2020年中考数学 培优专题:四边形压轴专练(含答案)
- 格式:doc
- 大小:924.50 KB
- 文档页数:41
《四边形》1.【习题再现】课本中有这样一道题目:如图1,在四边形ABCD中,E,F,M分别是AB,CD,BD的中点,AD=BC.求证:∠EFM =∠FEM.(不用证明)【习题变式】(1)如图2,在“习题再现”的条件下,延长AD,BC,EF,AD与EF交于点N,BC与EF 交于点P.求证:∠ANE=∠BPE.(2)如图3,在△ABC中,AC>AB,点D在AC上,AB=CD,E,F分别是BC,AD的中点,连接EF并延长,交BA的延长线于点G,连接GD,∠EFC=60°.求证:∠AGD=90°.【习题变式】解:(1)∵F,M分别是CD,BD的中点,∴MF∥BP,,∴∠MFE=∠BPE.∵E,M分别是AB,BD的中点,∴ME∥AN,,∴∠MEF=∠ANE.∵AD=BC,∴ME=MF,∴∠EFM=∠FEM,∴∠ANE=∠BPE.(2)连接BD,取BD的中点H,连接EH,FH.∵H,F分别是BD和AD的中点,∴HF∥BG,,∴∠HFE=∠FGA.∵H,E分别是BD,BC的中点,∴HE∥AC,,∴∠HEF=∠EFC=60°.∵AB=CD,∴HE=HF,∴∠HFE=∠EFC=60°,∴∠A GF=60°,∵∠AFG=∠EFC=60°,∴△AFG为等边三角形.∴AF=GF,∵AF=FD,∴GF=FD,∴∠FGD=∠FDG=30°,∴∠AGD=60°+30°=90°.2.(1)问题:如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D为BC边上一点(不与点B,C重合),连接AD,过点A作AE⊥AD,并满足AE=AD,连接CE.则线段BD和线段CE的数量关系是BD=CE,位置关系是BD⊥CE.(2)探索:如图2,当D点为BC边上一点(不与点B,C重合),Rt△ABC与Rt△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,AB=AC,AD=AE.试探索线段BD2、CD2、DE2之间满足的等量关系,并证明你的结论;(3)拓展:如图3,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°,若BD=3,CD=1,请直接写出线段AD的长.解:(1)问题:在Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),故答案为:BD=CE,BD⊥CE;(2)探索:结论:DE2=BD2+CD2,理由是:如图2中,连接EC.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△ABD和△ACE中,∵,∵△BAD≌△CAE(SAS),∴BD=CE,∠B=∠ACE=45°,∴∠BCE=∠ACB+∠ACE=45°+45°=90°,∴DE2=CE2+CD2,∴DE2=BD2+CD2;(3)拓展:如图3,将AD绕点A逆时针旋转90°至AG,连接CG、DG,则△DAG是等腰直角三角形,∴∠ADG=45°,∵∠ADC=45°,∴∠GDC=90°,同理得:△BAD≌△CAG,∴CG=BD=3,Rt△CGD中,∵CD=1,∴DG===2,∵△DAG是等腰直角三角形,∴AD=AG=2.3.如图1,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.(1)BE和DG的数量关系是BE=DG,BE和DG的位置关系是BE⊥DG;(2)把正方形ECGF绕点C旋转,如图2,(1)中的结论是否还成立?若成立,写出证明过程,若不成立,请说明理由;(3)设正方形ABCD的边长为4,正方形ECGF的边长为3,正方形ECGF绕点C旋转过程中,若A、C、E三点共线,直接写出DG的长.解:(1)BE=DG.BE⊥DG;理由如下:∵四边形ABCD和四边形CEFG为正方形,∴CD=BC,CE=CG,∠BCE=∠DCG=90°,在△BEC和△DGC中,,∴△BEC≌△DGC(SAS),∴BE=DG;如图1,延长GD交BE于点H,∵△BEC≌△DGC,∴∠DGC=∠BEC,∴∠DGC+∠EBC=∠BEC+∠EBC=90°,∴∠BHG=90°,即BE⊥DG;故答案为:BE=DG,BE⊥DG.(2)成立,理由如下:如图2所示:同(1)得:△DCG≌△BCE(SAS),∴BE=DG,∠CDG=∠CBE,∵∠DME=∠BMC,∠CBE+∠BMC=90°,∴∠CDG+∠DME=90°,∴∠DOB=90°,∴BE⊥DG;(3)由(2)得:DG=EB,分两种情况:①如图3所示:∵正方形ABCD的边长为4,正方形ECGF的边长为3,∴AC⊥BD,BD=AC=AB=4,OA=OC=OB=AC=2,CE=3,∴AE=AC﹣CE=,∴OE=OA﹣AE=,在Rt△BOE中,由勾股定理得:DG=BE==;②如图4所示:OE=CE+OC=2+3=5,在Rt△BOE中,由勾股定理得:DG=BE==;综上所述,若A、C、E三点共线,DG的长为或.4.如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,动点D从点C出发,沿CA方向匀速运动,速度为2cm/s;同时,动点E从点A出发,沿AB方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.设点D,E运动的时间是t(s)(0<t<5).过点D作DF⊥BC于点F,连接DE,EF.(1)t为何值时,DE⊥AC?(2)设四边形AEFC的面积为S,试求出S与t之间的关系式;(3)是否存在某一时刻t,使得S四边形AEFC:S△ABC=17:24,若存在,求出t的值;若不存在,请说明理由;(4)当t为何值时,∠ADE=45°?解:(1)∵∠B=90o,AB=6 cm,BC=8 cm,∴AC===10(cm),若DE⊥AC,∴∠EDA=90°,∴∠EDA=∠B,∵∠A=∠A,∴△ADE∽△ABC,∴=,即:=,∴t=,∴当t=s时,DE⊥AC;(2)∵DF⊥BC,∴∠DFC=90°,∴∠DFC=∠B,∵∠C=∠C,∴△CDF∽△CAB,∴=,即=,∴CF=,∴BF=8﹣,BE=AB﹣AE=6﹣t,∴S=S△ABC﹣S△BEF=×AB•BC﹣×BF•BE=×6×8﹣×(8﹣t)×(6﹣t)=﹣t2+t;(3)若存在某一时刻t,使得S四边形AEFC:S△ABC=17:24,根据题意得:﹣t2+t=××6×8,解得:t1=,t2=(不合题意舍去),∴当t=s时,S四边形AEFC:S△ABC=17:24;(4)过点E作EM⊥AC与点M,如图所示:则∠EMA=∠B=90°,∵∠A=∠A,∴△AEM∽△ACB,∴==,即==,∴EM=t,AM=t,∴DM=10﹣2t﹣t=10﹣t,在Rt△DEM中,当DM=ME时,∠ADE=45°,∴10﹣t=t,∴t=∴当t=s时,∠ADE=45°.5.我们定义:如果两个等腰三角形的顶角相等,且项角的顶点互相重合,则称此图形为“手拉手全等模型”.因为顶点相连的四条边,形象的可以看作两双手,所以通常称为“手拉手模型”.例如,如图(1),△ABC与△ADE都是等腰三角形,其中∠BAC=∠DAE,则△ABD≌△ACE(SAS)(1)熟悉模型:如图(2),已知△ABC与△ADE都是等腰三角形,AB=AC,AD=AE,且∠BAC=∠DAE,求证:BD=CE;(2)运用模型:如图(3),P为等边△ABC内一点,且PA:PB:PC=3:4:5,求∠APB 的度数.小明在解决此问题时,根据前面的“手拉手全等模型”,以BP为边构造等边△BPM,这样就有两个等边三角形共顶点B,然后连结CM,通过转化的思想求出了∠APB的度数,则∠APB的度数为150 度;(3)深化模型:如图(4),在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC =45°,求BD的长.(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE;(2)解:以BP为边构造等边△BPM,连接CM,如图(3)所示:∵△ABC与△BPM都是等边三角形,∴AB=BC,BP=BM=PM,∠ABC=∠PBM=∠BMP=60°,∴∠ABC﹣∠PBC=∠PBM﹣∠PBC,即∠ABP=∠CBM,在△ABP和△CBM中,,∴△ABP≌△CBM(SAS),∴AP=CM,∠APB=∠CMB,∵PA:PB:PC=3:4:5,∴CM:PM:PC=3:4:5,∴PC2=CM2+PM2,∴△CMP是直角三角形,∴∠PMC=90°,∴∠CMB=∠BMP+∠PMC=60°+90°=150°,∴∠APB=150°,故答案为:150;(3)解:过点A作EA⊥AD,且AE=AD,连接CE,DE,如图(4)所示:则△ADE是等腰直角三角形,∠EAD=90°,∴DE=AD=4,∠EDA=45°,∵∠ADC=45°,∴∠EDC=45°+45°=90°,在Rt△DCE中,CE===,∵∠ACB=∠ABC=45°,∴∠BAC=90°,AB=AC,∵∠BAC+∠CAD=∠EAD+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=.6.(1)某学校“学习落实”数学兴趣小组遇到这样一个题目如图,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO =2:1,求AB的长经过数学小组成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2)请回答:∠ADB=75 °,AB=3(2)请参考以上解决思路,解决问题:如图3在四边形ABCD中对角线AC与BD相交于点0,AC⊥AD,AO=,∠ABC=∠ACB =75°,BO:OD=2:1,求DC的长解:(1)如图2中,过点B作BD∥AC,交AO的延长线于点D,∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴==2,.又∵AO=,∴OD=2AO=2,∴AD=AO+OD=3.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°﹣∠BAD﹣∠ADB=75°=∠ADB,∴AB=AD=3;故答案为75,3.(2)如图3中,过点B作BE∥AD交AC于点E.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴===2.∵BO:OD=1:3,∵AO=,∴EO=2,∴AE=3.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4BE2)2+BE2=(2BE)2,解得:BE=3,∴AB=AC=6,AD=在Rt△CAD中,AC2+AD2=CD2,即62+()2=CD2,解得:CD=(负根已经舍弃).7.正方形ABCD中,AB=4,点E、F分别在AB、BC边上(不与点A、B重合).(1)如图1,连接CE,作DM⊥CE,交CB于点M.若BE=3,则DM= 5 ;(2)如图2,连接EF,将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;再将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;依此操作下去…,①如图3,线段EF经过两次操作后拼得△EFD,其形状为等边三角形,在此条件下,求证:AE=CF;②若线段EF经过三次操作恰好拼成四边形EFGH,(3)请判断四边形EFGH的形状为正方形,此时AE与BF的数量关系是AE=BF;(4)以1中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围.解:(1)如图1中,∵四边形ABCD是正方形,∴∠B=∠DCM=90°,∵BE=3,BC=4,∴CE===5,∵DM⊥EC,∴∠DMC+∠MCE=90°,∠MCE+∠CEB=90°,∴∠DMC=∠CEB,∵BC=CD,∴△BCE≌△CDM(AAS),∴DM=EC=5.故答案为5.(2)如题图3,由旋转性质可知EF=DF=DE,则△DEF为等边三角形.故答案为等边三角形.(2)①四边形EFGH的形状为正方形,此时AE=BF.理由如下:依题意画出图形,如答图1所示:连接EG、FH,作HN⊥BC于N,GM⊥AB于M.由旋转性质可知,EF=FG=GH=HE,∴四边形EFGH是菱形,由△EGM≌△FHN,可知EG=FH,∴四边形EFGH的形状为正方形.∴∠HEF=90°∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3.∵∠3+∠4=90°,∠2+∠3=90°,∴∠2=∠4.在△AEH与△BFE中,,∴△AEH≌△BFE(ASA)∴AE=BF.故答案为正方形,AE=BF.(4)利用①中结论,易证△AEH、△BFE、△CGF、△DHG均为全等三角形,∴BF=CG=DH=AE=x,AH=BE=CF=DG=4﹣x.∴y=S正方形ABCD﹣4S△AEH=4×4﹣4×x(4﹣x)=2x2﹣8x+16.∴y=2x2﹣8x+16(0<x<4)∵y=2x2﹣8x+16=2(x﹣2)2+8,∴当x=2时,y取得最小值8;当x=0时,y=16,∴y的取值范围为:8≤y<16.8.已知:如图1,在平面直角坐标系中,长方形OABC的顶点B的坐标是(6,4).(1)直接写出A点坐标( 6 ,0 ),C点坐标(0 , 4 );(2)如图2,D为OC中点.连接BD,AD,如果在第二象限内有一点P(m,1),且四边形OADP的面积是△ABC面积的2倍,求满足条件的点P的坐标;(3)如图3,动点M从点C出发,以每钞1个单位的速度沿线段CB运动,同时动点N 从点A出发.以每秒2个单位的速度沿线段AO运动,当N到达O点时,M,N同时停止运动,运动时间是t秒(t>0),在M,N运动过程中.当MN=5时,直接写出时间t的值.解:(1)∵四边形OABC是长方形,∴AB∥OC,BC∥OA,∵B(6,4),∴A(6,0),C(0,4),故答案为:6,0,0,4;(2)如图2,由(1)知,A(6,0),C(0,4),∴OA=6,OC=4,∵四边形OABC是长方形,∴S长方形OABC=OA•OC=6×4=24,连接AC,∵AC是长方形OABC的对角线,∴S△OAC=S△ABC=S长方形OABC=12,∵点D是OC的中点,∴S△OAD=S△OAC=6,∵四边形OADP的面积是△ABC面积的2倍,∴S四边形OADP=2S△ABC=24,∵S四边形OADP=S△OAD+S△ODP=6+S△ODP=24,∴S△ODP=18,∵点D是OC的中点,且OC=4,∴OD=OC=2,∵P(m,1),∴S△ODP=OD•|m|=×2|m|=18,∴m=18(由于点P在第二象限,所以,m小于0,舍去)或m=﹣18,∴P(﹣18,1);(3)如图3,由(2)知,OA=6,OC=4,∵四边形OABC是长方形,∴∠AOC=∠OCB=90°,BC=6,由运动知,CM=t,AN=2t,∴ON=OA﹣AN=6﹣2t,过点M作MH⊥OA于H,∴∠OHM=90°=∠AOC=∠OCB,∴四边形OCMH是长方形,∴MH=OC=4,OH=CM=t,∴HN=|ON﹣CM|=6﹣2t﹣t|=|6﹣3t|,在Rt△MHN中,MN=5,根据勾股定理得,HN2=MN2﹣MH2,∴|6﹣3t|2=52﹣42=9,∴t=1或t=3,即:t的值为1或3.9.综合与实践问题情境数学课上,李老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB =2,PC=3.你能求出∠APB的度数吗?(1)小敏与同桌小聪通过观察、思考、讨论后,得出了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP'A,连接PP',求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP',求出∠APB的度数.请参考以上思路,任选一种写出完整的解答过程.类比探究(2)如图2,若点P是正方形ABCD外一点,PA=3,PB=1,,求∠APB的度数.拓展应用(3)如图3,在边长为的等边三角形ABC内有一点O,∠AOC=90°,∠BOC=120°,则△AOC的面积是.解:(1)思路一,如图1,将△BPC绕点B逆时针旋转90°,得到△BP'A,连接PP',则△ABP'≌△CBP,AP'=CP=3,BP'=BP=2,∠PBP'=90°∴∠BPP'=45°,根据勾股定理得,,∵AP=1,∴AP2+P'P2=1+8=9,又∵P'A2=32=9,∴AP2+P'P2=P'A2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'+∠BPP'=90°+45°=135°.思路二、同思路一的方法.(2)如图2,将△BPC绕点B逆时针旋转90°,得到△BP'A,连接PP'.则△ABP'≌△CBP,,BP'=BP=1,∠PBP'=90°∴∠BPP'=45°,根据勾股定理得,,∵AP=3,∴AP2+P'P2=9+2=11,又∵,∴AP2+P'P2=P'A2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'﹣∠BPP'=90°﹣45°=45°.(3)如图,将△ABO绕点B顺时针旋转60°,得到△BCE,连接OE.则△BAO≌△BCE,∠AOB=∠BEC=360°﹣90°﹣120°=150°,∵△BOE是等边三角形,∴∠BEO=∠BOE=60°,∴∠OEC=90°,∠OEC=120°﹣60°=60°,∴sin60°==,设EC=k,OC=2k,则OA=EC=k,∵∠AOC=90°,∴OA2+OC2=AC2,∴3k2+4k2=7,∴k=1或﹣1(舍弃),∴OA=,OC=2,∴S△AOC=•OA•OC=××2=.故答案为.10.如图1,在矩形ABCD中,点P是BC边上一点,连接AP交对角线BD于点E,BP=BE.作线段AP的中垂线MN分别交线段DC,DB,AP,AB于点M,G,F,N.(1)求证:∠BAP=∠BGN;(2)若AB=6,BC=8,求;(3)如图2,在(2)的条件下,连接CF,求tan∠CFM的值.(1)证明:如图1中,∵四边形ABCD是矩形,∴∠ABC=90°,∴∠BAP=∠APB=90°∵BP=BE,∴∠APB∠BEP=∠GEF,∵MN垂直平分线段AP,∴∠GFE=90°,∴∠BGN+∠GEF=90°,∴∠BAP=∠BGN.(2)解:∵四边形ABCD是矩形,∴∠BAD=∠ABP=90°,AD∥BC,AD=BC=8,∴BD===10,∵AD∥BC,∴∠DAE=∠APB,∵∠APB=∠BEP=∠DEA,∴∠DAE=∠DEA,∴DA=DE=8,∴BE=BP=BD﹣DE=10﹣8=2,∴PA===2,∵MN垂直平分线段AP,∴AF=PF=,∵PB∥AD,∴===,∴PE=PA=,∴EF=PF﹣PE=﹣=,∴==.(3)解:如图3中,连接AM,MP.设CM=x.∵四边形AB CD是矩形,∴∠ADM=∠MCP=90°,AB=CD=6,AD=BC=8,∵MN垂直平分线段AP,∴MA=MP,∴AD2+DM2=PC2+CM2,∴82+(6﹣x)2=62+x2,∴x=,∵∠PFM=∠PCM=90°,∴P,F,M,C四点共圆,∴∠CFM=∠CPM,∴tan∠CFM=tan∠CFM===.11.在利用构造全等三角形来解决的问题中,有一种典型的利用倍延中线的方法,例如:在△ABC中,AB=8,AC=6,点D是BC边上的中点,怎样求AD的取值范围呢?我们可以延长AD到点E,使AD=DE,然后连接BE(如图①),这样,在△ADC和△EDB中,由于,∴△ADC≌△EDB,∴AC=EB,接下来,在△ABE中通过AE的长可求出AD的取值范围.请你回答:(1)在图①中,中线AD的取值范围是1<AD<7 .(2)应用上述方法,解决下面问题①如图②,在△ABC中,点D是BC边上的中点,点E是AB边上的一点,作DF⊥DE交AC边于点F,连接EF,若BE=4,CF=2,请直接写出EF的取值范围.②如图③,在四边形ABCD中,∠BCD=150°,∠ADC=30°,点E是AB中点,点F在DC上,且满足BC=CF,DF=AD,连接CE、ED,请判断CE与ED的位置关系,并证明你的结论.