除法就是分子相除、分母相除。
三、几何
六年级奥数中的几何知识点包括:
1. 平行四边形
平行四边形是指两组的对边分别平行的四边形,它具有特殊的性质和关系。
2. 三角形
三角形是由三条边和三个角组成的图形,根据角度和边长的不同,可以划分为等腰三角形、等边三角形等。
3. 长方体与正方体
长方体和正方体是常见的三维几何体,它们有着特殊的性质和关系,如体积和表面积等。
4. 圆与圆的关系
圆是由一组等距离于一个点的点构成的图形,常见的圆的性质有半径、直径、弧长等。
四、代数
在六年级奥数中,代数是一项重要的数学学科,涉及到以下几个知识点:
1. 代数运算
代数运算包括加法、减法、乘法和除法,它们遵循着一定的运算规则。
2. 代数方程
代数方程是含有未知数的等式,可以通过运算和变换求解未知数的值。
3. 代数式的展开与因式分解
代数式的展开是将一个复杂的代数式进行拆解求值,因式分解是将代数式分解为乘积的形式。
4. 一元一次方程
一元一次方程是指只含有一个未知数的一次方程,通过变换和解方程可以求解未知数的值。
五、图形
在六年级奥数中,图形是数学中一项重要的内容,涉及到以下几个知识点:
1. 图形的分类
图形可以根据边数和角的不同进行分类,常见的有三角形、四
边形、五边形等。
2. 图形的面积和周长
图形的面积是指图形内部的平面区域,周长是指图形的边界长度。
3. 图形的位置关系
图形的位置关系有重合、相交、包含等,可以通过判断图形的
特征和属性来确定位置关系。
以上就是六年级奥数中的全部知识点,通过对这些知识点的学
习和掌握,可以提高数学解题的能力和思维能力,为进一步探索
数学领域打下坚实的基础。
希望同学们能够通过勤奋学习和练习,取得优异的成绩!。