数学解题锦囊妙计-2019年精选文档
- 格式:doc
- 大小:13.00 KB
- 文档页数:1
数学锦囊妙计
1)上新课前做好充分的预习准备。
2)准备一本笔记本,把老师讲的重要内容记下来。
3)上课认真听讲,积极回答老师提问。
4)遇到不懂的地方,虚心请教老师或同学。
5)老师布置的作业按时完成,学会独立思考。
6)作业完成后,回顾老师当天所讲内容,巩固基础知识。
7)将每一课的知识点串联起来,学会举一反三。
8)养成良好的数学学习方法,总结学习经验,评价学习效果。
9)买一些课外习题,扩大自己的知识面。
10)根据个人能力,准备一本错题本,进行知识归纳和总结。
2019高考数学考场解题十大技巧方法一调理大脑思绪,提前进入数学情境考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,实行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
方法二“内紧外松”,集中注意,消除焦虑怯场集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张水准过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
方法三沉着应战,确保旗开得胜,以利振奋精神良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,持续产生正激励,稳拿中低,见机攀高。
方法四“六先六后”,因人因卷制宜在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题水平的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。
1.先易后难。
就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。
2.先熟后生。
通览全卷,能够得到很多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。
2019年中考数学解题方法技巧大全数学题有很多方法解,因此同学们要多掌握。
教育网小编给大家说说2019 数学解题方法技巧大全,欢迎大家阅读。
2019中考数学解题方法技巧大全1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
它是中学数学中常用的方法之一。
5、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a=?0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
高考数学解题方法2019数学推动了重大的科学技术进步。
以下是查字典数学网为大家整理的高考数学解题方法,希望可以解决您所遇到的相关问题,加油,查字典数学网一直陪伴您。
方法一、调理大脑思绪,提前进入数学情境考前要摒弃杂念,排除干扰思绪,使大脑处于空白状态,创设数学情境,进而酝酿数学思维,提前进入角色,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
方法二、内紧外松,集中注意,消除焦虑怯场集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
方法三、沉着应战,确保旗开得胜,以利振奋精神良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生旗开得胜的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的门坎效应,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。
方法四、六先六后,因人因卷制宜在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行六先六后的战术原则。
1.先易后难。
就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。
2.先熟后生。
通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。
备战2019中考数学满分突破锦囊之一元一次不等式【中考知识方法点拨】1. (1)运用不等式的性质时,应注意不等式的两边同时乘或者除以一个负数,不等式的方向要改变.(2)生活中的跷跷板、天平等问题,常借助不等式(组)来求解,注意数与形的有机结合.2. 已知不等式组有解或给定解集求字母(或有关字母代数式)的值,一般先求出已知不等式(组)的解集(用所求有关字母的式子表示),再结合有解或给定的解集,得出等量关系或者不等关系.3. (1)解决实际问题时,要注意题中表示不等关系的关键词,如“不少于”“不超过” “不高于”等.(2) 所求的结果应符合生活实际.(3)以图表、信息的形式出现的实际问题,常用方程和不等式的方法解决.解决问题的关键要分析图表、信息,找出相等关系和不等关系,达到求解的目的.【中考考点讲评】考点1:一元一次不等式的解法此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小解没了.考点4:列不等式(组)解决实际问题【例题】(2018广西贵港)(8.00分)某中学组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?【分析】(1)设这批学生有x人,原计划租用45座客车y辆,根据“原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)找出每个学生都有座位时需要租两种客车各多少量,由总租金=每辆车的租金×租车辆数分别求出租两种客车各需多少费用,比较后即可得出结论.【对点导练】(2018哈尔滨)(10.00分)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.学%科网(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.考点5:不等式与其它知识的综合应用【例题】(2018湖南郴州)(8.00分)郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据总价=单价×购买数量结合总费用不超过900元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论.【分析】(1)根据题意分别求出每个不等式解集,根据口诀:大小小大中间找,确定两不等式解集的公共部分,即可得整数值.(2)根据分式的减法和除法可以化简题目中的式子,然后在0≤x≤4的范围内选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法与解一元一次不等式组的步骤.