解:(1)延长AD到点E,使AD=DE,连接BE,如图①所示:∵点D是BC边上的中点,∴BD=CD,在△A DC和△EDB中,,∴△ADC≌△EDB(SAS),∴AC=EB=6,在△ABE中,AB﹣BE<AE<AB+BE,∴8﹣6<AE<8+6,即2<AE<14,∴1<AD<7,故答案为:1<AD<7;(2)①延长ED到点N,使ED=DN,连接CN、FN,如图②所示:∵点D是BC边上的中点,∴BD=CD,在△NDC和△EDB中,中,,∴△NDC≌△EDB(SAS),∴BE=CN=4,∵DF⊥DE,ED=DN,∴EF=FN,在△CFN中,CN﹣CF<FN<CN+CF,∴4﹣2<FN<4+2,即2<FN<6,∴2<EF<6;②CE⊥ED;理由如下:延长CE与DA的延长线交于点G,如图③所示:∵点E是AB中点,∴BE=AE,∵∠BCD=150°,∠ADC=30°,∴DG∥BC,∴∠GAE=∠CBE,在△GAE和△CBE中,,∴△GAE≌△CBE(ASA),∴GE=CE,AG=BC,∵BC=CF,DF=AD,∴CF+DF=BC+AD=AG+AD,即:CD=GD,∵GE=CE,12.如图,在平行四边形ABCD中,AB⊥AC,对角线AC、BD相交于点O,将直线AC绕点O 顺时针旋转一个角度α(0°<α≤90°),分别交线段BC、AD于点E、F,已知AB=1,,连接BF.(1)如图①,在旋转的过程中,请写出线段AF与EC的数量关系,并证明;(2)如图②,当α=45°时,请写出线段BF与DF的数量关系,并证明;(3)如图③,当α=90°时,求△BOF的面积.解:(1)AF=CE;理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,AO=CO,∴∠FAO=∠ECO,∴在△AFO与△CEO中,,∴△AFO≌△CEO(ASA),(2)BF=DF;理由如下:∵AB⊥AC,∴∠BAC=90°,∴AC===2,∵四边形ABCD是平行四边形,∴BO=DO,AO=CO=AC=1,∴AB=AO,又∵AB⊥AC,∴∠AOB=45°,∵α=45°,∠AOF=45°,∴∠BOF=∠AOB+∠AOF=45°+45°=90°,∴EF⊥BD,∵BO=DO,∴BF=DF;(3)∵AB⊥AC,∴∠CAB=90°,∴∠CAB=∠AOF=α=90°,∴AB∥EF,∵四边形ABCD是平行四边形,∴AF∥BE,∴四边形ABEF是平行四边形,∴AB=EF=1,由(1)得:△AFO≌△CEO,∴OF=OE=EF=,由(2)得:AO=1,∵AB∥EF,AO⊥EF,∴S△BOF=S△AOF=AO•OF=×1×=.13.综合与实践(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.请写出∠AEB的度数及线段AD,BE之间的数量关系,并说明理由.(2)类比探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE.填空:①∠AEB的度数为90°;②线段CM,AE,BE之间的数量关系为AE=BE+2CM.(3)拓展延伸在(2)的条件下,若BE=4,CM=3,则四边形ABEC的面积为35 .解:(1)∠AEB=60°,AD=BE,理由如下:∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.AD=BE,∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.(2)猜想:①∠AEB=90°,②AE=BE+2CM.理由如下:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.故答案为:90°,AE=BE+2CM;(3)由(2)得:∠AEB=90°,AD=BE=4,∵△DCE均为等腰直角三角形,CM为△DCE中DE边上的高,∴CM⊥AE,DE=2CM=6,∴AE=AD+DE=4+6=10,∴四边形ABEC的面积=△ACE的面积+△ABE的面积=AE×CM+AE×BE=×10×3+×10×4=35;故答案为:35.14.如图,正方形OABC的边长为8,P为OA上一点,OP=2,Q为OC边上的一个动点,分别以OP\PQ为边在正方形OABC内部作等边三角形OPD和等边三角形PQE.(1)证明:DE=OQ;(2)直线ED与OC交于点F,点Q在运动过程中.①∠EFC的度数是否发生改变?若不变,求出这个角的度数;若改变,说明理由;②连结AE,求AE的最小值.(1)证明:如图1中,∵△OPD和△PQE是等边三角形,∴PO=PD,PQ=PE,∠OPD=∠QPE=60°,∴∠OPQ=∠DPE,∴△OPQ≌△DPE(SAS),∴DE=OQ.(2)①∵△OPQ≌△DPE,∴∠EDP=∠POQ=90°,∵∠DOP=∠ODP=60°∴∠FDO=∠FDO=30°,∴∠EFC=∠FOC+∠FDO=60°.②如图2中,当点Q与点C重合时,以PQ为边作正三角形PQM.∵∠EFC=60°为定值,点E的运动路径为线段DM,过点P作PH⊥EA,垂足为H,∴当AE⊥DE时,AE的值最小∵∠PDE=∠DEH=∠PHE=90°,∴四边形PDEH是矩形,∴∠DPH=90°,EH=PD=2,∴EH=DP=2,在△PHA中,∠AHP=90°,∠HPA=30°∴AH=PA=3,∴AE=EH+AH=2+3=5.15.我们把对角线互相垂直的四边形叫做垂直四边形.(1)如图1,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂直四边形吗?请说明理由;(2)如图2,四边形ABCD是垂直四边形,求证:AD2+BC2=AB2+CD2;(3)如图3,Rt△ABC中,∠ACB=90°,分别以AC、AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,BC=3,求GE长.(1)解:四边形ABCD是垂直四边形;理由如下:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂直四边形;(2)证明:设AC、BD交于点E,如图2所示:∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得:AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+DE2+CE2,∴AD2+BC2=AB2+CD2;(3)解:连接CG、BE,如图3所示:∵正方形ACFG和正方形ABDE,∴AG=AC,AB=AE,CG=AC=4,BE=AB,∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∵∠AEC+∠CEB+∠ABE=90°,∴∠ABG+∠CEB+∠ABE=90°,即CE⊥BG,∴四边形CGEB是垂直四边形,由(2)得,CG2+BE2=BC2+GE2,∵AC=4,BC=3,∴AB===5,BE=AB=5,∴GE2=CG2+BE2﹣BC2=(4)2+(5)2﹣32=73,∴GE=.。
2020年九年级数学典型中考压轴题训练《四边形》1.如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD 的外部以AB为边作等边三角形ABE.点F是对角线BD上一动点(点F不与点B重合),将线段AF绕点A 顺时针方向旋转60°得到线段AM,连接FM.(1)线段AO的长为;(2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AM=AC;(3)连接EM.若△AFM的周长为3,请直接写出△AEM的面积.2.如图1,在矩形ABCD中,AB=8,AD=10,E是CD边上一点,连接AE,将矩形ABCD沿AE折叠,顶点D恰好落在BC边上点F处,延长AE交BC的延长线于点G.(1)求线段CE的长;(2)如图2,M,N分别是线段AG,DG上的动点(与端点不重合),且∠DMN=∠DAM,设DN=x.①求证四边形AFGD为菱形;②是否存在这样的点N,使△DMN是直角三角形?若存在,请求出x的值;若不存在,请说明理由.3.将一个正方形纸片AOBC放置在平面直角坐标系中,点A(0,4),点O(0,0),B(4,0),C(4,4)点.动点E在边AO上,点F在边BC上,沿EF折叠该纸片,使点O的对应点M始终落在边AC上(点M不与A,C重合),点B落在点N处,MN与BC交于点P.(Ⅰ)如图①,当∠AEM=30°时,求点E的坐标;(Ⅱ)如图②,当点M落在AC的中点时,求点E的坐标;(Ⅲ)随着点M在AC边上位置的变化,△MPC的周长是否发生变化?如变化,简述理由;如不变,直接写出其值.4.(1)【问题发现】如图1,在Rt△ABC中,AB=AC=4,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为;(2)【拓展研究】在(1)的条件下,如果正方形CDEF绕点C旋转,当点B,E,F三点共线时,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;(3)【问题发现】当正方形CDEF旋转到B,E,F三点共线时,求线段AF的长.5.(1)如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.①∠AEB的度数为;②线段AD,BE之间的数量关系为;(2)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E 在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并证明你的结论;(3)如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离为.6.如图1,长方形ABCD中,∠DAB=∠B=∠DCB=∠D=90°,AD=BC=6,AB=CD=10.点E为射线DC上的一个动点,把△ADE沿直线AE翻折得△AD′E.(1)当D′点落在AB边上时,∠DAE=°;(2)如图2,当E点与C点重合时,D′C与AB交点F,①求证:AF=FC;②求AF长.(3)连接D′B,当∠AD′B=90°时,求DE的长.7.类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解:如图1,在四边形ABCD中,添加一个条件,使得四边形ABCD是“等邻边四边形”,请写出你添加的一个条件;(2)概念延伸:下列说法正确的是(填入相应的序号)①对角线互相平分的“等邻边四边形”是菱形;②一组对边平行,另一组对边相等的“等邻边四边形”是菱形;③有两个内角为直角的“等邻边四边形”是正方形;④一组对边平行,另一组对边相等且有一个内角是直角的“等邻边四边形”是正方形;(3)问题探究:如图2,小红画了一个Rt△ABC,其中∠ABC=90°,AB=4,BC=3,并将Rt△ABC沿∠B 的平分线BB'方向平移得到△A'B'C′,连结AA′,BC′,小红要使平移后的四边形ABC′A′是“等邻边四边形”应平移多少距离(即线段BB'的长)?8.问题背景:(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC.CD上的点且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG.再证明≌,可得出结论,他的结论应是.请你按照小王同学的思路写出完整的证明过程.实际应用(2)如图2,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的一处,舰艇乙在指挥中心南偏东70°的B处,且两舰艇到指挥中心的距离相等接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里,小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处.且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离是海里(直接写出答案).9.在菱形ABCD中,∠MDN的两边分别与AB,BC交于点E,F,与对角线AC交于点G,H,已知∠MDN=∠BAD=60°,AC=6.(1)如图1,当DE⊥AB,DF⊥BC时,①求证:△ADE≌△CDF;②求线段GH的长;(2)如图2,当∠MDN绕点D旋转时,线段AG,GH,HC的长度都在变化.设线段AG=m,GH=p,HC=n,试探究p与mn的等量关系,并说明理由.10.如图,现有一张边长为8的正方形纸片ABCD,点P为AD边上的一点(不与点A、点D 重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连结BP、BH.(1)求证:∠APB=∠BPH;(2)求证:AP+HC=PH;(3)当AP=2时,求PH的长.11.如图,已知点B(a,b),且a,b满足|2a+b﹣13|+=0.过点B分别作BA⊥x轴、BC⊥y轴,垂足分别是点A、C.(1)求出点B的坐标;(2)点M是边OA上的一个动点(不与点A重合),∠CMA的角平分线交射线CB于点N,在点M运动过程中,的值是否变化?若不变,求出其值;若变化,说明理由;(3)在四边形OABC的边上是否存在点P,使得BP将四边形OABC分成面积比为1:4的两部分?若存在,请直接写出点P的坐标;若不存在,说明理由.12.在△ABC中,AB=AC,点M在BA的延长线上,点N在BC的延长线上,过点C作CD∥AB 交∠CAM的平分线于点D.(1)如图1,求证:四边形ABCD是平行四边形;(2)如图2,当∠ABC=60°时,连接BD,过点D作DE⊥BD,交BN于点E,在不添加任何辅助线的情况下,请直接写出图2中四个三角形(不包含△CDE),使写出的每个三角形的面积与△CDE的面积相等.13.问题探究,(1)如图①,在矩形ABCD中,AB=2AD,P为CD边上的中点,试比较∠APB和∠ADB的大小关系,并说明理由;(2)如图②,在正方形ABCD中,P为CD上任意一点,试问当P点位于何处时∠APB最大?并说明理由;问题解决(3)某儿童游乐场的平面图如图③所示,场所工作人员想在OD边上点P处安装监控装置,用来监控OC边上的AB段,为了让监控效果最佳,必须要求∠APB最大,已知:∠DOC =60°,OA=400米,AB=200米,问在OD边上是否存在一点P,使得∠APB最大,若存在,请求出此时OP的长和∠APB的度数;若不存在,请说明理由.14.探索发现:如图①,△DEC与△ABC均为等腰直角三角形,∠E=∠ABC=90°,点A在边CD上,B在边EC上,把△DEC绕C点旋转α(0°<α<180°)得到图②,在图②中连接AD、BE交于点P,则图②中:(1)∠APB=;△BCE与△ACD的关系为.(2)连接图②中的AE、BD,如图③所示,若CE=3BC=3,则在旋转的过程中,四边形ABDE的面积是否存在最大值?若存在,请求出最大值并说明理由;若不存在,请说明理由;创新应用:(3)如图④,四边形ABCE中,AB=BC,∠ABC=90°,CE=2,AE=4,连接BE,请求出BE的最大值,并说明理由.(4)如图⑤,BE、AC为四边形ABCE的对角线,CE=2,∠CAE=60°,∠CAB=90°,∠CBA=30°,连接BE,请直接写出BE的最大值.15.已知正方形OABC在平面直角坐标系中,点A,C分别在x轴,y轴的正半轴上,等腰直角三角形OEF 的直角顶点O 在原点,E ,F 分别在OA ,OC 上,且OA =4,OE =2.将△OEF 绕点O 逆时针旋转,得△OE 1F 1,点E ,F 旋转后的对应点为E 1,F 1. (Ⅰ)①如图①,求E 1F 1的长;②如图②,连接CF 1,AE 1,求证△OAE 1≌△OCF 1;(Ⅱ)将△OEF 绕点O 逆时针旋转一周,当OE 1∥CF 1时,求点E 1的坐标(直接写出结果即可).16.如图,在平面直角坐标系中,已知矩形AOBC的顶点C的坐标是(2,4),动点P从点A出发,沿线段AO向终点O运动,同时动点Q从点B出发,沿线段BC向终点C运动.点P、Q的运动速度均为每秒1个单位,过点P作PE⊥AO交AB于点E,一点到达,另一点即停.设点P的运动时间为t秒(t>0).(1)填空:用含t的代数式表示下列各式AP=,CQ=.(2)①当PE=时,求点Q到直线PE的距离.②当点Q到直线PE的距离等于时,直接写出t的值.(3)在动点P、Q运动的过程中,点H是矩形AOBC(包括边界)内一点,且以B、Q、E、H为顶点的四边形是菱形,直接写出点H的横坐标.参考答案1.解:(1)∵四边形ABCD是菱形,∴AC⊥BD,OB=BD=12,在Rt△AOB中,AB=13,根据勾股定理得,AO===5,故答案为5;(2)由旋转知,AM=AF,∠MAF=60°,∴△AMF是等边三角形,∴∠AFM=60°,∵点M,F,C三点在同一条直线上,∴∠AFC=180°﹣∠AFM=120°,∵菱形ABCD的对角线AC与BD相交于O,∴OA=OC=AC,在△AOF和△COF中,,∴△AOF≌△COF(SAS),∴∠AFO=∠AFC=60°,在Rt△AOF中,sin∠AFO=,AF===OA=AC,∴AM=AC;(3)如图,由(2)知,△AMF是等边三角形,∵△AFM的周长为3,∴AF=,在Rt△AOF中,根据勾股定理得,OF==2,∴BF=OB﹣OF=12﹣2=10,连接EM,∵△ABE是等边三角形,∴AE=AB=13,∠BAE=60°,由(1)知,AM=AF,∠FAM=60°,∴∠BAE=∠EAM,∴∠EAM=∠BAF,∴△AEM≌△ABF(SAS),∴EM=BF=10,∠AEM=∠ABF,过点M作MN⊥AE于N,∴∠MNE=∠AOB=90°,∴△MNE∽△AOB,∴,∴,∴MN=,=AE•MN=×13×=25.∴S△AEM2.(1)解:如图1中,∵四边形ABCD是矩形,∴AD=BC=10,AB=CD=8,∴∠B=∠BCD=90°,由翻折可知:AD=AF=10.DE=EF,设EC=x,则DE=EF=8﹣x.在Rt△ABF中,BF===6,∴CF=BC﹣BF=10﹣6=4,在Rt△EFC中,则有:(8﹣x)2=x2+42,∴x=3,∴EC=3.(2)①证明:如图2中,∵四边形ABCD是矩形,∴AD∥BG,∴∠DAG=∠AGB,∵∠DAG=∠GAF,∴∠GAF=∠AGF,∴AF=FG,∵AD=AF,∴AD=FG,∵AD∥FG,∴四边形AFGD是平行四边形,∵FA=FG,∴四边形AFGD是菱形.②解:∵△DMN是直角三角形,∠DMN=∠DAG<90°,∴只有∠MDN=90°或∠MND=90°.如图3﹣1中,当∠MDN=90°时,∵AD∥CG,∴=,∴=,∴CG=6,∴BG=BC+CG=16,在Rt△ABG中,AG===8,在Rt△DCG中,DG===10,∵AD=DG=10,∴∠DAG=∠AGD,∵∠DAG+∠DEA=90°,∠DGA+∠DMG=90°,∴∠DME=∠DEM,∴DM=DE=5,∵∠MDN=∠MDG,∠DMN=∠DGM,∴△DMN∽△DGM,∴=,∴=,∴x=,如图3﹣2中,当∠MND=90°时,∵∠DGM+∠NMG=90°,∠DMN=∠DGM,∴∠DMN+∠NMG=90°,∴DM⊥AG,∵AD=DG=10,∴AM=MG=4,∴DM===2,∵△DMN∽△DGM,∴=,∴=,∴x=2,综上所述,满足条件的x的值为或2.3.解:(Ⅰ)如图①,∵四边形ABCD是正方形,∴∠EAM=90°.由折叠知OE=EM.设OE=x,则EM=OE=x,AE=x,∴AE+OE=OA,即x+x=4,∴x=16﹣8.∴E(0,16﹣8);(Ⅱ)如图②,∵点M是边AC的中点,∴AM=AC=2.设OE=m,则EM=OE=m,AE=4﹣m,在Rt△AEM中,EM2=AM2+AE2,即x2=22+(4﹣x)2,解得x=.∴E(0,);(Ⅲ)△MPC的周长不变,为8.理由:设AM=a,则OE=EM=b,MC=4﹣a,在Rt△AEM中,由勾股定理得AE2+AM2=EM2,(4﹣b)2+a2=b2,解得16+a2=8b.∴16﹣a2=8(4﹣b)∵∠EMP=90°,∠A=∠D,∴Rt△AEM∽Rt△CMP,∴=,即=,解得DM+MP+DP===8.∴△CMP的周长为8.4.解:(1)在Rt△ABC中,AB=AC=4,根据勾股定理得,BC=AB=4,点D为BC的中点,∴AD=BC=2,∵四边形CDEF是正方形,∴AF=EF=AD=2,∵BE=AB=4,∴BE=AF,故答案为BE=AF;(2)无变化;如图2,在Rt△ABC中,AB=AC=4,∴∠ABC=∠ACB=45°,∴sin∠ABC==,在正方形CDEF中,∠FEC=∠FED=45°,在Rt△CEF中,sin∠FEC==,∴=,∵∠FCE=∠ACB=45°,∴∠FCE﹣∠ACE=∠ACB﹣∠ACE,∴∠FCA=∠ECB,∴△ACF∽△BCE,∴==,∴BE=AF,∴线段BE与AF的数量关系无变化;(3)当点E在线段AF上时,如图2,由(1)知,CF=EF=CD=2,在Rt△BCF中,CF=2,BC=4,根据勾股定理得,BF=2,∴BE=BF﹣EF=2﹣2,由(2)知,BE=AF,∴AF=2﹣2,当点E在线段BF的延长线上时,如图3,在Rt△ABC中,AB=AC=4,∴∠ABC=∠ACB=45°,∴sin∠ABC==,在正方形CDEF中,∠FEC=∠FED=45°,在Rt△CEF中,sin∠FEC==,∴=,∵∠FCE=∠ACB=45°,∴∠FCB+∠ACB=∠FCB+∠FCE,∴∠FCA=∠ECB,∴△ACF∽△BCE,∴==,∴BE=AF,由(1)知,CF=EF=CD=2,在Rt△BCF中,CF=2,BC=4,根据勾股定理得,BF=2,∴BE=BF+EF=2+2,由(2)知,BE=AF,∴AF=2+2.即:当正方形CDEF旋转到B,E,F三点共线时候,线段AF的长为2﹣2或2+2.5.解:(1)①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,∵,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.故答案为:60°.②∵△ACD≌△BCE,∴AD=BE.故答案为:AD=BE.(2)∠AEB=90°,AE=BE+2CM.理由:如图2,∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.(3)点A到BP的距离为或.理由如下:∵PD=1,∴点P在以点D为圆心,1为半径的圆上.∵∠BPD=90°,∴点P在以BD为直径的圆上.∴点P是这两圆的交点.①当点P在如图3①所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交BP于点E,如图3①.∵四边形ABCD是正方形,∴∠ADB=45°.AB=AD=DC=BC=,∠BAD=90°.∴BD=.∵DP=1,∴BP=.∵∠BPD=∠BAD=90°,∴A、P、D、B在以BD为直径的圆上,∴∠APB=∠ADB=45°.∴△PAE是等腰直角三角形.又∵△BAD是等腰直角三角形,点B、E、P共线,AH⊥BP,∴由(2)中的结论可得:BP=2AH+PD.∴=2AH+1.∴AH=.②当点P在如图3②所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交PB的延长线于点E,如图3②.同理可得:BP=2AH﹣PD.∴=2AH﹣1.∴AH=.综上所述:点A到BP的距离为或.6.解:(1)由题意知△ADE≌△AD′E,∴∠DAE=∠D′AE,∵D′点落在AB边上时,∠DAE+∠D′AE=90°,∴∠DAE=∠D′AE=45°,故答案为:45;(2)①如图2,由题意知∠ACD=∠ACD′,∵四边形ABCD是矩形,∴AB∥CD,∴∠ACD=∠BAC,∴∠ACD′=∠BAC,∴AF=FC;②设AF=FC=x,则BF=10﹣x,在Rt△BCF中,由BF2+BC2=CF2得(10﹣x)2+62=x2,解得x=6.8,即AF=6.8;(3)如图3,∵△AD′E≌△ADE,∴∠AD′E=∠D=90°,∵∠AD′B=90°,∴B、D′、E三点共线,又∵△ABD′∽△BEC,AD′=BC,∴△ABD′≌△BEC,∴BE=AB=10,∵BD′===8,∴DE=D′E=10﹣8=2;如图4,∵∠ABD″+∠CBE=∠ABD″+∠BAD″=90°,∴∠CBE=∠BAD″,在△ABD″和△BEC中,∵,∴△ABD″≌△BEC,∴BE=AB=10,∴DE=D″E=8+10=18.综上所知,DE=2或18.7.解:(1)AB=BC或BC=CD或AD=CD或AB=AD.答案:AB=AD.(2)①正确,理由为:∵四边形的对角线互相平分,∴这个四边形是平行四边形,∵四边形是“等邻边四边形”,∴这个四边形有一组邻边相等,∴这个“等邻边四边形”是菱形;②正确,理由为:一组对边平行,另一组对边相等可得到:两组对边相等,则该四边形是平行四边形,所以根据“邻边相等的平行四边形为菱形”推知:一组对边平行,另一组对边相等的“等邻边四边形”是菱形;③不正确,理由为:有两个内角为直角的“等邻边四边形”不是平行边形时,该结论不成立;④正确,理由为:一组对边平行,另一组对边相等可得到:两组对边相等,则该四边形是平行四边形,所以根据“邻边相等的平行四边形为菱形”推知:一组对边平行,另一组对边相等的“等邻边四边形”是菱形;再由由一内角是直角的菱形为正方形推知,④的说法正确.故答案是:①③④;(2)由平移可知:BB′∥CC′,且BB′=CC′,∴四边形B′BCC′是平行四边形.当BC=CC′=2时,此时BB′=2;当A′C′=CC′=AC===2时,BB′=2;当A′C′=A′B=2时,延长A′B′交BC延长线于D.设BD=x由于AB∥A′B′,∠ABC=90°∴∠A′DB=90°,△B′DB是直角三角形.又∵BB′是∠ABC的角平分线,∴∠B′BD=∠BB′D=45°,∴B′D=BD=x.∴A′B2=BD2+A′D2,即(x+4)2+x2=20,解得x=﹣2.而BB′=x=2﹣2.Rt△ABC沿∠ABC的平分线BB′方向平移得到Rt△A′B′C′,∴∠A′BB′=180°﹣∠DB′B=135°,在钝角△AB′B中,∵A′B>A′B′=4,A′B′>B′C′=BC,∴A′B>BC.即A′B不可能等于BC.∴BB′=2,2,2﹣2时,四边形A′BCC′是“等邻边四边形”.8.解:(1)△AEF≌△AGF,EF=BE+DF.理由如下:在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为△AEF;△AGF;EF=BE+DF;(2)如图2,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合(1)中的条件,∴结论EF=AE+BF成立,即EF=1.2×(60+80)=168(海里).故答案为:168.9.解:(1)①∵DE⊥AB,DF⊥BC,∴∠AED=∠CFD=90°∵四边形ABCD是菱形,∴∠BAD=∠BCD,AD=AC,∴△AED≌△CFD(AAS);②∵四边形ABCD是菱形,∴AB∥DC,∴∠ADC+∠BAD=180°,∵∠BAD=60°,∴∠ADC=120°,∵∠MDN=60°,∴∠ADE+∠CDF=60°,由①知,△AED≌△CFD,∴∠ADE=∠CDF,∴∠ADE=∠CDF=30°,∵AC是菱形ABCD的对角线,∴∠DAC=∠ACD=30°,∴∠DGH=∠DHG=60°=∠HDG,∴DG=GH=CH=AC=2;(2)如图将△CDH绕点D顺时针旋转120°得到△ADC',∴∠DAC'=∠DCH=30°,C'D=DH,AC'=CH=n,∠ADC'=∠CDH,∴∠GDC'=∠ADC'+∠ADG=120°﹣∠MDN=60°=∠MDN,连接C'G,∴△C'DG≌△HDG(ASA),∴C'G=GH=p,过点G作GP⊥AC'于P,在Rt△APG中,∠PAG=∠C'AD+∠CAD=60°,∴AP=AG=m,PG=m,在Rt△PC'G中,PC'=AC'﹣AP=CH﹣AP=n﹣m,根据勾股定理得,C'G2=PC'2+PG2,∴p2=(n﹣m)2+(m)2①,∵AC=6,∴m+n+p=6②,联立①②整理得,mn=12﹣4p.10.(1)证明:∵PE=BE,∴∠EPB=∠EBP,又∵∠EPH=∠EBC=90°,∴∠EPH﹣∠EPB=∠EBC﹣∠EBP.即∠BPH=∠PBC.又∵四边形ABCD为正方形∴AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH.(2)证明:过B作BQ⊥PH,垂足为Q,由(1)知,∠APB=∠BPH,在△ABP与△QBP中,,∴△ABP≌△QBP(AAS),∴AP=QP,BA=BQ.又∵AB=BC,∴BC=BQ.又∵∠C=∠BQH=90°,∴△BCH和△BQH是直角三角形,在Rt△BCH与Rt△BQH中,∴Rt△BCH≌Rt△BQH(HL),∴CH=QH,∴AP+HC=PH.(3)解:由(2)知,AP=PQ=2,∴PD=6.设QH=HC=x,则DH=8﹣x.PH=AP+HC=x+2 在Rt△PDH中,PD2+DH2=PH2,即62+(8﹣x)2=(x+2)2,解得x=4.8,∴PH=AP+HC=2+4.8=6.8.11.解:(1)∵|2a+b﹣13|+=0.∴,∴,∴B(5,3);(2)的值不变,其值为1,理由:∵BC⊥y轴,∴BC∥x轴,∴∠CNM=∠AMN,∵MN是∠CMA的平分线,∴∠CMN=∠AMN,∴∠CNM=∠CMN,∴=1;(3)由(1)知,B(5,3),∵BA⊥x轴、BC⊥y,∴A(5,0),C(0,3),∵BA⊥x轴、BC⊥y,∴∠OCB=∠OAB=90°=∠AOC,∴四边形AOBC是矩形,∴AB=OC=3,BC=OA=5,∴S四边形OABC=OA•OC=15,当点P在OC上时,设P(0,m),∴CP=3﹣m,∴S△BPC=BC•CP=×5(3﹣m)=(3﹣m),∵BP将四边形OABC分成面积比为1:4的两部分,∴S△BPC =S四边形OABC=3,∴(3﹣m)=3,∴m=,∴P(0,)当点P在OA上时,设P(0,n),∴AP=5﹣n,∴S△BPC=AB•AP=×3(5﹣n)=(5﹣n),∵BP将四边形OABC分成面积比为1:4的两部分,∴S△BPA =S四边形OABC=3,∴(5﹣n)=3,∴n=3,∴P(3,0),即:满足条件的点P的坐标为(0,)或(3,0).12.(1)证明:∵AB=AC,∠ABC=∠ACB,∴∠CAM=∠ABC+∠ACB=2∠ABC,∵AD平分∠CAM,∴∠CAM=∠MAD,∴∠ABC=∠MAD,∴AD∥BC,∵CD∥AB,∴四边形ABCD是平行四边形;(2)∵∠ABC=60°,AC=AB,∴△ABC是等边三角形,∴AB=BC,∴四边形ABCD是菱形,∴AC⊥BD,∵DE⊥BD,∴AC∥DE,∵AD∥CE,∴四边形ACED是平行四边形,∴BC=AD=CE,∴图中所有与△CDE面积相等的三角形有△BCD,△ABD,△ACD,△ABC.13.解:(1)如图①中,结论:∠APB>∠ADB.理由:作PH⊥AB于H.∵四边形ABCD是矩形,PH⊥AB,∴∠ADP=∠DAH=∠AHP=90°,∴四边形ADPH是矩形,∵AB=CD=2AD,DP=PC,∴DA=DP,∴四边形ADPH是正方形,∴∠APH=45°,同理可证∠BPH=45°,∴∠APB=90°,∵∠ADB<90°,∴∠APB>∠ADB.(2)当点P位于CD的中点时,∠APB最大,理由如下:假设P为CD的中点,如图②中,作△APB的外接圆⊙O,则此时CD切⊙O于点P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE,BF,∵∠AFB是△EFB的外角,∴∠AFB>∠AEB,∵∠AFB=∠APB,∴∠APB>∠AEB,故点P位于CD的中点时,∠APB最大.(3)如图③中,当经过A,B的⊙T与OD相切于P时,∠APB的值最大,作TH⊥OC于H,交OD于Q,连接TA,TB,OT.设TP=TA=TB=r,∵TA=TB,TH⊥AB,∴AH=HB=100(m),∵∠OHQ=90°,∠O=60°,OH=OA+AH=(400+100)(m),∴QH=OH=(400+300)(m),∠OQH=30°,∴TQ=2PT=2r,∵TH==,∴2r+=400+300,整理得:3r2﹣(1600+1200)r+60000+240000=0,∴(r﹣200)(r﹣1000﹣1200)=0,∴r=200或1000+1200(舍弃),∴AT=200m,∴AT=2AH,∴∠ATH=30°,∠ATB=2∠ATH=60°,∴∠APB=∠ATB=30°,∴OP=OQ﹣PQ=800+200﹣600=(200+200)(m).14.解:(1)如图2中,设EC交AD于O.∵△ABC ,△CDE 都是等腰直角三角形,∴AC =CB ,CD =CE ,∠ACB =∠ECD =45°, ∴=,∠ACD =∠BCE ,∴△ACD ∽△BCE ,∴∠ODC =∠OEP ,∵∠COD =∠EOP ,∴∠OPE =∠OCD =45°,故答案为45°,△BCE ∽△ACD .(2)如图③中,作EH ⊥BA 交BA 的延长线于H ,作BG ⊥DE 交DE 的延长线于G .由题意CE =3BC =3,∴AB =BC =1,EC =DE =3,∵BE ≤BC +EC ,∴BE ≤4,∴当点E 在BC 的延长线上时BE 的值最大,最小值为4,∵S 四边形ABDE =S △ABE +S △BDE =•AB •EH +DE •BG ,又∵EH ≤BE ,BG ≤BE ,∴EH 与BG 的最大值为4,∴四边形ABDE 的面积的最大值=×1×4+×4×3=8.(3)如图④中,以EC 为直角边,向下作等腰直角△CEH (EC =EH ,∠CEH =90°),连接AH .∵△ABC,△CEH都是等腰直角三角形,∴∴AC=CB,CH=CE,∠ACB=∠ECD=45°,∴=,∠ACH=∠BCE,∴△ACH∽△BCE,∴==,∴BE=AH,∵AH≤EH+AE,∴AH≤2+4=6,∴AH的最大值为6,∴BE的最大值=6×=3.故答案为3.15.(Ⅰ)①解:∵等腰直角三角形OEF的直角顶点O在原点,OE=2,∴∠EOF=90°,OF=OE=2,∴EF===2,∵将△OEF绕点O逆时针旋转,得△OE1F1,∴E1F1=EF=2;②证明:∵四边形OABC为正方形,∴OC=OA.∵将△OEF绕点O逆时针旋转,得△OE1F1,∴∠AOE1=∠COF1,∵△OEF是等腰直角三角形,∴△OE 1F 1是等腰直角三角形,∴OE 1=OF 1.在△OAE 1和△OCF 1中,∴△OAE 1≌△OCF 1(SAS );(Ⅱ)解:∵OE ⊥OF ,∴过点F 与OE 平行的直线有且只有一条,并与OF 垂直,当三角板OEF 绕O 点逆时针旋转一周时,则点F 在以O 为圆心,以OF 为半径的圆上.∴过点F 与OF 垂直的直线必是圆O 的切线,又点C 是圆O 外一点,过点C 与圆O 相切的直线有且只有2条,不妨设为CF 1和CF 2, 此时,E 点分别在E 1点和E 2点,满足CF 1∥OE 1,CF 2∥OE 2.当切点F 1在第二象限时,点E 1在第一象限.在直角三角形CF 1O 中,OC =4,OF 1=2,cos ∠COF 1===,∴∠COF 1=60°,∴∠AOE 1=60°.∴点E 1的横坐标=2cos60°=1,点E 1的纵坐标=2sin60°=,∴点E 1的坐标为(1,); 当切点F 2在第一象限时,点E 2在第四象限.同理可求:点E 2的坐标为(1,﹣).综上所述,当OE 1∥CF 1时,点E 1的坐标为(1,)或(1,﹣).16.解:(1)∵矩形AOBC的顶点C的坐标是(2,4),∴OA=BC=4,OB=AC=2,AO⊥OB由题意得:AP=t,BQ=t,∴CQ=BC﹣BQ=4﹣t;故答案为:t,4﹣t;(2)①延长PE交BC于F,如图1所示:则PF⊥BC,CF=AP=t,∵PE⊥AO,AO⊥OB,∴PE∥OB,∴△APE∽△AOB,∴=,即=,解得:t=1,∴BQ=1,CF=1,∴CQ=4﹣1=3,∴FQ=CQ﹣CF=2;即点Q到直线PE的距离为2;②延长PE交BC于F,如上图1,则PF⊥BC,CF=AP=t,①当Q在P的下方时,由题意得:t++t=4,解得:t=;②当Q在P的上方时,如图2所示:由题意得:4﹣t+=t,解得:t=;故当点Q到直线PE的距离等于时,t的值为秒或秒.(3)∵PE⊥AO,AO⊥OB,∴PE∥OB,∴△APE∽△AOB,∴=,即=,解得:PE=t,∵OP=4﹣t,∴E(t,4﹣t),Q(2,t),①当QE=EB时,四边形EQBH是菱形,如图3所示:延长PE交BC于F,则PF⊥BC,CF=AP=t,则(2﹣t)2+(4﹣2t)2=t2,解得:t=,或t=4(舍去),∴t=,即点H的横坐标为;②当QE=EB时,四边形BQHE是菱形,如图4所示:则BE=BQ=t,∵∠AOB=90°,OB=2,OA=4,∴AB==2,∵△APE∽△AOB,∴=,即=,∴AE=t,∴BE=AB﹣AE=2﹣t,∴2﹣t=t,解得:t=20﹣8,∴t=4=10﹣4,即点H的横坐标为10﹣4;综上所述,点H的横坐标为或10﹣4.。
2020年九年级数学中考典型压轴题专项训练:四边形1、如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.2、如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.(1)求证:CP=AQ;(2)若BP=1,PQ=2,∠AEF=45°,求矩形ABCD的面积.3、如图,在▱ABCD中,点E,F在对角线AC上,且AE=CF.求证:(1)DE=BF;(2)四边形DEBF是平行四边形.4、如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.5、如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)6、如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A的直线l折叠,使点D 落到AB边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;(2)若点P时直线l上的一个动点,请计算PD′+PB的最小值.7、如图,菱形ABCD的对角线AC与BD交于点O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.8、在矩形ABCD中,AB=3,AD=4,动点Q从点A出发,以每秒1个单位的速度,沿AB向点B移动;同时点P从点B出发,仍以每秒1个单位的速度,沿BC向点C移动,连接QP,QD,PD.若两个点同时运动的时间为x秒(0<x≤3),解答下列问题:(1)设△QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S有最大值?并求出最小值;(2)是否存在x的值,使得QP⊥DP?试说明理由.9、如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD 的平行线,交两组对边于点E,F和G,H.(1)求证:△PHC≌△CFP;(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系.10、如图,在四边形ABCD中,AD∥BC,∠A=∠C,点P在边AB上.(1)判断四边形ABCD的形状并加以证明;(2)若AB=AD,以过点P的直线为轴,将四边形ABCD折叠,使点B、C分别落在点B′、C′上,且B′C′经过点D,折痕与四边形的另一交点为Q.①在图2中作出四边形PB′C′Q(保留作图痕迹,不必说明作法和理由);②如果∠C=60°,那么为何值时,B′P⊥AB.11、某同学要证明命题“平行四边形的对边相等.”是正确的,他画出了图形,并写出了如下已知和不完整的求证.已知:如图,四边形ABCD是平行四边形.求证:AB=CD,BC=DA(1)补全求证部分;(2)请你写出证明过程.证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠BAC=∠DCA,∠BCA=∠DAC,在△ABC和△CDA中,,∴△ABC≌△CDA(ASA),∴AB=CD,BC=DA..12、在矩形ABCD中,E为CD的中点,H为BE上的一点,,连接CH并延长交AB于点G,连接GE并延长交AD的延长线于点F.