【中考易错警示】易错点1:利用不等式的基本性质3时不改不等号方向【分析】本题是关于x的不等式,应先只把x看成未知数,求得x 的解集,再根据数轴上的解集,来求得a的值.当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集进行判断,求得另一个字母的值.本题需注意,在不等式两边都除以一个负数时,应只改变不等号的方向,余下运算不受影响,该怎么算还怎么算.【考点】不等式的性质【解析】【分析】根据图形就可以得到重物A的质量的范围.由第一图可知A物体质量大于2千克,由第二图可知A物体质量小于3千克,故A物体质量范围是大于2千克且小于3千克.故应选C.解决问题的关键是读懂图意,进而找到所求的量的等量关系.8.(2018云南昆明)(8.00分)(列方程(组)及不等式解应用题)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?本题考查学生的应用能力,解题的关键是根据题意列出方程和不等式,本题属于中等题型.。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==中考数学三大解题的技巧新课标下的初中数学不仅要求学生牢固地掌握基础知识,更要求学生能够灵活地学习和解题。
因此,培养学生的数学解题能力是初中数学教学中的重要目标,也是学生顺利通过中考测评的必要手段。
下面是小编为大家带来的中考数学三大解题技巧,欢迎阅读。
一、不能大意失荆州——细心对待普通题目中考数学命题时会根据学生的整体素质进行试题难易程度的设置和比例分布,其中大部分的题目还是基于基础知识的分析和解答,如填空、选择以及一些简单的证明。
对于这些难度不高的基础题目,要求学生必须掌握。
201X年福建宁德中考数学第21题就是一道基础性较强的证明题,题目如下:如图,在梯形ABCD中,AD∥BC,E点是边BC的中点,AC、DE为四边形AECD的两条对角线,其中DE∥AB,AC=AB。
求证:四边形AECD为矩形。
第一步,理解题意,从题目中提取有用的信息。
这里有几个已知条件以及可以据此推导出的信息:(1)已知ABCD为梯形,AD∥BC;(2)点E是BC的中点,则BE=EC;(3)DE∥AB;加上条件(1)可知ABED为平行四边形,AB=DE,AD=BE=EC;(4)AC=AB说明△ABC为等腰三角形,且结合(3)可知AC=AB=DE;(5)由已知条件(2)和(3)结合起来可推导出AE⊥BC;(6)综合以上条件可知,四边形AECD为矩形。
第二步作答,作答过程需要正确地使用书写符号并表现出逻辑性,并且使用的性质、定理都要正确,具体书写内容如下:证明:∵AD∥BC,DE∥AB∴四边形ABED是平行四边形∴AD=BE∵点E是BC中点∴BE=EC=AD∴四边形AECD为平行四边形∵AB=AC,E为BC中点∴AE⊥BC,即∠AEC=90°∴平行四边形AECD为矩形第三步的检验过程需要注意检查所使用的定理是否正确,以及是否确实达到题目要求的证明目的。
2019年中考数学解题方法技巧大全各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢数学题有很多方法解,因此同学们要多掌握。
教育网小编给大家说说2019 数学解题方法技巧大全,欢迎大家阅读。
2019中考数学解题方法技巧大全1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
它是中学数学中常用的方法之一。
5、判别式法与韦达定理一元二次方程ax2+bx+c=0根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程,解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
2019年高考数学复习:破解难题的秘籍秘籍一:审题明确审题不清往往会导致错误的结果,或者浪费时间,特别是在考试中,浪费了时间就很可能做不完题目,导致丢分。
只有审好题才能答好题,审好题是解好题的前提和关键所在。
因此,要提高解题能力,就必须从学会审题开始。
如何提高自己的审题能力呢?1、提炼重点,培养审题的准确性在审题时,同学们要透过复杂的题干部分,找出重点,理解题意,特别要注意题目中的关键词语。
所谓关键词语,就是是题目涉及的数学知识,及具体数据,已知条件等,忽略了它们,往往使解题过程变得盲目,思维陷入困境。
2、充分挖掘,培养审题的深刻性有些题目的部分条件并不明确给出,而是隐含在文字叙述之中。
把隐含条件挖掘出米,常常是解题的关键所在,对题目隐含条件的挖掘,都要仔细思考除了明确给出的条件以外,是否还隐含着更多的条件,这样才能准确地理解题意。
3、善用图纸,培养审题的灵活性当题目的信息被感知时,我们可以将其中一部分信息用简短的形式记录在草稿纸上。
示意图是记录信息的一种极好的方式,它能整体地、动态地反映事物的运动变化过程。
睹图凝思实际上是视觉化思维参与了解题过程,问题就可以解决得更快,失误也更少。
秘籍二:运算为王不论多聪明的学生,遇到解析几何、代数运算的题目都需要一颗强大的运算头脑。
如果只有思维能力,没有运算能力,那么再强大的小宇宙也爆发不了。
运算能力是高中生必备的基本数学素养,也是高中生必须具备的最基础又是应用最广的一种能力。
不少学生在学习中眼高手低,一看题目会做、一想出解法思路就“Pass”,导致“思路会,算不对”或“会而不对,对而不全”。
事实上看懂了甚至想明白了并不意味着考试时就十拿九稳了。
1、准确理解和牢固掌握各种运算所需的概念、性质、公式、法则和一些常用数据概念模糊,公式、法则含混,必定影响运算的准确性。
为了提高运算的速度,收集、归纳、积累经验,形成熟练技巧,以提高运算的简捷性和迅速性。
2、加强运算练习为了有效的提高学生的运算能力就必须加强练习,练习要有目的性、系统性、典型性。
解答高考数学难题的技巧一、调理大脑思绪,提前进入数学情境考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
二、“内紧外松”,集中注意,消除焦虑怯场集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
三、沉着应战,确保旗开得胜,以利振奋精神良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。
四、“六先六后”,因人因卷制宜在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。
1.先易后难。
就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。
2.先熟后生。
通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的策略,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。