(1)求证:;(2)若∠CGF=90°,求的值.13、如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.14、如图,已知▱ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作▱ABCD 关于直线AD的对称图形AB1C1D(1)若m=3,试求四边形CC1B1B面积S的最大值;(2)若点B1恰好落在y轴上,试求的值.15、已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上.①如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由;②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.16、如图1,我们把对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.(2)性质探究:试探索垂美四边形ABCD两组对边AB,CD与BC,AD之间的数量关系.猜想结论:(要求用文字语言叙述)___________________________写出证明过程(先画出图形,写出已知、求证).(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.17、如图1,已知点E,F,G,H分别是四边形ABCD各边AB,BC,CD,DA的中点,根据以下思路可以证明四边形EFGH是平行四边形:(1)如图2,将图1中的点C移动至与点E重合的位置,F,G,H仍是BC,CD,DA的中点,求证:四边形CFGH是平行四边形;(2)如图3,在边长为1的小正方形组成的5×5网格中,点A,C,B都在格点上,在格点上画出点D,使点C与BC,CD,DA的中点F,G,H组成正方形CFGH;(3)在(2)条件下求出正方形CFGH的边长.18、如图,面积为6的平行四边形纸片ABCD中,AB=3,∠BAD=45°,按下列步骤进行裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC 重合,△PRN和△BCG在BC同侧).则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为.19、如图,在矩形ABCD中,点O为坐标原点,点B的坐标为(4,3),点A、C在坐标轴上,点P在BC边上,直线l1:y=2x+3,直线l2:y=2x﹣3.(1)分别求直线l1与x轴,直线l2与AB的交点坐标;(2)已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标;(3)我们把直线l1和直线l2上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F上,Q是坐标平面内的点,且N点的横坐标为x,请直接写出x的取值范围(不用说明理由).20、如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.①求证:△AGE≌△AFE;②若BE=2,DF=3,求AH的长.(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.参考答案:1、【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠B+∠C=180°,∠AEB=∠DAE,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD;(2)解:∵AB=BE,∠BEA=60°,[来源:学#科#网] ∴△ABE是等边三角形,∴AE=AB=4,∵BF⊥AE,∴AF=EF=2,∴BF===2,∵AD∥BC,∴∠D=∠ECF,∠DAF=∠E,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴△ADF的面积=△ECF的面积,∴平行四边形ABCD的面积=△ABE的面积=AE•BF=×4×2=4.2、【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB∥CD,AD∥BC,∴∠E=∠F,∵BE=DF,∴AE=CF,在△CFP和△AEQ中,,∴△CFP≌△AEQ(ASA),∴CP=AQ;(2)解:∵AD∥BC,[来源:学#科#网Z#X#X#K]∴∠PBE=∠A=90°,∵∠AEF=45°,∴△BEP、△AEQ是等腰直角三角形,∴BE=BP=1,AQ=AE,∴PE=BP=,∴EQ=PE+PQ=+2=3,∴AQ=AE=3,∴AB=AE﹣BE=2,∵CP=AQ,AD=BC,∴DQ=BP=1,∴AD=AQ+DQ=3+1=4,∴矩形ABCD的面积=AB•AD=2×4=8.3、【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥CB,AD=CB,∴∠DAE=∠BCF,在△ADE和△CBF中,∴△ADE≌△CBF,∴DE=BF.(2)由(1),可得∴△ADE≌△CBF,∴∠ADE=∠CBF,∵∠DEF=∠DAE+∠ADE,∠BFE=∠BCF+∠CBF,∴∠DEF=∠BFE,∴DE∥BF,又∵DE=BF,∴四边形DEBF是平行四边形.4、【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAE=∠F,∠D=∠ECF,∵E是▱ABCD的边CD的中点,∴DE=CE,在△ADE和△FCE中,,∴△ADE≌△FCE(AAS);(2)解:∵ADE≌△FCE,∴AE=EF=3,∵AB∥CD,∴∠AED=∠BAF=90°,在▱ABCD中,AD=BC=5,∴DE===4,∴CD=2DE=8.5、【解答】(1)证明:∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形;(2)解:∵四边形ABCD是矩形,∴CD=AB=,在Rt△CDF中,cos∠DCF=,∠DCF=30°,∴CF==2,∵四边形AECF是菱形,∴CE=CF=2,∴四边形AECF是的面积为:EC•AB=2.6、【解答】证明:(1)∵将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,∴∠DAE=∠D′AE,∠DEA=∠D′EA,∠D=∠AD′E,∵DE∥AD′,∴∠DEA=∠EAD′,∴∠DAE=∠EAD′=∠DEA=∠D′EA,∴∠DAD′=∠DED′,∴四边形DAD′E是平行四边形,∴DE=AD′,∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,∴CE=D′B,CE∥D′B,∴四边形BCED′是平行四边形;∵AD=AD′,∴▱DAD′E是菱形,(2)∵四边形DAD′E是菱形,∴D与D′关于AE对称,连接BD交AE于P,则BD的长即为PD′+PB的最小值,过D作DG⊥BA于G,∵CD∥AB,∴∠DAG=∠CDA=60°,∵AD=1,∴AG=,DG=,∴BG=,∴BD==,∴PD′+PB的最小值为.7、【解答】(1)解:∵四边形ABCD是菱形,∴AD∥BC,∠DBC=∠ABC,∴∠ABC+∠BAD=180°,∵∠ABC:∠BAD=1:2,∴∠ABC=60°,∴∠BDC=∠ABC=30°,则tan∠DBC=tan30°=;(2)证明:∵四边形ABCD是菱形,∴AC⊥BD,即∠BOC=90°,∵BE∥AC,CE∥BD,∴BE∥OC,CE∥OB,∴四边形OBEC是平行四边形,则四边形OBEC是矩形.8、【解答】解:(1)∵四边形ABCD为矩形,∴BC=AD=4,CD=AB=3,当运动x秒时,则AQ=x,BP=x,∴BQ=AB﹣AQ=3﹣x,CP=BC﹣BP=4﹣x,∴S△ADQ=AD•AQ=×4x=2x,S△BPQ=BQ•BP=(3﹣x)x=x﹣x2,S△PCD=PC•CD=•(4﹣x)•3=6﹣x,又S矩形ABCD=AB•BC=3×4=12,∴S=S矩形ABCD﹣S△ADQ﹣S△BPQ﹣S△PCD=12﹣2x﹣(x﹣x2)﹣(6﹣x)=x2﹣2x+6=(x﹣2)2+4,即S=(x﹣2)2+4,∴S为开口向上的二次函数,且对称轴为x=2,∴当0<x<2时,S随x的增大而减小,当2<x≤3时,S随x的增大而增大,又当x=0时,S=5,当S=3时,S=,但x的范围内取不到x=0,∴S不存在最大值,当x=2时,S有最小值,最小值为4;(2)存在,理由如下:由(1)可知BQ=3﹣x,BP=x,CP=4﹣x,当QP⊥DP时,则∠BPQ+∠DPC=∠DPC+∠PDC,∴∠BPQ=∠PDC,且∠B=∠C,∴△BPQ∽△PCD,∴=,即=,解得x=(舍去)或x=,∴当x=时QP⊥DP.9、【解答】证明:(1)∵四边形ABCD为矩形,∴AB∥CD,AD∥BC.∵PF∥AB,∴PF∥CD,∴∠CPF=∠PCH.∵PH∥AD,∴PH∥BC,∴∠PCF=∠CPH.在△PHC和△CFP中,,∴△PHC≌△CFP(ASA).(2)∵四边形ABCD为矩形,∴∠D=∠B=90°.又∵EF∥AB∥CD,GH∥AD∥BC,∴四边形PEDH和四边形PFBG都是矩形.∵EF∥AB,∴∠CPF=∠CAB.在Rt△AGP中,∠AGP=90°,PG=AG•tan∠CAB.在Rt△CFP中,∠CFP=90°,CF=PF•tan∠CPF.S矩形DEPH=DE•EP=CF•EP=PF•EP•tan∠CPF;S矩形PGBF=PG•PF=AG•PF•tan∠CAB=EP•PF•tan∠CAB.∵tan∠CPF=tan∠CAB,∴S矩形DEPH=S矩形PGBF.10、【解答】解:(1)四边形ABCD是平行四边形证明:∵在四边形ABCD中,AD∥BC,∴∠A+∠B=180°,∵∠A=∠C,∴∠C+∠B=180°,∴AB∥CD,∴四边形ABCD是平行四边形;(2)①作图如下:②当AB=AD时,平行四边形ABCD是菱形,由折叠可得,BP=B′P,CQ=C′Q,BC=B′C′,∠C=∠C′=60°=∠A,当B′P⊥AB时,由B′P∥C′Q,可得C′Q⊥CD,∴∠PEA=30°=∠DEB′,∠QDC′=30°=∠B′DE,∴B′D=B′E,设AP=a,BP=b,则直角三角形APE中,PE=a,且B′P=b,BC=B′C′=CD=a+b,∴B′E=b﹣a=B′D,∴C′D=a+b﹣(b﹣a)=a+a,∴直角三角形C′QD中,C′Q=a=CQ,DQ=C′Q=a,∵CD=DQ+CQ=a+b,∴a+a=a+b,整理得(+1)a=b,∴==,即=.11、【解答】(1)已知:如图,四边形ABCD是平行四边形.求证:AB=CD,BC=DA;故答案为:BC=DA;(2)证明:连接AC,如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠BAC=∠DCA,∠BCA=∠DAC,在△ABC和△CDA中,,∴△ABC≌△CDA(ASA),∴AB=CD,BC=DA;故答案为:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠BAC=∠DCA,∠BCA=∠DAC,在△ABC和△CDA中,,∴△ABC≌△CDA(ASA),∴AB=CD,BC=DA.12、【解答】(1)证明:∵四边形ABCD是矩形,∴CD∥AB,AD=BC,AB=CD,AD∥BC,∴△CEH∽△GBH,∴.(2)解:作EM⊥AB于M,如图所示:则EM=BC=AD,AM=DE,∵E为CD的中点,∴DE=CE,设DE=CE=3a,则AB=CD=6a,由(1)得: =3,∴BG=CE=a,∴AG=5a,∵∠EDF=90°=∠CGF,∠DEF=∠GEC,∴△DEF∽△GEC,∴,∴EG•EF=DE•EC,∵CD∥AB,∴=,∴,∴EF=EG,∴EG•EG=3a•3a,解得:EG=a,在Rt△EMG中,GM=2a,∴EM==a,∴BC=a,∴==3.13、【解答】解:(1)证明:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.∴DG=GE=DF=EF.∴四边形EFDG为菱形.(2)EG2=GF•AF.理由:如图1所示:连接DE,交AF于点O.∵四边形EFDG为菱形,∴GF⊥DE,OG=OF=GF.∵∠DOF=∠ADF=90°,∠OFD=∠DFA,∴△DOF∽△ADF.∴,即DF2=FO•AF.∵FO=GF,DF=EG,∴EG2=GF•AF.(3)如图2所示:过点G作GH⊥DC,垂足为H.∵EG2=GF•AF,AG=6,EG=2,∴20=FG(FG+6),整理得:FG2+6FG﹣40=0.解得:FG=4,FG=﹣10(舍去).∵DF=GE=2,AF=10,∴AD==4.∵GH⊥DC,AD⊥DC,∴GH∥AD.∴△FGH∽△FAD.∴,即=.∴GH=.∴BE=AD﹣GH=4﹣=.14、【解答】解:(1)如图1,∵▱ABCD与四边形AB1C1D关于直线AD对称,∴四边形AB1C1D是平行四边形,CC1⊥EF,BB1⊥EF,∴BC∥AD∥B1C1,CC1∥BB1,∴四边形BCEF、B1C1EF是平行四边形,∴S▱BCEF=S▱BCDA=S▱B1C1DA=S▱B1C1EF,∴S▱BCC1B1=2S▱BCDA.∵A(n,0)、B(m,0)、D(0,2n)、m=3,∴AB=m﹣n=3﹣n,OD=2n,∴S▱BCDA=AB•OD=(3﹣n)•2n=﹣2(n2﹣3n)=﹣2(n﹣)2+,∴S▱BCC1B1=2S▱BCDA=﹣4(n﹣)2+9.∵﹣4<0,∴当n=时,S▱BCC1B1最大值为9;(2)当点B1恰好落在y轴上,如图2,∵DF⊥BB1,DB1⊥OB,∴∠B1DF+∠DB1F=90°,∠B1BO+∠OB1B=90°,∴∠B1DF=∠OBB1.∵∠DOA=∠BOB1=90°,∴△AOD∽△B1OB,∴=,∴=,∴OB1=.由轴对称的性质可得AB1=AB=m﹣n.在Rt△AOB1中,n2+()2=(m﹣n)2,整理得3m2﹣8mn=0.∵m>0,∴3m﹣8n=0,∴=.15、【解答】解:(1)∵四边形ABCD和四边形BPEF是正方形,∴AB=BC,BP=BF,∴AP=CF,在△APE和△CFE中,,∴△APE≌△CFE,∴EA=EC;(2)①∵P为AB的中点,∴PA=PB,又PB=PE,∴PA=PE,∴∠PAE=45°,又∠DAC=45°,∴∠CAE=90°,即△ACE是直角三角形;②∵EP平分∠AEC,EP⊥AG,∴AP=PG=a﹣b,BG=a﹣(2a﹣2b)=2b﹣a∵PE∥CF,∴=,即=,解得,a=b;作G H⊥AC于H,∵∠CAB=45°,∴HG=AG=×(2b﹣2b)=(2﹣)b,又BG=2b﹣a=(2﹣)b,∴GH=GB,GH⊥AC,GB⊥BC,∴∠HCG=∠BCG,∵PE∥CF,∴∠PEG=∠BCG,∴∠AEC=∠ACB=45°.∴a:b=:1;∴∠AEC=45°.16、【解答】解:(1)四边形ABCD是垂美四边形.证明:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)猜想结论:垂美四边形的两组对边的平方和相等.如图2,已知四边形ABCD中,AC⊥BD,垂足为E,求证:AD2+BC2=AB2+CD2证明:∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2;(3)连接CG、BE,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE,∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC=3,CG=4,BE=5,∴GE2=CG2+BE2﹣CB2=73,∴GE=.17、【解答】(1)证明:如图2,连接BD,∵C,H是AB,DA的中点,∴CH是△ABD的中位线,∴CH∥BD,CH=BD,同理FG∥BD,FG=BD,∴CH∥FG,CH=FG,∴四边形CFGH是平行四边形;(2)如图3所示,(3)解:如图3,∵BD=,∴FG=BD=,∴正方形CFGH的边长是.18、【解答】解:∵△ABE≌△CDF≌△PMQ,∴AE=DF=PM,∠EAB=∠FDC=∠MPQ,∵△ADE≌△BCG≌△PNR,∴AE=BG=PN,∠DAE=∠CBG=∠RPN,∴PM=PN,∵四边形ABCD是平行四边形,∴∠DAB=∠DCB=45°,∴∠MPN=90°,∴△MPN是等腰直角三角形,当PM最小时,对角线MN最小,即AE取最小值,∴当AE⊥BD时,AE取最小值,过D作DF⊥AB于F,∵平行四边形ABCD的面积为6,AB=3,∴DF=2,∵∠DAB=45°,∴AF=DF=2,∴BF=1,∴BD==,∴AE===,∴MN=AE=,故答案为:.19、【解答】解:(1)直线l1:当y=0时,2x+3=0,x=﹣则直线l1与x轴坐标为(﹣,0)直线l2:当y=3时,2x﹣3=3,x=3则直线l2与AB的交点坐标为(3,3);(2)①若点A为直角顶点时,点M在第一象限,连结AC,如图1,∠APB>∠ACB>45°,∴△APM不可能是等腰直角三角形,∴点M不存在;②若点P为直角顶点时,点M在第一象限,如图2,过点M作MN⊥CB,交CB的延长线于点N,则Rt△ABP≌Rt△PNM,∴AB=PN=4,MN=BP,设M(x,2x﹣3),则MN=x﹣4,∴2x﹣3=4+3﹣(x﹣4),x=,∴M(,);③若点M为直角顶点时,点M在第一象限,如图3,设M1(x,2x﹣3),过点M1作M1G1⊥OA,交BC于点H1,则Rt△AM1G1≌Rt△PM1H1,∴AG1=M1H1=3﹣(2x﹣3),∴x+3﹣(2x﹣3)=4,x=2∴M1(2,1);设M2(x,2x﹣3),同理可得x+2x﹣3﹣3=4,∴x=,∴M2(,);综上所述,点M的坐标为(,),(2,1),(,);(3)x的取值范围为﹣≤x<0或0<x≤或≤x≤或≤x≤2.20、【解答】解:(1)①由旋转的性质可知:AF=AG,∠DAF=∠BAG.[来源:学。
2020年中考数学复习之挑战压轴题(解答题):四边形综合题(15题)一、解答题(共15小题)1.(2019•盘锦)如图,四边形ABCD是菱形,120BAD∠=︒,点E在射线AC上(不包括点A和点)C,过点E的直线GH交直线AD于点G,交直线BC于点H,且//GH DC,点F在BC的延长线上,CF AG=,连接ED,EF,DF.(1)如图1,当点E在线段AC上时,①判断AEG∆的形状,并说明理由.②求证:DEF∆是等边三角形.(2)如图2,当点E在AC的延长线上时,DEF∆是等边三角形吗?如果是,请证明你的结论;如果不是,请说明理由.2.(2019秋•雁塔区校级月考)(1)如图1,在四边形ABCD中,AB AD=,180B D∠+∠=︒,E,F分别是边BC,CD上的点,且12EAF BAD∠=∠,则BE,EF,DF之间的数量关系是.(2)如图2,若E,F分别是边BC,CD延长线上的点,其他条件不变,则BE,EF,DF 之间的数量关系是什么?请说明理由.(3)如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30︒的A处,舰艇乙在指挥中心南偏东70︒的B处,并且两舰艇到指挥中心的距离相等,接到行动命令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50︒的方向以80海里/小时的速度前进,1.5小时后,指挥中心观察到舰艇甲、乙分别到达E,F处,且两舰艇与指挥中心O 连线的夹角70EOF∠=︒,试求此时两舰艇之间的距离.3.(2018•河西区二模)将一个等边三角形纸片AOB放置在平面直角坐标系中,点(0,0)O,点(6,0)B.点C、D分别在OB、AB边上,//DC OA,23CB=.()I如图①,将DCB∆沿射线CB方向平移,得到△D C B'''.当点C平移到OB的中点时,求点D'的坐标;()II如图②,若边D C''与AB的交点为M,边D B''与ABB∠'的角平分线交于点N,当BB'多大时,四边形MBND'为菱形?并说明理由.()III若将DCB∆绕点B顺时针旋转,得到△D C B'',连接AD',边D C''的中点为P,连接AP,当AP最大时,求点P的坐标及AD'的值.(直接写出结果即可).4.(2017•潮阳区模拟)如图(1),在ABC∆中,AB AC=,90BAC∠=︒,AD BC⊥于点D,20BC cm=,10AD cm=.点P从点B出发,在线段BC上以每秒2cm的速度向点C匀速运动,与此同时,垂直于AD的直线l从点A沿AD出发,以每秒1cm的速度沿AD方向匀速平移,分别交AB、AC、AD于M、N、E.当点P到达点C时,点P与直线l同时停止运动,设运动时间为t秒(0)t>.(1)在运动过程中(点P不与B、C重合),连接PN,求证:四边形MBPN为平行四边形;(2)如图(2),以MN为边向下作正方形MFGN,FG交AD于点H,连结PF、PG,当103t<<时,求PFG∆的面积最大值;(3)在整个运动过程中,观察图(2)、(3),是否存在某一时刻t,使PFG∆为等腰三角形?若存在,直接写出t 的值;若不存在,请说明理由.5.(2019•工业园区一模)如图①,在矩形ABCD 中,动点P 从点A 出发,以1/cm s 的速度沿AD 向终点D 移动,设移动时间为()t s ,连接PC ,以PC 为一边作正方形PCEF ,连接DE 、DF ,设PCD ∆的面积为2()y cm ,y 与t 之间的函数关系如图②所示.(1)AB = cm ,AD = cm ;(2)当t 为何值时,DEF ∆的面积最小?请求出这个最小值;(3)当t 为何值时,DEF ∆为等腰三角形?请简要说明理由.6.(2017秋•市南区期末)如图,在平行四边形ABCD 中,AC BC ⊥,10AB =.6AC =.动点P 在线段BC 上从点B 出发沿BC 方向以每秒1个单位长的速度匀速运动;动点Q 在线段DC 上从点D 出发沿DC 的力向以每秒1个单位长的速度匀速运动,过点P 作PE BC ⊥.交线段AB 于点E .若P 、Q 两点同时出发,当其中一点到达终点时整个运动随之停止,设运动时间为t 秒.(1)当t 为何值时,//QE BC ?(2)设PQE ∆的面积为S ,求出S 与t 的函数关系式:(3)是否存在某一时刻t ,使得PQE ∆的面积S 最大?若存在,求出此时t 的值; 若不存在,请说明理由.(4)是否存在某一时刻t,使得点Q在线段EP的垂直平分线上?若存在,求出此时t的值;若不存在,请说明理由.7.(2019•湘潭)如图一,在射线DE的一侧以AD为一条边作矩形ABCD,53AD=,CD=,点M是线段AC上一动点(不与点A重合),连结BM,过点M作BM的垂线交5射线DE于点N,连接BN.(1)求CAD∠的大小;(2)问题探究:动点M在运动的过程中,①是否能使AMN∆为等腰三角形,如果能,求出线段MC的长度;如果不能,请说明理由.②MBN∠的大小;若改变,请说明理由.∠的大小是否改变?若不改变,请求出MBN(3)问题解决:如图二,当动点M运动到AC的中点时,AM与BN的交点为F,MN的中点为H,求线段FH的长度.8.(2019•抚顺)如图,点E,F分别在正方形ABCD的边CD,BC上,且DE CF=,点P 在射线BC上(点P不与点F重合).将线段EP绕点E顺时针旋转90︒得到线段EG,过点E作GD的垂线QH,垂足为点H,交射线BC于点Q.(1)如图1,若点E是CD的中点,点P在线段BF上,线段BP,QC,EC的数量关系为.(2)如图2,若点E不是CD的中点,点P在线段BF上,判断(1)中的结论是否仍然成立.若成立,请写出证明过程;若不成立,请说明理由.(3)正方形ABCD 的边长为6,3AB DE =,1QC =,请直接写出线段BP 的长.9.(2019•舟山)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在ABC ∆中,AD BC ⊥于点D ,正方形PQMN 的边QM 在BC 上,顶点P ,N 分别在AB ,AC 上,若BC a =,AD h =,求正方形PQMN 的边长(用a ,h 表示).(2)操作:如何画出这个正方形PQMN 呢?如图2,小波画出了图1的ABC ∆,然后按数学家波利亚在《怎样解题》中的方法进行操作:先在AB 上任取一点P ',画正方形P Q M N '''',使点Q ',M '在BC 边上,点N '在ABC ∆内,然后连结BN ',并延长交AC 于点N ,画NM BC ⊥于点M ,NP NM ⊥交AB 于点P ,PQ BC ⊥于点Q ,得到四边形PQMN .(3)推理:证明图2中的四边形PQMN 是正方形.(4)拓展:小波把图2中的线段BN 称为“波利亚线”,在该线上截取NE NM =,连结EQ ,EM (如图3),当90QEM ∠=︒时,求“波利亚线” BN 的长(用a ,h 表示). 请帮助小波解决“温故”、“推理”、“拓展”中的问题.10.(2019•吉林)性质探究如图①,在等腰三角形ABC 中,120ACB ∠=︒,则底边AB 与腰AC 的长度之比为 . 理解运用(1)若顶角为120︒的等腰三角形的周长为83+,则它的面积为 ;(2)如图②,在四边形EFGH中,EF EG EH==.①求证:EFG EHG FGH∠+∠=∠;②在边FG,GH上分别取中点M,N,连接MN.若120EF=,直接写出FGH∠=︒,10线段MN的长.类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为(用含α的式子表示).11.(2019•无锡)如图1,在矩形ABCD中,3BC=,动点P从B出发,以每秒1个单位的速度,沿射线BC方向移动,作PAB∆关于直线PA的对称PAB∆',设点P的运动时间为t s.()(1)若23AB=.①如图2,当点B'落在AC上时,显然PAB∆'是直角三角形,求此时t的值;②是否存在异于图2的时刻,使得PCB∆'是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由.(2)当P点不与C点重合时,若直线PB'与直线CD相交于点M,且当3t<时存在某一时刻有结论45∠=︒”是否总PAMPAMt>的任意时刻,结论“45∠=︒成立,试探究:对于3是成立?请说明理由.12.(2019•绵阳)如图,在以点O为中心的正方形ABCD中,4AD=,连接AC,动点E从点O出发沿O C→以每秒1个单位长度的速度匀速运动,到达点C停止.在运动过程中,∆的外接圆交AB于点F,连接DF交AC于点G,连接EF,将EFGADE∆沿EF翻折,得到EFH∆.(1)求证:DEF∆是等腰直角三角形;(2)当点H恰好落在线段BC上时,求EH的长;(3)设点E运动的时间为t秒,EFG∆的面积为S,求S关于时间t的关系式.13.(2019•岳阳)操作体验:如图,在矩形ABCD中,点E、F分别在边AD、BC上,将矩形ABCD沿直线EF折叠,使点D恰好与点B重合,点C落在点C'处.点P为直线EF上一动点(不与E、F重合),过点P分别作直线BE、BF的垂线,垂足分别为点M和N,以PM、PN为邻边构造平行四边形PMQN.(1)如图1,求证:BE BF=;(2)特例感知:如图2,若5CF=,当点P在线段EF上运动时,求平行四边形DE=,2PMQN的周长;(3)类比探究:若DE a=.=,CF b①如图3,当点P在线段EF的延长线上运动时,试用含a、b的式子表示QM与QN之间的数量关系,并证明;②如图4,当点P在线段FE的延长线上运动时,请直接用含a、b的式子表示QM与QN之间的数量关系.(不要求写证明过程)14.(2019•资阳)在矩形ABCD中,连结AC,点E从点B出发,以每秒1个单位的速度沿着B A C⊥于点F,在矩形ABCD →→的路径运动,运动时间为t(秒).过点E作EF BC的内部作正方形EFGH.(1)如图,当8==时,AB BC①若点H在ABC=;∆的内部,连结AH、CH,求证:AH CH②当08t <…时,设正方形EFGH 与ABC ∆的重叠部分面积为S ,求S 与t 的函数关系式;(2)当6AB =,8BC =时,若直线AH 将矩形ABCD 的面积分成1:3两部分,求t 的值.15.(2019•益阳)如图,在平面直角坐标系xOy 中,矩形ABCD 的边4AB =,6BC =.若不改变矩形ABCD 的形状和大小,当矩形顶点A 在x 轴的正半轴上左右移动时,矩形的另一个顶点D 始终在y 轴的正半轴上随之上下移动.(1)当30OAD ∠=︒时,求点C 的坐标;(2)设AD 的中点为M ,连接OM 、MC ,当四边形OMCD 的面积为212时,求OA 的长; (3)当点A 移动到某一位置时,点C 到点O 的距离有最大值,请直接写出最大值,并求此时cos OAD ∠的值.2020年中考数学复习之挑战压轴题(解答题):四边形综合题(15题)参考答案与试题解析一、解答题(共15小题)1.(2019•盘锦)如图,四边形ABCD 是菱形,120BAD ∠=︒,点E 在射线AC 上(不包括点A 和点)C ,过点E 的直线GH 交直线AD 于点G ,交直线BC 于点H ,且//GH DC ,点F 在BC 的延长线上,CF AG =,连接ED ,EF ,DF .(1)如图1,当点E 在线段AC 上时,①判断AEG ∆的形状,并说明理由.②求证:DEF ∆是等边三角形.(2)如图2,当点E 在AC 的延长线上时,DEF ∆是等边三角形吗?如果是,请证明你的结论;如果不是,请说明理由.【考点】LO :四边形综合题【专题】554:等腰三角形与直角三角形;152:几何综合题;556:矩形 菱形 正方形;553:图形的全等【分析】(1)①由菱形的性质得出//AD BC ,AB BC CD AD ===,//AB CD ,1602CAD BAD ∠=∠=︒,由平行线的性质得出180BAD ADC ∠+∠=︒,60ADC ∠=︒,60AGE ADC ∠=∠=︒,得出60AGE EAG AEG ∠=∠=∠=︒,即可得出AEG ∆是等边三角形;②由等边三角形的性质得出AG AE =,由已知得出AE CF =,由菱形的性质得出120BCD BAD ∠=∠=︒,得出60DCF CAD ∠=︒=∠,证明()AED CFD SAS ∆≅∆,得出DE DF =,ADE CDF ∠=∠,再证出60EDF ∠=︒,即可得出DEF ∆是等边三角形;(2)同(1)①得:AEG ∆是等边三角形,得出AG AE =,由已知得出AE CF =,由菱形的性质得出120BCD BAD ∠=∠=︒,1602CAD BAD ∠=∠=︒,得出60FCD CAD ∠=︒=∠,证明()AED CFD SAS ∆≅∆,得出DE DF =,ADE CDF ∠=∠,再证出60EDF ∠=︒,即可得出DEF ∆是等边三角形.【解答】(1)①解:AEG ∆是等边三角形;理由如下: Q 四边形ABCD 是菱形,120BAD ∠=︒,//AD BC ∴,AB BC CD AD ===,//AB CD ,1602CAD BAD ∠=∠=︒, 180BAD ADC ∴∠+∠=︒,60ADC ∴∠=︒,//GH DC Q ,60AGE ADC ∴∠=∠=︒,60AGE EAG AEG ∴∠=∠=∠=︒,AEG ∴∆是等边三角形;②证明:AEG ∆Q 是等边三角形,AG AE ∴=,CF AG =Q ,AE CF ∴=,Q 四边形ABCD 是菱形,120BCD BAD ∴∠=∠=︒,60DCF CAD ∴∠=︒=∠,在AED ∆和CFD ∆中,AD CD EAD FCD AE CF =⎧⎪∠=∠⎨⎪=⎩,()AED CFD SAS ∴∆≅∆DE DF ∴=,ADE CDF ∠=∠,60ADC ADE CDE ∠=∠+∠=︒Q ,60CDF CDE ∴∠+∠=︒,即60EDF ∠=︒,DEF ∴∆是等边三角形;(2)解:DEF ∆是等边三角形;理由如下: 同(1)①得:AEG ∆是等边三角形, AG AE ∴=,CF AG=Q,AE CF∴=,Q四边形ABCD是菱形,120BCD BAD∴∠=∠=︒,1602CAD BAD∠=∠=︒,60FCD CAD ∴∠=︒=∠,在AED∆和CFD∆中,AD CDEAD FCD AE CF=⎧⎪∠=∠⎨⎪=⎩,()AED CFD SAS∴∆≅∆,DE DF∴=,ADE CDF∠=∠,60ADC ADE CDE∠=∠-∠=︒Q,60CDF CDE∴∠-∠=︒,即60EDF∠=︒,DEF∴∆是等边三角形.【点评】本题是四边形综合题目,考查了菱形的性质、全等三角形的判定与性质、等边三角形的判定与性质、平行线的性质等知识;本题综合性强,熟练掌握菱形的性质,证明三角形全等是解题的关键.2.(2019秋•雁塔区校级月考)(1)如图1,在四边形ABCD中,AB AD=,180B D∠+∠=︒,E,F分别是边BC,CD上的点,且12EAF BAD∠=∠,则BE,EF,DF之间的数量关系是EF BE DF=+.(2)如图2,若E,F分别是边BC,CD延长线上的点,其他条件不变,则BE,EF,DF 之间的数量关系是什么?请说明理由.(3)如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30︒的A处,舰艇乙在指挥中心南偏东70︒的B处,并且两舰艇到指挥中心的距离相等,接到行动命令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50︒的方向以80海里/小时的速度前进,1.5小时后,指挥中心观察到舰艇甲、乙分别到达E,F处,且两舰艇与指挥中心O 连线的夹角70EOF∠=︒,试求此时两舰艇之间的距离.【考点】LO :四边形综合题【专题】67:推理能力;152:几何综合题;553:图形的全等【分析】(1)延长FD 到点G .使DG BE =.连结AG ,证明ABE ADG ∆≅∆,根据全等三角形的性质得到AE AG =,证明AEF AGF ∆≅∆,得得EF FG =,证明结论;(2)在CB 上截取BM DF =,连接AM ,证ABM ADF ∆≅∆,推出AF AM =,DAF BAM ∠=∠,求出EAM EAF ∠=∠,证FAE MAE ∆≅∆,推出EF EM =,即可得出结果;(3)延长AE 、BF 相交于点C ,然后根据(1)中的方法可得两舰艇之间的距离.【解答】解:(1)延长FD 到点G ,使DG BE =,连结AG ,如图1所示:在ABE ∆和ADG ∆中,90BE DG B ADG AB AD =⎧⎪∠=∠=︒⎨⎪=⎩,()ABE ADG SAS ∴∆≅∆,AE AG ∴=,BAE DAG ∠=∠,12EAF BAD ∠=∠Q , GAF DAG DAF BAE DAF BAD EAF EAF ∴∠=∠+∠=∠+∠=∠-∠=∠,在AEF ∆和GAF ∆中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,()AEF AGF SAS ∴∆≅∆,EF FG ∴=,FG DG DF BE DF =+=+Q ,EF BE DF ∴=+,故答案为:EF BE DF =+;(2)BE ,EF ,DF 之间的数量关系是:EF BE DF =-;理由如下:在CB 上截取BM DF =,连接AM ,如图2所示:180B D ∠+∠=︒Q ,180ADC ADF ∠+∠=︒,B ADF ∴∠=∠,在ABM ∆和ADF ∆中,AB AD B ADF BM DF =⎧⎪∠=∠⎨⎪=⎩,()ABM ADF SAS ∴∆≅∆,AF AM ∴=,DAF BAM ∠=∠,BAD MAF ∴∠=∠,2BAD EAF ∠=∠Q ,2MAF EAF ∴∠=∠,MAE EAF ∴∠=∠,在FAE ∆和MAE ∆中,AE AE FAE MAE AF AM =⎧⎪∠=∠⎨⎪=⎩,()FAE MAE SAS ∴∆≅∆,EF EM BE BM BE DF ∴==-=-,即EF BE DF =-;(3)连接EF ,延长AE 、BF 相交于点C ,如图3所示:3090(9070)140AOB ∠=︒+︒+︒-︒=︒Q ,70EOF ∠=︒,12EOF AOB ∴∠=∠, OA OB =Q ,(9030)(7050)180OAC OBC ∠+∠=︒-︒+︒+︒=︒,∴符合(1)中的条件,即结论EF AE BF =+成立,1.5(6080)210EF ∴=⨯+=(海里). 答:此时两舰艇之间的距离是210海里.【点评】本题是四边形综合题,主要考查了全等三角形的判定和性质等知识;通过作辅助线构建三角形全等是解题的关键.3.(2018•河西区二模)将一个等边三角形纸片AOB放置在平面直角坐标系中,点(0,0)O,点(6,0)B.点C、D分别在OB、AB边上,//CB=DC OA,23()I如图①,将DCB'''.当点C平移到OB的中点时,求∆沿射线CB方向平移,得到△D C B点D'的坐标;II如图②,若边D C''与AB的交点为M,边D B''与ABB()∠'的角平分线交于点N,当BB'多大时,四边形MBND'为菱形?并说明理由.III若将DCB()'',连接AD',边D C''的中点为P,连接∆绕点B顺时针旋转,得到△D C BAP,当AP最大时,求点P的坐标及AD'的值.(直接写出结果即可).【考点】LO :四边形综合题【专题】153:代数几何综合题【分析】(Ⅰ)如图①中,作DH BC ⊥于H .首先求出点D 坐标,再求出CC '的长即可解决问题; (Ⅱ)当3BB '=时,四边形MBND '是菱形.首先证明四边形MBND '是平行四边形,再证明BB BC '='即可解决问题;(Ⅲ)在ABP ∆中,由三角形三边关系得,AP AB BP <+,推出当点A ,B ,P 三点共线时,AP 最大;【解答】解:(Ⅰ)如图①中,作DH BC ⊥于H .AOB ∆Q 是等边三角形,//DC OA ,60DCB AOB ∴∠=∠=︒,60CDB A ∠=∠=︒,CDB ∴∆是等边三角形,23CB =Q DH CB ⊥,3CH HB ∴=3DH =,(63D ∴-3),3C B '=Q ,233CC ∴'=,233DD CC ∴'='=,(33D ∴'+,3).(Ⅱ)当3BB '=时,四边形MBND '是菱形.理由:如图②中,ABC ∆Q 是等边三角形, 60ABO ∴∠=︒,180120ABB ABO '∴∠=︒-∠=︒,BN Q 是ACC '∠的角平分线,1602NBB ABB D C B ''∴∠'=∠=︒=∠'', //D C BN ''∴,//AB B D ''Q∴四边形MBND '是平行四边形,60ME C MCE '''∠=∠=︒Q ,60NCC NC C ''∠=∠=︒,∴△MC B ''和NBB '∆是等边三角形,MC CE '∴=,NC CC '=,23B C ''=QQ 四边形MBND '是菱形,BN BM ∴=,132BB B C '''∴==(Ⅲ)如图连接BP ,在ABP ∆中,由三角形三边关系得,AP AB BP <+,∴当点A ,B ,P 三点共线时,AP 最大,如图③中,在△D BC ''中,由P 为D C ''的中点,得AP D C ''⊥,3PD '=3CP ∴=,639AP ∴=+=,在Rt APD '∆中,由勾股定理得,22221AD AP PD '=+'= 此时15(2P ,33. 【点评】此题是四边形综合题,主要考查了平行四边形的判定和性质,菱形的性质,平移和旋转的性质,等边三角形的判定和性质,勾股定理,解(2)的关键是四边形MCND '是平行四边形,解(3)的关键是判断出点A ,C ,P 三点共线时,AP 最大.4.(2017•潮阳区模拟)如图(1),在ABC ∆中,AB AC =,90BAC ∠=︒,AD BC ⊥于点D ,20BC cm =,10AD cm =.点P 从点B 出发,在线段BC 上以每秒2cm 的速度向点C 匀速运动,与此同时,垂直于AD 的直线l 从点A 沿AD 出发,以每秒1cm 的速度沿AD 方向匀速平移,分别交AB 、AC 、AD 于M 、N 、E .当点P 到达点C 时,点P 与直线l 同时停止运动,设运动时间为t 秒(0)t >.(1)在运动过程中(点P 不与B 、C 重合),连接PN ,求证:四边形MBPN 为平行四边形;(2)如图(2),以MN 为边向下作正方形MFGN ,FG 交AD 于点H ,连结PF 、PG ,当1003t <<时,求PFG ∆的面积最大值; (3)在整个运动过程中,观察图(2)、(3),是否存在某一时刻t ,使PFG ∆为等腰三角形?若存在,直接写出t 的值;若不存在,请说明理由.【考点】LO :四边形综合题【分析】(1)证出//l BC ,得出比例式AM AN AB AC=,证出AM AN =,得出ME NE =,因此22MN AE t ==,证出MN BP =,即可得出四边形MBPN 为平行四边形;(2)由正方形的性质得出22FG MN MF AE t ====,求出103DH AD AH t =-=-,得出215253()233PFG S FG DH t ∆==--+g ,由二次函数的最值即可得出答案; (3)利用勾股定理得:222(103)PF t =-,222(103)(10)PG t t =-+-,22(2)FG t =,分三种情况讨论,得出方程,解方程即可.【解答】(1)证明:l AD ⊥Q ,BC AD ⊥,//l BC ∴, ∴AM AN AB AC=, AB AC =Q ,AM AN ∴=,90BAC ∠=︒Q ,ME NE ∴=,22MN AE t ∴==,2BP t =Q ,MN BP ∴=,∴四边形MBPN 为平行四边形;(2)解:Q 四边形MFGN 是正方形,22FG MN MF AE t ∴====,2EH MF t ==Q ,103DH AD AH t ∴=-=-,2115252(103)3()2233PFG S FG DH t t t ∆∴==⨯⨯-=--+g , 30a =-<Q ,1003t <<, ∴当53t =时,PFG S ∆最大253=;(3)解:存在,当307t ±=或5t =或10t =时,PFG ∆为等腰三角形;理由如下: 利用勾股定理得:222(103)PF t =-,222(103)(10)PG t t =-+-,又22(2)FG t =, 当PF FG =时,则222(103)(2)t t -=,解得:t = 当PF PG =时,2222(103)(103)(10)t t t -=-+-,解得:5t =,或0t =(舍去);当FG PG =时,222(2)(103)(10)t t t =-+-,解得:10t =,或103t =(舍去);综上所述,t 或5t =或10t =时,PFG ∆为等腰三角形. 【点评】本题是四边形综合题目,考查了平行四边形的判定、正方形的性质、等腰三角形的判定、二次函数的最值、勾股定理等知识;本题综合性强,难度较大.5.(2019•工业园区一模)如图①,在矩形ABCD 中,动点P 从点A 出发,以1/cm s 的速度沿AD 向终点D 移动,设移动时间为()t s ,连接PC ,以PC 为一边作正方形PCEF ,连接DE 、DF ,设PCD ∆的面积为2()y cm ,y 与t 之间的函数关系如图②所示.(1)AB = 2 cm ,AD = cm ;(2)当t 为何值时,DEF ∆的面积最小?请求出这个最小值;(3)当t 为何值时,DEF ∆为等腰三角形?请简要说明理由.【考点】LO :四边形综合题【专题】152:几何综合题【分析】(1)根据图②三角形PCD 的面积,可得矩形的长和宽;(2)由题意得:AP t =,5PD t =-,根据三角形面积公式可得y 与t 的关系式,由图②得:12DEF PDC EFPC S S S ∆∆+=正方形,代入可得结论; (3)当DEF ∆为等腰三角形时,分四种情况进行讨论,根据全等三角形的性质计算PD 和AP 的长,可得t 的值.【解答】解:(1)由图②知:5AD =,当0t =时,P 与A 重合,152y AD CD =⨯⨯=, 1552CD ⨯⨯=, 2CD cm =,Q 四边形ABCD 是矩形, 2AB CD cm ∴==,故答案为:2,5;(2)由题意得:AP t =,5PD t =-,112(5)522y CD PD t t ∴==-=-g g g , Q 四边形EFPC 是正方形,12DEF PDC EFPC S S S ∆∆∴+=正方形, 222PC PD CD =+Q ,22222(5)1029PC t t t ∴=+-=-+,222111913(1029)(5)4(4)22222DEF S t t t t t t ∆∴=-+--=-+=-+, 当t 为4时,DEF ∆的面积最小,且最小值为32; (3)当DEF ∆为等腰三角形时,分四种情况:①当FD FE =时,如下图所示,过F 作FG AD ⊥于G ,Q 四边形EFPC 是正方形,PF EF PC ∴==,90FPC ∠=︒,PF FD ∴=,FG PD ⊥Q ,12PG DG PD ∴==, 90FPG CPD CPD DCP ∠+∠=∠+∠=︒Q ,FPG DCP ∴∠=∠,90FGP PDC ∠=∠=︒Q ,()FPG PDC AAS ∴∆≅∆,2PG DC ∴==,4PD ∴=,541AP ∴=-=,即1t =;②当DE DF =时,如下图所示,E 在AD 的延长线上,此时正方形EFPC 是正方形,2PD CD ==,523AP t ∴==-=;③当DE EF =时,如下图所示,过E 作EG CD ⊥于G ,FE DE EC ==Q , 112CG DG CD ∴===, 同理得:()PDC CGE AAS ∆≅∆,1PD CG ∴==,514AP t ∴==-=,④当DF EF =时,如下图所示,2PC EF PF ===,且PC BC ⊥,此时P 与D 重合,5t =,综上,当1t s =或3s 或4s 或5s 时,DEF ∆为等腰三角形.【点评】本题是四边形的综合题,考查了全等三角形的判定与性质、利用三角形的面积公式求二次函数的解析式,勾股定理的运用,动点运动等知识,考查学生数形结合的能力,分类讨论的能力,综合性强,难度适中.6.(2017秋•市南区期末)如图,在平行四边形ABCD 中,AC BC ⊥,10AB =.6AC =.动点P 在线段BC 上从点B 出发沿BC 方向以每秒1个单位长的速度匀速运动;动点Q 在线段DC 上从点D 出发沿DC 的力向以每秒1个单位长的速度匀速运动,过点P 作PE BC ⊥.交线段AB 于点E .若P 、Q 两点同时出发,当其中一点到达终点时整个运动随之停止,设运动时间为t 秒.(1)当t 为何值时,//QE BC ?(2)设PQE ∆的面积为S ,求出S 与t 的函数关系式:(3)是否存在某一时刻t ,使得PQE ∆的面积S 最大?若存在,求出此时t 的值; 若不存在,请说明理由.(4)是否存在某一时刻t ,使得点Q 在线段EP 的垂直平分线上?若存在,求出此时t 的值;若不存在,请说明理由.【考点】LO :四边形综合题【专题】15:综合题【分析】(1)先用勾股定理求出BC ,进而得出10CD AB ==,利用锐角三角函数得出B ∠的相关三角函数,再判断出CGQ CAD ∆∆∽,利用得出的比例式建立方程即可得出结论;(2)同(1)的方法,利用三角函数求出CH ,QH ,最后利用面积的差即可得出结论;(3)借助(2)的结论即可得出结论;(4)先由垂直平分线得出38PM t =,再表示出CN ,用PM CN =建立方程即可得出结论. 【解答】解:(1)如图1,记EQ 与AC 的交点为G ,AC BC ⊥Q ,90ACB ∴∠=︒,在Rt ABC ∆中,10AB =,6AC =,根据勾股定理得,8BC =,3tan 4AC B BC ==, Q 四边形ABCD 是平行四边形,10CD AB ∴==,8AD BC ==,由运动知,BP t =,DQ t =,8PC t ∴=-,10CQ t =-,PE BC ⊥Q ,90BPE ∴∠=︒,在Rt BPE ∆中,3sin 5B =,4cos 5B =,3tan 4PE PE B BP t ===, 34PE t ∴=, //EQ BC Q ,90PEQ BPE ∴∠=∠=︒,∴四边形CPEG 是矩形,34CG PE t ∴==, //EQ BC Q ,CGQ CAD ∴∆∆∽, ∴CG CQ AC CD=, ∴3104610t t -=. 409t ∴=;(2)如图2,过点Q 作QH BC ⊥交BC 的延长线于H ,Q 四边形ABCD 是平行四边形,//AB CD ∴,DCH B ∴∠=∠,在Rt CHQ ∆中,3sin 105QH QH QCH CQ t ∠===-, 3(10)5QH t ∴=-,4cos 105CH CH HCQ CQ t ∠===-, 4(10)5CH t ∴=-, 498(10)1655PH PC CH t t t ∴=+=-+-=-, ()()2133919327404010161610()25452554093QPH QHPE S S S t t t t t t ∆⎡⎤⎛⎫⎛⎫∴=-=-+⨯--⨯-⨯-=--+ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭梯形,Q 点E 在线段AB 上,∴点P 在线段BC 上,08t ∴<„,点Q 在CD 上,010t ∴<<,08t ∴<„, 即:2274040()(08)4093S t t =--+<„;(3)由(2)知,2274040()(08)4093S t t =--+<„; 409t ∴=时,403S =最大;(4)如图3,过点Q 作QM PE ⊥于M ,交AC 于N ,Q 点Q 在线段EP 的垂直平分线上,1328PM PE t ∴==, 同(2)的方法得,3(10)5CN t =-, 易知,四边形PCNM 是矩形,PM CN ∴=,∴33(10)85t t =-, 8013t ∴=.【点评】此题是四边形综合题,主要考查了平行四边形的性质,相似三角形的判定和性质,勾股定理,锐角三角函数,矩形的判定和性质,解本题的关键是用t表示出相关的线段.7.(2019•湘潭)如图一,在射线DE的一侧以AD为一条边作矩形ABCD,53AD=,CD=,点M是线段AC上一动点(不与点A重合),连结BM,过点M作BM的垂线交5射线DE于点N,连接BN.(1)求CAD∠的大小;(2)问题探究:动点M在运动的过程中,①是否能使AMN∆为等腰三角形,如果能,求出线段MC的长度;如果不能,请说明理由.②MBN∠的大小;若改变,请说明理由.∠的大小是否改变?若不改变,请求出MBN(3)问题解决:如图二,当动点M运动到AC的中点时,AM与BN的交点为F,MN的中点为H,求线段FH 的长度.【考点】LO :四边形综合题【专题】152:几何综合题【分析】(1)在Rt ADC ∆中,求出DAC ∠的正切值即可解决问题.(2)①分两种情形:当NA NM =时,当AN AM =时,分别求解即可.②30MBN ∠=︒.利用四点共圆解决问题即可.(3)首先证明ABM ∆是等边三角形,再证明BN 垂直平分线段AM ,解直角三角形即可解决问题.【解答】解:(1)如图一(1)中,Q 四边形ABCD 是矩形,90ADC ∴∠=︒,3tan 53DC DAC AD ∠===Q , 30DAC ∴∠=︒.(2)①如图一(1)中,当AN NM =时,90BAN BMN ∠=∠=︒Q ,BN BN =,AN NM =,Rt BNA Rt BNM(HL)∴∆≅∆,BA BM ∴=,在Rt ABC ∆中,30ACB DAC ∠=∠=︒Q ,5AB CD ==,210AC AB ∴==,60BAM ∠=︒Q ,BA BM =,ABM ∴∆是等边三角形,5AM AB ∴==,∴=-=.CM AC AM5如图一(2)中,当AN AM∠=∠=︒,AMN ANM=时,易证1590∠=︒Q,BMN∠=︒Q,MCBCMB∴∠=︒,3075∴∠=︒-︒-︒=︒,180753075CBM∴∠=∠,CMB CBM53∴==CM CB综上所述,满足条件的CM的值为5或53②结论:30∠=︒大小不变.MBN理由:如图一(1)中,180Q,∠+∠=︒BAN BMN∴,B,M,N四点共圆,A∴∠=∠=︒.30MBN MAN如图一(2)中,90Q,BMN BAN∠=∠=︒∴,N,B,M四点共圆,A180∴∠+∠=︒,MBN MAN∠+∠=︒Q,DAC MAN180MBN DAC∴∠=∠=︒,30综上所述,30∠=︒.MBN(3)如图二中,AM MC =Q ,BM AM CM ∴==,2AC AB ∴=,AB BM AM ∴==,ABM ∴∆是等边三角形,60BAM BMA ∴∠=∠=︒,90BAN BMN ∠=∠=︒Q ,30NAM NMA ∴∠=∠=︒,NA NM ∴=,BA BM =Q ,BN ∴垂直平分线段AM ,52FM ∴=, 53cos30FM NM ∴=︒, 90NFM ∠=︒Q ,NH HM =,1532FH MN ∴= 【点评】本题属于四边形综合题,考查了矩形的性质,全等三角形的判定和性质,解直角三角形,等边三角形的判定和性质,锐角三角函数,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.8.(2019•抚顺)如图,点E ,F 分别在正方形ABCD 的边CD ,BC 上,且DE CF =,点P 在射线BC 上(点P 不与点F 重合).将线段EP 绕点E 顺时针旋转90︒得到线段EG ,过点E 作GD 的垂线QH ,垂足为点H ,交射线BC 于点Q .(1)如图1,若点E 是CD 的中点,点P 在线段BF 上,线段BP ,QC ,EC 的数量关系为 BP QC EC += .(2)如图2,若点E不是CD的中点,点P在线段BF上,判断(1)中的结论是否仍然成立.若成立,请写出证明过程;若不成立,请说明理由.(3)正方形ABCD的边长为6,3AB DE=,1QC=,请直接写出线段BP的长.【考点】LO:四边形综合题【专题】152:几何综合题;556:矩形菱形正方形;553:图形的全等;554:等腰三角形与直角三角形【分析】(1)由ASA证明PEQ EGD∆≅∆,得出PQ ED=,即可得出结论;(2)由ASA证明PEQ EGD∆≅∆,得出PQ ED=,即可得出结论;(3)①当点P在线段BC上时,点Q在线段BC上,由(2)可知:BP EC QC=-,求出2DE=,4EC=,即可得出答案;②当点P在线段BC上时,点Q在线段BC的延长线上,由全等三角形的性质得出2PQ DE==,求出1PC=,得出5BP=;即可得出答案.【解答】解:(1)BP QC EC+=;理由如下:Q四边形ABCD是正方形,BC CD∴=,90BCD∠=︒,由旋转的性质得:90PEG∠=︒,EG EP=,90PEQ GEH∴∠+∠=︒,QH GD⊥Q,90H∴∠=︒,90G GEH∠+∠=︒,PEQ G∴∠=∠,又90EPQ PEC∠+∠=︒Q,90PEC GED∠+∠=︒,EPQ GED∴∠=∠,在PEQ∆和EGD∆中,EPQ GEDEP EGPEQ G∠=∠⎧⎪=⎨⎪∠=∠⎩,()PEQ EGD ASA ∴∆≅∆,PQ ED ∴=,BP QC BC PQ CD ED EC ∴+=-=-=,即BP QC EC +=;故答案为:BP QC EC +=;(2)(1)中的结论仍然成立,理由如下:由题意得:90PEG ∠=︒,EG EP =,90PEQ GEH ∴∠+∠=︒,QH GD ⊥Q ,90H ∴∠=︒,90G GEH ∠+∠=︒,PEQ G ∴∠=∠,Q 四边形ABCD 是正方形,90DCB ∴∠=︒,BC DC =,90EPQ PEC ∴∠+∠=︒,90PEC GED ∠+∠=︒Q ,GED EPQ ∴∠=∠,在PEQ ∆和EGD ∆中,EPQ GED EP EGPEQ G ∠=∠⎧⎪=⎨⎪∠=∠⎩,()PEQ EGD ASA ∴∆≅∆,PQ ED ∴=,BP QC BC PQ CD ED EC ∴+=-=-=,即BP QC EC +=;(3)分两种情况:①当点P 在线段BC 上时,点Q 在线段BC 上,由(2)可知:BP EC QC =-,36AB DE ==Q ,2DE ∴=,4EC =,413BP ∴=-=;②当点P 在线段BC 上时,点Q 在线段BC 的延长线上,如图3所示:同(2)可得:()PEQ EGD AAS ∆≅∆,2PQ DE ∴==,1QC =Q ,1PC PQ QC ∴=-=,615BP BC PC ∴=-=-=;综上所述,线段BP 的长为3或5.【点评】本题是四边形综合题目,考查了正方形的性质、旋转变换的性质、全等三角形的判定与性质、直角三角形的性质以及分类讨论等知识;本题综合性强,证明三角形全等是解题的关键.9.(2019•舟山)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在ABC ∆中,AD BC ⊥于点D ,正方形PQMN 的边QM 在BC 上,顶点P ,N 分别在AB ,AC 上,若BC a =,AD h =,求正方形PQMN 的边长(用a ,h 表示).(2)操作:如何画出这个正方形PQMN 呢?如图2,小波画出了图1的ABC ∆,然后按数学家波利亚在《怎样解题》中的方法进行操作:先在AB 上任取一点P ',画正方形P Q M N '''',使点Q ',M '在BC 边上,点N '在ABC ∆内,然后连结BN ',并延长交AC 于点N ,画NM BC ⊥于点M ,NP NM ⊥交AB 于点P ,PQ BC ⊥于点Q ,得到四边形PQMN .(3)推理:证明图2中的四边形PQMN 是正方形.(4)拓展:小波把图2中的线段BN 称为“波利亚线”,在该线上截取NE NM =,连结EQ ,EM (如图3),当90QEM ∠=︒时,求“波利亚线” BN 的长(用a ,h 表示). 请帮助小波解决“温故”、“推理”、“拓展”中的问题.【考点】LO:四边形综合题【专题】55D:图形的相似;556:矩形菱形正方形【分析】(1)理由相似三角形的性质构建方程即可解决问题;(2)根据题意画出图形即可;(3)首先证明四边形PQMN是矩形,再证明MN PN=即可;(4)过点N作ND ME⊥于点D,由等腰三角形的性质可得NEM MNE∠=∠,ED DM=,由“AAS”可证QEM MDN∆≅∆,可得12EQ DM EM==,通过证明BEQ BME∆∆∽,可得2BM BE=,2BE BQ=,即可求BN的长.【解答】(1)解:如图1中,//PN BCQ,APN ABC∴∆∆∽,∴PN AEBC AD=,即PN h PNa h-=,解得ah PNa h=+(2)能画出这样的正方形,如图2中,正方形PNMQ即为所求.(3)证明:如图2中,由画图可知:90QMN PQM NPQ BM N ∠=∠=∠=∠''=︒,∴四边形PNMQ 是矩形,//MN M N '',∴△BN M BNM ''∆∽, ∴M N BN MN BN '''=, 同理可得:P N BN PN BN'''= ∴M N P N MN PN ''''=, M N P N ''=''Q ,MN PN ∴=,∴四边形PQMN 是正方形(4)如图,过点N 作ND ME ⊥于点DMN EN =Q ,ND ME ⊥,NEM MNE ∴∠=∠,ED DM =90BMN QEM ∠=∠=︒Q90EQM EMQ ∴∠+∠=︒,90EMQ EMN ∠+∠=︒EMN EQM ∴∠=∠,且MN QN =,90QEM NDM ∠=∠=︒()QEM MDN AAS ∴∆≅∆12EQ DM EM ∴==,。
2020年数学中考压轴题专项训练:四边形的综合1.如图,四边形ABCD是直角梯形,AD∥BC,AB⊥AD,且AB=AD+BC,E是DC的中点,连结BE并延长交AD的延长线于G.(1)求证:DG=BC;(2)F是AB边上的动点,当F点在什么位置时,FD∥BG;说明理由.(3)在(2)的条件下,连结AE交FD于H,FH与HD长度关系如何?说明理由.(1)证明:∵AD∥BC,∴∠DGE=∠CBE,∠GDE=∠BCE,∵E是DC的中点,即DE=CE,∴△DEG≌△CEB(AAS),∴DG=BC.(2)解:当F运动到AF=AD时,FD∥BG.理由:由(1)知DG=BC,∵AB=AD+BC,AF=AD,∴BF=BC=DG,∴AB=AG,∵∠BAG=90°,∴∠AFD=∠ABG=45°,∴FD∥BG.(3)解:结论:FH=HD.理由:由(1)知GE=BG,又由(2)知△ABG为等腰直角三角形,所以AE⊥BG,∵FD∥BG,∴AE⊥FD,∵△AFD为等腰直角三角形,∴FH=HD.2.如图,在矩形ABCD中,过BD的中点O作EF⊥BD,分别与AB、CD交于点E、F.连接DE、BF.(1)求证:四边形BEDF是菱形;(2)若M是AD中点,联结OM与DE交于点N,AD=OM=4,则ON的长是多少?(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠DFO=∠BEO,∵∠DOF=∠EOB,OD=OB,∴△DOF≌△BOE(AAS),∴DF=BE,∴四边形BEDF是平行四边形,∵EF⊥BD,∴四边形BEDF是菱形.(2)解:∵DM=AM,DO=OB,∴OM∥AB,AB=2OM=8,∴DN=EN,ON=BE,设DE=EB=x,在Rt△ADE中,则有x2=42+(8﹣x)2,解得x=5,∴ON=.3.(1)如图1,四边形EFGH中,FE=EH,∠EFG+∠EHG=180°,点A,B分别在边FG,GH 上,且∠AEB=∠FEH,求证:AB=AF+BH.(2)如图2,四边形EFGH中,FE=EH,点M在边EH上,连接FM,EN平分∠FEH交FM 于点N,∠ENM=α,∠FGH=180°﹣2α,连接GN,HN.①找出图中与NH相等的线段,并加以证明;②求∠NGH的度数(用含α的式子表示).(1)证明:如图1中,延长BH到M,使得HM=FA,连接EM.∵∠F+∠EHG=180°,∠EHG+∠EHM=180°,∴∠F=∠EHM,∵AE=HE,FA=HM,∴△EFA≌△EHM(SAS),∴EA=EM,∠FEA=∠HEM,∵∠EAB=∠FEH,∴∠FEA+∠BEH=∠HEM+∠BEH=∠BEM=∠FEH,∴∠AEB=∠BEM,∵BE=BE,EA=EM,∴△AEB≌△MEB(SAS),∴AB=BM,∵BM=BH+HM=BH+AF,∴AB=AF+BH.(2)解:①如图2中,结论:NH=FN.理由:∵NE平分∠FEH,∴∠FEN=∠HEN,∵EF=EH,EN=EN,∴△ENF≌△ENH(SAS),∴NH=FN.②∵△ENF≌△ENH,∴∠ENF=∠ENH,∵∠ENM=α,∴∠ENF=∠ENH=180°﹣α,∴∠MNH=180°﹣α﹣α=180°﹣2α,∵∠FGH=180°﹣2α,∴∠MNH=∠FGH,∵∠MNH+∠FNH=180°,∴∠FGH+∠FNH=180°,∴F,G,H,N四点共圆,∵NH=NF,∴=,∴∠NGH=∠NGF=∠FGH=90°﹣α.4.如图,已知△ABC中,∠ACB=90°,AC=4,BC=3,点M、N分别是边AC、AB上的动点,连接MN,将△AMN沿MN所在直线翻折,翻折后点A的对应点为A′.(1)如图1,若点A′恰好落在边AB上,且AN=AC,求AM的长;(2)如图2,若点A′恰好落在边BC上,且A′N∥AC.①试判断四边形AMA′N的形状并说明理由;②求AM、MN的长;(3)如图3,设线段NM、BC的延长线交于点P,当且时,求CP的长.解:(1)如图1中,在Rt△ABC中,∵∠C=90°,AC=4,BC=3,∴AB===5,∵∠A=∠A,∠ANM=∠C=90°,∴△ANM∽△ACB,∴=,∴=,∴AM=.(2)①如图2中,∵NA′∥AC,∴∠AMN=∠NMA′,由翻折可知:MA=MA′,∠AMN=∠NMA′,∴∠MNA′=∠A′MN,∴A′N=A′M,∴AM=A′N,∵AM∥A′N,∴四边形AMA′N是平行四边形,∵MA=MA′,∴四边形AMA′N是菱形.②连接AA′交MN于O.设AM=MA′=x,∵MA′∥AB,∴=,∴=,解得x=,∴AM=,∴CM=,∴CA′===,∴AA′===,∵四边形AMA′N是菱形,∴AA′⊥MN,OM=ON,OA=OA′=,∴OM===,∴MN=2OM=.(3)如图3中,作NH⊥BC于H.∵NH∥AC,∴==∴==∴NH=,BH=,∴CH=BC﹣BH=3﹣=,∴AM=AC=,∴CM=AC﹣AM=4﹣=,∵CM∥NH,∴=,∴=,∴PC=1.5.如图,四边形ABCD为平行四边形,AD=1,AB=3,∠DAB=60°,点E为边CD上一动点,过点C作AE的垂线交AE的延长线于点F.(1)求∠D的度数;(2)若点E为CD的中点,求EF的值;(3)当点E在线段CD上运动时,是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.解:(1)如图1中,∵四边形ABCD是平行四边形,∴AB∥CB,∠ADC+∠DAB=180°,∵∠DAB=60°,∴∠ADC=120°.(2)如图1中,作AH⊥CD交CD的延长线于H.在Rt△ADH中,∵∠H=90°,∠ADH=60°,AD=2,∴AH=AD•sin60°=,DH=AD•cos60°=,∵DE=EC=,∴EH=DH+DE=2,∴AE===,∵CF⊥AF,∴∠F=∠H=90°,∵∠AEH=∠CEF,∴△AEH∽△CEF,∴=,∴=,∴EF=.(3)如图2中,作△AFC的外接圆⊙O,作AH⊥CD交CD的郯城县于H,作OK⊥CD于K,交⊙O于M,作FP∥CD交AD的延长线于P,作MN∥CD交AD的延长线于M,作NQ⊥CD于Q.∵DE∥PF,∴=,∵AD是定值,∴PA定值最大时,定值最大,观察图象可知,当点F与点M重合时,PA定值最大,最大值=AN的长,由(2)可知,AH=,CH=,∠H=90°,∴AC===,∴OM=AC=,∵OK∥AH,AO=OC,∴KH=KC,∴OK==,∴MK=NQ=﹣,在Rt△NDQ中,DN===﹣,∴AN=AD+DN=+,∴的最大值==+.6.如图,在边长为2的正方形ABCD中,点P是射线BC上一动点(点P不与点B重合),连接AP、DP,点E是线段AP上一点,且∠ADE=∠APD,连接BE.(1)求证:AD2=AE•AP;(2)求证BE⊥AP;(3)直接写出的最小值.(1)证明:∵∠DAE=∠PAD,∠ADE=∠APD,∴△ADE∽△APD,∴=,∴AD2=AE•AP(2)证明:∵四边形ABCD是正方形,∴AD=AB,∠ABC=90°,∴AB2=AE•AP,∴=,∵∠BAE=∠PAB,∴△ABE∽△APB,∴∠AEB=∠ABP=90°,∴BE⊥AP.(3)∵△ADE∽△APD,∴=,∴=,∵AD=2,∴DE最小时,的值最小,如图,作△ABE的外接圆⊙O,连接OD,OE,易知OE=1,OD=,∴DE≥OD﹣OE=﹣1,∴DE的最小值为﹣1,∴的最小值=.7.在正方形ABCD中,点E是BC边上一点,连接AE.(1)如图1,点F为AE的中点,连接CF.已知tan∠FBE=,BF=5,求CF的长;(2)如图2,过点E作AE的垂线交CD于点G,交AB的延长线于点H,点O为对角线AC 的中点,连接GO并延长交AB于点M,求证:AM+BH=BE.解:(1)Rt△ABE中,BF为中线,BF=5,∴AE=10,FE=5,作FP⊥BC于点P,Rt△BFP中,,∴BP=3,FP=4,在等腰三角形△BFE中,BE=2BP=6,由勾股定理求得,∴CP=8﹣3=5,∴;(2)∵∠ACD=∠BAC=45°,AO=CO,∠AOM=∠COG,∴证明△AMO≌△CGO(ASA),∴AM=GC,过G作GP垂直AB于点P,得矩形BCGP,∴CG=PB,∵AB=PG,∠AEB=∠H,∠ABE=∠GPH,∴△ABE≌△GPH(ASA),∴BE=PH=PB+BH=CG+BH=AM+BH.8.阅读理解:如图1,若一个四边形的两条对角线互相垂直,则称这个四边形为垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,试在垂美四边形ABCD中探究AB2,CD2,AD2,BC2之间的关系,并说明理由;(3)解决问题:如图3,分别以Rt△ABC的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连结CE、BG、GE、CE交BG于点N,交AB于点M.已知AC=,AB=2,求GE的长.解:(1)如图2,四边形ABCD是垂美四边形;理由如下:连接AC、BD交于点E,∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)猜想结论:AB2+CD2=AD2+BC2,证明:如图1,在四边形ABCD中,∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得:AB2+CD2=AO2+BO2+OD2+OC2AD2+BC2=AO2+BO2+OD2+OC2∴AB2+CD2=AD2+BC2,(3)如图3,连接CG,BE,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,FMNG图 3EDCAB∴△GAB≌△CAE(SSS),∴∠ABG=∠AEC,∵∠AEC+∠AME=90°,∴∠ABG+∠BMN=90°,∴∠BNC=90°,即BG⊥CE,∴四边形CGEB是垂美四边形,由(2)得:EG2+BC2=CG2+BE2∵,AB=2,∴BC=1,,,∴EG2=CG2+BE2﹣BC2=6+8﹣2=13,∴.9.已知:如图,长方形ABCD中,∠A=∠B=∠B=∠D=90°,AB=CD=4米,AD=BC=8米,点M是BC边的中点,点P从点A出发,以1米/秒的速度沿AB方向运动再过点B沿BM方向运动,到点M停止运动,点O以同样的速度同时从点D出发沿着DA方向运动,到点A停止运动,设点P运动的时间为x秒.(1)当x=2秒时,线段AQ的长是 6 米;(2)当点P在线段AB上运动时,图中阴影部分的面积发生改变吗?请你作出判断并说明理由.(3)在点P,Q的运动过程中,是否存在某一时刻,使得BP=DQ?若存在,求出点P 的运动时间x的值;若不存在,请说明理由.解:(1)∵四边形ABCD是矩形,∴AD=BC=8,∵DQ=2,∴AQ=AD﹣DQ=8﹣2=6,故答案为6.(2)结论:阴影部分的面积不会发生改变.理由:连结AM,作MH⊥AD于H.则四边形ABMH是矩形,MH=AB=4.∵S阴=S△APM+S△AQM=×x×4+(8﹣x)×4=16,∴阴影面积不变;(3)当点P在线段AB上时,BP=4﹣x,DQ=x.∵BP=DQ,∴4﹣x=x,∴x=3.当点P在线段BM上时,BP=x﹣4,DQ=x.∵BP=DQ,∴x﹣4=x,∴x=6.所以当x=3或6时,BP=DQ.10.A,B,C,D是长方形纸片的四个顶点,点E、F、H分别是边AB、BC、AD上的三点,连结EF、FH.(1)将长方形纸片ABCD按图①所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',点B'在FC'上,则∠EFH的度数为90°;(2)将长方形纸片ABCD按图②所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',若∠B'FC'=18°,求∠EFH的度数;(3)将长方形纸片ABCD按图③所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',若∠EFH=m°,求∠B'FC'的度数为180°﹣2m°.解:(1)∵沿EF,FH折叠,∴∠BFE=∠B'FE,∠CFH=∠C'FH,∵点B′在FC′上,∴∠EFH=(∠BFB'+∠CFC')=×180°=90°,故答案为:90°;(2)∵沿EF,FH折叠,∴可设∠BFE=∠B'FE=x,∠C'FH=∠CFH=y,∵2x+18°+2y=180°,∴x+y=81°,∴∠EFH=x+18°+y=99°;(3)∵沿EF,FH折叠,∴可设∠BFE=∠B'FE=x,∠C'FH=∠CFH=y,∴∠EFH=180°﹣∠BFE﹣∠CFH=180°﹣(x+y),即x+y=180°﹣m°,又∵∠EFH=∠EFB'﹣∠B'FC'+∠C'FH=x﹣∠B'FC'+y,∴∠B'FC'=(x+y)﹣∠EFH=180°﹣m°﹣m°=180°﹣2m°,故答案为:180°﹣2m°.11.勾股定理是数学史上非常重要的一个定理.早在2000多年以前,人们就开始对它进行研究,至今已有几百种证明方法.在欧几里得编的《原本》中证明勾股定理的方法如下,请同学们仔细阅读并解答相关问题:如图,分别以Rt△ABC的三边为边长,向外作正方形ABDE、BCFG、ACHI.(1)连接BI、CE,求证:△ABI≌△AEC;(2)过点B作AC的垂线,交AC于点M,交IH于点N.①试说明四边形AMNI与正方形ABDE的面积相等;②请直接写出图中与正方形BCFG的面积相等的四边形.(3)由第(2)题可得:正方形ABDE的面积+正方形BCFG的面积=正方形ACHI的面积,即在Rt△ABC中,AB2+BC2=AC2.(1)证明:∵四边形ABDE、四边形ACHI是正方形,∴AB=AE,AC=AI,∠BAE=∠CAI=90°,∴∠EAC=∠BAI,在△ABI和△AEC中,,∴△ABI≌△AEC(SAS);(2)①证明:∵BM⊥AC,AI⊥AC,∴BM∥AI,∴四边形AMNI的面积=2△ABI的面积,同理:正方形ABDE的面积=2△AEC的面积,又∵△ABI≌△AEC,∴四边形AMNI与正方形ABDE的面积相等.②解:四边形CMNH与正方形BCFG的面积相等,理由如下:∵Rt△ABC中,AB2+BC2=AC2,∴正方形ABDE的面积+正方形BCFG的面积=正方形ACHI的面积,由①得:四边形AMNI与正方形ABDE的面积相等,∴四边形CMNH与正方形BCFG的面积相等;(3)解:由(2)得:正方形ABDE的面积+正方形BCFG的面积=正方形ACHI的面积;即在Rt△ABC中,AB2+BC2=AC2;故答案为:正方形ACHI,AC2.12.在长方形纸片ABCD中,点E是边CD上的一点,将△AED沿AE所在的直线折叠,使点D 落在点F处.(1)如图1,若点F落在对角线AC上,且∠BAC=54°,则∠DAE的度数为18 °.(2)如图2,若点F落在边BC上,且AB=6,AD=10,求CE的长.(3)如图3,若点E是CD的中点,AF的沿长线交BC于点G,且AB=6,AD=10,求CG 的长.解:(1)∵四边形ABCD是矩形,∴∠BAD=90°,∵∠BAC=54°,∴∠DAC=90°﹣54°=36°,由折叠的性质得:∠DAE=∠FAE,∴∠DAE=∠DAC=18°;故答案为:18;(2)∵四边形ABCD是矩形,∴∠B=∠C=90°,BC=AD=10,CD=AB=6,由折叠的性质得:AF=AD=10,EF=ED,∴BF===8,∴CF=BC﹣BF=10﹣8=2,设CE=x,则EF=ED=6﹣x,在Rt△CEF中,由勾股定理得:22+x2=(6﹣x)2,解得:x=,即CE的长为;(3)连接EG,如图3所示:∵点E是CD的中点,∴DE=CE,由折叠的性质得:AF=AD=10,∠AFE=∠D=90°,FE=DE,∴∠EFG=90°=∠C,在Rt△CEG和△FEG中,,∴Rt△CEG≌△FEG(HL),∴CG=FG,设CG=FG=y,则AG=AF+FG=10+y,BG=BC﹣CG=10﹣y,在Rt△ABG中,由勾股定理得:62+(10﹣y)2=(10+y)2,解得:y=,即CG的长为.13.如图,矩形ABCD中,AB=6cm,AD=8cm,点P从点A出发,以每秒一个单位的速度沿A→B→C的方向运动;同时点Q从点B出发,以每秒2个单位的速度沿B→C→D的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t秒.(1)当t=7 时,两点停止运动;(2)设△BPQ的面积面积为S(平方单位)①求S与t之间的函数关系式;②求t为何值时,△BPQ面积最大,最大面积是多少?解:(1)∵四边形ABCD是矩形,∴AD=BC=8cm,AB=CD=6cm,∴BC+AD=14cm,∴t=14÷2=7,故答案为7.(2)①当0<t<4时,S=•(6﹣t)×2t=﹣t2+6t.当4≤t<6时,S=•(6﹣t)×8=﹣4t+24.当6<t≤7时,S=(t﹣6)•(2t﹣8)=t2﹣10t+24.②当0<t<4时,S=•(6﹣t)×2t=﹣t2+6t=﹣(t﹣3)2+9,∵﹣1<0,∴t=3时,△PBQ的面积最大,最小值为9.当4≤t<6时,S=•(6﹣t)×8=﹣4t+24,∵﹣4<0,∴t=4时,△PBQ的面积最大,最大值为8,当6<t≤7时,S=(t﹣6)•(2t﹣8)=t2﹣10t+24=(t﹣5)2﹣1,t=7时,△PBQ的面积最大,最大值为3,综上所述,t=3时,△PBQ的面积最大,最大值为9.14.综合实践:问题情境数学活动课上,老师和同学们在正方形中利用旋转变换探究线段之间的关系探究过程如下所示:如图1,在正方形ABCD中,点E为边BC的中点.将△DCE以点D为旋转中心,顺时针方向旋转,当点E的对应点E'落在边AB上时,连接CE'.“兴趣小组”发现的结论是:①AE'=C'E';“卓越小组”发现的结论是:②DE=CE',DE⊥CE'.解决问题(1)请你证明“兴趣小组”和“卓越小组”发现的结论;拓展探究证明完“兴趣小组”和“卓越小组”发现的结论后,“智慧小组”提出如下问题:如图2,连接CC',若正方形ABCD的边长为2,求出CC'的长度.(2)请你帮助智慧小组写出线段CC'的长度.(直接写出结论即可)(1)证明:①∵△DE'C'由△DEC旋转得到,∴DC'=DC,∠C'=∠DCE=90°.又∵四边形ABCD是正方形,∴DA=DC,∠A=90°,∴DA=DC',∵DE'=DE',∴Rt△DAE≌Rt△DC'E′(HL),∴AE'=C'E'.②∵点E为BC中点,C'E'=AE'=CE,∴点E'为AB的中点.∴BE′=CE,又∵DC=BC,∠DCE=∠CBE'=90°,∴△DCE≌△CBE'(SAS),∴DE=CE',∠CDE=∠E'CB,∵∠CDE+∠DEC=90°,∴∠E'CB+∠CED=90°,∴DE⊥CE'.(2)解:如图2中,作C′M⊥CD于M,交AB于N.∵AB∥CD,C′M⊥CD,∴C′M⊥AB,∴∠DMC′=∠C′NE′=∠DC′E′=90°,∴∠MDC′+∠DC′M=90°,∠DC′M+∠E′CN=90°,∴∠MDC′=∠E′C′N,∴△DMC′∽△C′NE′,∴===2,设NE′=x,则AM=AN=1+x,C′M=2x,C′N=(1+x),∵MN=AD=2,∴2x+(1+x)=2,解得x=,∴CM=2﹣(1+)=,MC=,∴CC′===.15.在△ABC中,AD平分∠BAC交BC于D,∠MDN的两边分别与AB,AC相交于M,N两点,且DM=DN.(1)如图甲,若∠C=90°,∠BAC=60°,AC=9,∠MDN=120°,ND∥AB.①写出∠MDA=90 °,AB的长是18 .②求四边形AMDN的周长.(2)如图乙,过D作DF⊥AC于F,先补全图乙再证明AM+AN=2AF.解:(1)①∵AD平分∠BAC,∴∠BAD=∠CAD=∠BAC=30°,∵ND∥AB,∴∠NDA=∠BAD=30°,∴∠MDA=∠MDN﹣∠NDA=120°﹣30°=90°,∵∠C=90°,∠BAC=60°,∴∠ABC=30°,∴AC=AB,∴AB=2AC=18,故答案为:90,18;②∵∠ABC=30°,ND∥AB,∴∠NDC=30°,又∵∠MDN=120°,∴∠MDB=30°,∴∠MAD=∠NAD=∠ADN=∠MBD=30°,∴BM=MD,DN=AN,∵DM=DN,∴BM=MD=DN=AN,在Rt△ADM中,设MD=x,则AM=2x,BM=MD=DN=AN=x,∵AB=18,∴3x=18,∴x=6,∴AM=12,MD=DN=AN=6,∴四边形AMDN的周长=AM+MD+DN+AN=12+6+6+6=30;(2)补全图如图乙所示:证明:过点D作DE⊥AB于E,如图丙所示:∵DE⊥AB,DF⊥AC,AD平分∠BAC,∴∠DEM=∠DFN=90°,DE=DF,在Rt△DEA和Rt△DFA中,,∴Rt△DEA≌Rt△DFA(HL),∴AE=AF,在Rt△DEM和Rt△DFN中,,∴Rt△DEM≌Rt△DFN(HL),∴EM=FN,∴AM+AN=AE+EM+AF﹣NF=2AF.。
2020中考数学培优专题:平行四边形一、单选题(共有10道小题)1.如果等边三角形的边长为4,那么等边三角形的中位线长为()A.2B.4 C.6 D.82.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线平行D.对角线互相垂直3.如图,在平行四边形ABCD中,AB=4,BC=6,AC的垂直平分线交AD与点E,则△CDE的周长是()D.124.以下四个命题正确的是()A. 任意三点可以确定一个圆B. 菱形对角线相等C. 直角三角形斜边上的中线等于斜边的一半D. 平行四边形的四条边相等5.以下四个命题:①每一条对角线都平分一组对角的平行四边形是菱形.②当m > 0时,y =–mx+1与y = mx两个函数都是y随着x的增大而减小.③已知正方形的对称中心在坐标原点,顶点A,B,C,D按逆时针依次排列,若A点坐标为(1,3),则D点坐标为(1,–3).④在一个不透明的袋子中装有标号为1,2,3,4的四个完全相同的小球,从袋中随机摸取一个然后放回,再从袋中随机地摸取一个,则两次取到的小球标号的和等于4的概率为18.其中正确的命题有_________(只需填正确命题的序号)6.一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣1),(﹣1,2),(3,﹣1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(3,3)D.(2,3)7.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60︒的菱形,剪口与折痕所成的角α的度数应为( )A .15︒或30︒B .30︒或45︒C .45︒或60︒D .30︒或60︒8.如图,四边形ABCD 中,E F ,分别是边AB CD ,的中点,则AD BC ,和EF 的关系是( ) A .2AD BC EF +> B .2AD BC EF +≥ C .2AD BC EF +< D .2AD BC EF +≤9.如图,点P 是矩形ABCD 的边AD 上的一动点,矩形的两条边AB 、BC 的长分别是6和8,则点P 到矩形的两条对角线AC 和BD 的距离之和是( )A .4.8B .5C .6D .7.210.在□ABCD 中,AB=10,BC=14,E 、F 分别为边BC 、AD 上的点。
中考数学知识梳理系统复习专题训练:四边形压轴题练习1.(1)如图1,在四边形ABCD中,AB=BC=CD=DA=5cm,BD=8cm.则AC=6cm;(2)在宽为8cm的长方形纸带上,用图1中的四边形设计如图2所示的图案.①如果用7个图1中的四边形设计图案,那么至少需要24cm长的纸带;②设图1中的四边形有x个,所需的纸带长为ycm,求y与x之间的函数表达式;③在长为40cm的纸带上,按照这种方法,最多能设计多少个图1中的四边形?解:(1)如图1中,设菱形的对角线交于点O.∵四边形ABCD是菱形,∴AC⊥BD,OD=OB=4cm,∴OA=OC===3(cm),∴AC=2OA=6cm,故答案为6.(2)①用7个图1中的四边形设计图案,6+6×3=24(cm),∴用7个图1中的四边形设计图案,那么至少需要24cm,故答案为24.②由题意y=6+3(x﹣1)=3x+3.③由题意y=40,40=3x+3,解答x=≈12,∴在长为40cm的纸带上,按照这种方法,最多能设计12个图1中的四边形.2.已知:矩形ABCD,AB=2,BC=5,动点P从点B开始向点C运动,动点P速度为每秒1个单位,以AP为对称轴,把△ABP折叠,所得△AB'P与矩形ABCD重叠部分面积为y,运动时间为t秒.(1)当运动到第几秒时点B'恰好落在AD上;(2)求y关于t的关系式,以及t的取值范围;(3)在第几秒时重叠部分面积是矩形ABCD面积的;(4)连接PD,以PD为对称轴,将△PCD作轴对称变换,得到△PC'D,当t为何值时,点P、B'、C'在同一直线上?解:(1)如图1,由折叠得:∠AB′P=∠B=90°,AB=AB′=2,∵四边形ABCD为矩形,∴∠BAB′=90°,∴四边形ABPB′为正方形,∴BP=AB=2,∵动点P速度为每秒1个单位,∴t=2,即当运动到第2秒时点B′恰好落在AD上;(2)分两种情况:①当0≤t≤2时,如图2,PB=t,由折叠得:S△AB′P =S△ABP,∴y=S△ABP=AB•PB=×2×t=t,②当2<t≤5时,如图3,由折叠得:∠APB=∠APE,PB=PB′=t,∵AD∥BC,∴∠DAP=∠APB,∴∠DAP=∠APE,∴A E=PE,设AE=x,则PE=x,B′E=t﹣x,由勾股定理得:22+(t﹣x)2=x2,x=,∴,综上所述:;(3)①y=t=×2×5,∴t=2.5(舍),②=×2×5,∴t1=1(舍),t2=4,综上所述:在第4秒时,重叠部分面积都是矩形ABCD面积的;(4)如图4,点P,B′,C′在同一直线上,由折叠得:∠APB=∠APB′,∠C′PD=∠CPD,∴∠APC′+∠C′PD=×180°=90°,∵∠P AB′+∠APB′=90°,∴∠P AB′=∠C′PD,∵∠AB′P=∠C′=90°,∴△AB′P∽△PC′D,∴,∴,解得:t1=1,t2=4,如图5所示,∴当t为1秒或4秒时,点P,B′,C′在同一直线上.3.如图,在平面直角坐标系中,正方形顶点A为x轴正半轴上一点,点B在第一象限,点B的坐标为(4,4),连接OB.动点P在射线AO上(点P不与点O、点A重合),点C 在线段BO的延长线上,连接PB、PC,PB=PC,设OP的长为x.(1)填空:线段OA的长=4,线段OB的长=4;(2)求BC的长,并用含x的代数式表示.解:(1)∵B(4,4),四边形OABD是正方形,∴OA=AB=DB=OD=4,∠OAB=90°,∴OB===4,故答案为4,4.(2)当点O在线段OA上时,作PH⊥OB于H.∵∠POH=45°,∠PHO=90°,∴∠POH=∠OPH=45°,∴OH=PH=OP=x,∴BH=OB﹣OH=4﹣x,∵PC=PB,PH⊥BC,∴CH=BH,∴BC=2BH=8﹣x.当点P在AO的延长线上时,同法可得BC=8+x.4.如图,在矩形纸片ABCD中,已知AB=,BC=,点E在边CD上移动,连接AE,将多边形ABCE沿AE折叠,得到多边形AB'C'E,点B、C的对应点分别为点B',C'.(1)连接AC.则AC=2,∠DAC=30°;(2)当B'C'恰好经过点D时,求线段CE的长;(3)在点E从点C移动到点D的过程中,求点C'移动的路径长.解:(1)如图1,连接AC,∵四边形ABCD是矩形,∴AD=BC=,CD=AB=,∠ADC=90°,在Rt△ADC中,根据勾股定理得,AC==2,tan∠DAC==,∴∠DAC=30°,故答案为:2,30(2)设CE=EC′=x,则DE=﹣x,∵∠ADB′+∠EDC′=90°,∠B′AD+∠ADB′=90°,∴∠B′AD=∠EDC′,∵∠B′=∠C′=90°,AB′=AB=,AD=,∴DB′==2,∴△ADB′∽△DEC′,∴,∴,∴x=2(﹣).∴CE=2(﹣);(3)如备用图中,点C的运动路径的长为的长,由(1)知,∠DAC=30°,AC=2,∵∠C′AD=∠DAC=30°,∴∠CAC′=60°,∴的长=5.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD.(2)求证:CE∥AD;(3)若AD=4,AB=6,求AF的值.解:(1)∵AC平分∠BAD,∴∠CAD=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴,∴AC2=AD•AB;(2)在Rt△ABC中,∵E为AB的中点,∴CE=AE(直角三角形斜边的中线等于斜边的一半),∴∠ACE=∠CAE,∵AC平分∠BAD,∴∠CAD=∠CAE,∴∠CAD=∠ACE,∴CE∥AE;(3)由(1)知,AC2=AD•AB,∵AD=4,AB=6,∴AC2=4×6=24,∴AC=2,在Rt△ABC中,∵E为AB的中点,∴CE=AB=3,由(2)知,CE∥AD,∴△CFE∽△AFD,∴,∴,∴AF=.6.(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC 延长线上一点,N是∠DCP的平分线上一点,若∠AMN=90°,求证:△AMN为等腰三角形.下面给出此问题一种证明的思路,你可以按这一思路继续完成证明,也可以选择另外的方法证明此结论.证明:在AB边上截取AE=MC,连接ME,在正方形ABCD中,∠B=∠BCD=90°,AB=BC∴∠NMC=180°﹣∠AMN﹣∠AMB=180°﹣∠B﹣∠AMB=∠MAB.(下面请你连接AN,完成余下的证明过程)(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,试探究△AMN是何种特殊三角形,并证明探究结论.(3)若将(1)中的“正方形ABCD”改为“正n边形ABCD…X,试猜想:当∠AMN的大小为多少时,(1)中的结论仍然成立?(1)证明:如图1,在AB边上截取AE=MC,连接ME,AN,在正方形ABCD中,∠B=∠BCD=90°,AB=BC,∴∠NMC=180°﹣∠AMN﹣∠AMB=180°﹣∠B﹣∠AMB=∠MAB,BE=AB﹣AE=BC﹣MC=BM,∴∠BEM=45°,∴∠AEM=135°,∵N是∠DCP平分线上一点,∴∠NCP=45°,∴∠MCN=135°,在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,∴△AEM≌△MCN(ASA),∴AM=MN,∴△AMN为等腰三角形;(2)△AMN仍是等腰三角形,理由如下:如图2,在边AB上截取AE=MC,连接ME,AN,在正△ABC中,∠B=∠BCA=60°,AB=BC,∴∠NMC=180°﹣∠AMN﹣∠AMB=180°﹣∠B﹣∠AMB=∠MAE,BE=AB﹣AE=BC﹣MC=BM,∴∠BEM=60°,∴∠AEM=120°,∵N是∠ACP的平分线上一点,∴∠ACN=60°,∴∠MCN=120°,在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,∴△AEM≌△MCN(ASA),∴AM=MN,∴△AMN为等腰三角形;(3)若将(1)中的“正方形ABCD”改为“正n边形ABCD…X,则当∠AMN=度时,(1)中的结论仍然成立,理由同(1),(2),参考图1,在正n边形的边AB上截取AE=MC,连接ME,AN,在正n边形ABCD…X中,∠B=∠BCD,AB=BC,当∠AMN=∠B=度时,∴∠NMC=180°﹣∠AMN﹣∠AMB=180°﹣∠B﹣∠AMB=∠MAE,BE=AB﹣AE=BC﹣MC=BM,∴∠BEM=∠BME,∠AEM=180°﹣∠BEM=度,∵N是∠ACP的平分线上一点,∴∠ACN=度,∴∠MCN=180°﹣=度,∴在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,∴△AEM≌△MCN(ASA),∴AM=MN,∴△AMN为等腰三角形,∴当∠AMN=度时,(1)中的结论仍然成立.7.一个边长为60米的正六边形跑道,P、Q两人同时从A处开始沿相反方向都跑一圈后停止,P以4米/秒逆时针方向、Q以5米/秒顺时针方向,PQ的距离为d米,设跑步时间为x秒,令d2=y,(1)跑道全长为360米,经过40秒两人第一次相遇.(2)当P在BC上,Q在EF上时,求y关于x的函数解析式;并求相遇前当x为多少时,他们之间的距离最大.(3)直接写出P、Q在整个运动过程中距离最大时的x的值及最大的距离.解:(1)∵六边形ABCDEF是正六边形,∴AB=BC=CD=DE=EF=AF=60米,∠A=∠F=∠E=∠D=∠C=∠B=120°,∴跑道全长=6×60=360米,∴4x+5x=360,∴x=40s,∴经过40秒两人第一次相遇.故答案为:360,40;(2)如图,连接BF,过点Q作QH⊥BC于H,∵∠A=120°,AB=AF=60,∴∠AFB=∠ABF=30°,BF=60米,∴∠BFE=∠FBC=90°,且QH⊥BC,∴四边形FBHQ是矩形,∴QH=BF=60米,FQ=BH,∵AF+FQ=5x米,AB+BP=4x米,∴PH=x米,∴y=QP2=PH2+QH2,∴y=x2+10800,(15≤x≤24)∴当x=24时,d的最大值为12米,(3)∵六边形ABCDEF是正六边形,∴点A,点B,点C,点D,点E,点F在以AD中点为圆心,AB长为半径的圆上,∴当x=60s时,5×60=300米,则点Q与点B重合,4×60=240米,则点P与点E重合,∴PQ为直径,即PQ的最大值为120米.8.如图1,在矩形ABCD中AB=4,BC=8,点E、F是BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形.(2)如果四边形AECF是菱形,求这个菱形的边长.(3)如图2,在(2)的条件下,取AB、CD的中点G、H,连接DG、BH,DG分别交AE、CF于点M、Q,BH分别交AE、CF于点N、P,求点P到BC的距离并直接写出四边形MNPQ的面积.(1)证明:∵四边形ABCD为矩形,BE=DF,∴AD∥BC,AD=BC,∴AF∥EC,AF=EC,∴四边形AECF为平行四边形;(2)解:设菱形AECF的边长为x,∵四边形AECF为菱形,AB=4,BC=8,∴AE=EC=x,BE=8﹣x,在Rt△ABE中,AE2=AB2+BE2即x2=42+(8﹣x)2解得:x=5,∴菱形AECF的边长为5;(3)解:连接GH交FC于点K,设点P到BC的距离为h,如图2所示:∵G、H分别为AB、CD的中点,∴KH是△CDF的中位线,CH=2,∴KQ∥DF,∴△PKH∽△PCB,∴=,∵四边形AECF是菱形,∴AE=AF=CF=5,∵DF=AD﹣AF=8﹣5=3,∴KH=1.5,∴==,解得h=,∴=,∵P到BC的距离,∴N到BC的距离为×=,∴四边形NECP的面积为×8×2﹣××8×2﹣×3×=,∵菱形AECF面积为CE×CD=5×4=20,∴四边形MNPQ面积为20﹣2×=.9.如图,矩形ABCD中,AB=8,BC=6,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.解:(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)∵四边形BEDF为菱形,∴BE=DE DB⊥EF,又∵AB=8,BC=6,设BE=DE=x,则AE=8﹣x,在Rt△ADE中,62+(8﹣x)2=x2∴,∴,∴∴,∴EF=2OE=.10.如图,在△ABC中,D是BC的中点,E是AD的中点,过点A作AF∥BC,AF与CE 的延长线相交于点F,连接BF.(1)求证:四边形AFBD是平行四边形;(2)①若四边形AFBD是矩形,则△ABC必须满足条件AB=AC;②若四边形AFBD是菱形,则△ABC必须满足条件∠BAC=90°.证明:(1)∵AF∥BC∴∠AFE=∠DCE,且∠AEF=∠DEC,AE=DE,∴△AFE≌△DCE(AAS)∵D是BC的中点,∴BD=CD∴AF=BD,AF∥BC∴四边形AFBD是平行四边形(2)①当AB=AC时,四边形AFBD是矩形理由:∵AB=AC,D是BC的中点∴AD⊥BC,且四边形AFBD是平行四边形∴四边形AFBD是矩形故答案为:AB=AC②当∠BAC=90°时,四边形AFBD是菱形理由:∵∠BAC=90°,D是BC的中点∴AD=BD,且四边形AFBD是平行四边形∴四边形AFBD是菱形故答案为:∠BAC=90°11.如图①,在矩形ABCD中,已知BC=8cm,点G为BC边上一点,满足BG=AB=6cm,动点E以1cm/s的速度沿线段BG从点B移动到点G,连接AE,作EF⊥AE,交线段CD 于点F.设点E移动的时间为t(s),CF的长度为y(cm),y与t的函数关系如图②所示.(1)图①中,CG=2cm,图②中,m=2;(2)点F能否为线段CD的中点?若可能,求出此时t的值,若不可能,请说明理由;(3)在图①中,连接AF,AG,设AG与EF交于点H,若AG平分△AEF的面积,求此时t的值.解:(1)∵BC=8cm,BG=AB=6cm,∴CG=2cm,∴∠AEB+∠FEC=90°,且∠AEB+∠BAE=90°,∴∠BAE=∠FEC,且∠B=∠C=90°,∴△AB E∽△ECF,∴,∵t=6,∴BE=6cm,CE=2cm,∴∴CF=2cm,∴m=2,故答案为:2,2;(2)若点F是CD中点,∴CF=DF=3cm,∵△ABE∽△ECF,∴,∴∴EC2﹣8EC+18=0∵△=64﹣72=﹣8<0,∴点F不可能是CD中点;(3)如图①,过点H作HM⊥BC于点M,∵∠C=90°,HM⊥BC,∴HM∥CD,∴△EHM∽△EFC,∴∵AG平分△AEF的面积,∴EH=FH,∴EM=MC,∵BE=t,EC=8﹣t,∴EM=CM=4﹣t,∴MG=CM﹣CG=2﹣,∵,∴∴CF=∵EM=MC,EH=FH,∴MH=CF=∵AB=BG=6,∴∠AGB=45°,且HM⊥BC,∴∠HGM=∠GHM=45°,∴HM=GM,∴=2﹣,∴t=2或t=12,且t≤6,∴t=2.12.如图,在△ABC中,AB=AC=5,BC=6,在△ABC中截出一个矩形DEFG,使得点D 在AB边上,EF在BC边上,点G在AC边上,设EF=x,矩形DEFG的面积为y.(1)求出y与x之间的函数关系式;(2)直接写出自变量x的取值范围0<x<6;(3)若DG=2DE,则矩形DEFG的面积为.解:(1)如图,过点A作AN⊥BC于点N,交DG于点M,∵AB=AC=5,BC=6,AN⊥BC,∴BN=CN=3,AN===4,∵DG∥BC,∴∠ADG=∠ABC,∠AGD=∠ACB,∴△ADG∽△ABC,∴=,即=,∴MN=4﹣x.∴y=EF•MN=x(4﹣x)=﹣x2+4x,即y=﹣x2+4x:(2)0<x<6;故答案为:0<x<6;(3)若DG=2DE,则EF=2MN,∴x=2(4﹣x),解得:x=,当x=时,y=﹣×()2+4×=;故答案为:.13.如图,BD是平行四边形ABCD的对角线,DE⊥AB于点E,过点E的直线交BC于点G,且BG=CG.(1)求证:GD=EG.(2)若BD⊥EG垂足为O,BO=2,DO=4,画出图形并求出四边形ABCD的面积.(3)在(2)的条件下,以O为旋转中心顺时针旋转△GDO,得到△G′D'O,点G′落在BC上时,请直接写出G′E的长.证明:(1)如图1,延长EG交DC的延长线于点H,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,AB=CD,AB∥CD,∵AB∥CD,∴∠H=GEB,且BG=CG,∠BGE=∠CGH,∴△CGH≌△BGE(AAS)∴GE=GH,∵DE⊥AB,DC∥AB,∴DC⊥DE,且GE=GH,∴DG=EG=GH;(2)如图1:∵DB ⊥EG ,∴∠DOE =∠DEB =90°,且∠EDB =∠EDO ,∴△DEO ∽△DBO , ∴∴DE ×DE =4×(2+4)=24,∴DE =2, ∴EO ===2, ∵AB ∥CD , ∴,∴HO =2EO =4, ∴EH =6,且EG =GH , ∴EG =3,GO =EG ﹣EO =, ∴GB ===,∴BC =2=AD , ∴AD =DE ,∴点E 与点A 重合,如图2:∵S 四边形ABCD =2S △ABD ,∴S 四边形ABCD =2××BD ×AO =6×2=12;(3)如图3,过点O 作OF ⊥BC ,∵旋转△GDO,得到△G′D'O,∴OG=OG',且OF⊥BC,∴GF=G'F,∵OF∥AB,∴==,∴GF=BG=,∴GG'=2GF=,∴BG'=BG﹣GG'=,∵AB2=AO2+BO2=12,∵EG'=AG'==,=.14.如图1,在矩形ABCD中,P是对角线AC上的动点,过点P的直线分别与DC、AB交于点E.F(不与矩形的顶点重合).(1)当AF=CE,BE=BF,∠BEF=2∠BAC时①求证:PE=PF;②若BC=2,求AB的长(2)若AD=4,CD=6,则DP+PE是否存在最小值?如果存在,利用图2画出图形,确定点P所在的位置,并求此最小值:如果不存在,说明理由.证明:(1)①∵四边形ABCD是矩形,∴AB∥CD,∴∠P AF=∠PCE,∠PF A=∠PEC,且AF=CE,∴△AFP≌△CEP(ASA)∴PE=PF;②如图1,连接BP,∵BE=BF,PE=PF,∴BP⊥EF,∠EBP=∠FBP,∠BEF=∠BFE,∴∠BPE=90°,∵四边形ABCD是矩形,∴∠BCD=90°,∵∠BEF=2∠BAC,∠BEF=∠BFE,∠BFE=∠BAC+∠APF,∴∠APF=∠BAC,∴AF=PF,且AF=EC,PF=PE,∴PE=EC,且BE=BE,∴Rt△BCE≌Rt△BPE(HL),∴BC=BP=2,∵△AFP≌△CEP,∴AP=PC,且∠ABC=90°,∴AC=2PB=4,∴AB===6;(2)存在最小值,如图2,过点D作关于直线AC的对称点D',过点D'作CD的垂线,垂足为E,交AC于点P,∵点D,点D'关于AC对称,∴DF=D'F,DD'⊥AC,∴DP=D'P,∴DP+PE=D'P+PE,∴D'E⊥CD时,DP+PE有最小值为D'E,∵AD=4,CD=6,∴AC===2,=×AD×CD=×DF×AC,∵S△ADC∴DF=,∴DD'=,∵∠CDF=∠D'DE,∠DED'=∠DFC=90°,∴△DFC∽△DED',∴,∴DE==,∴D'E===.∴DP+PE最小值为.15.如图,长方形AOCB的顶点A(m,n)和C(p,q)在坐标轴上,已知和都是方程x+2y=4的整数解,点B在第一象限内.(1)求点B的坐标;(2)若点P从点A出发沿y轴负半轴方向以1个单位每秒的速度运动,同时点Q从点C出发,沿x轴负半轴方向以2个单位每秒的速度运动,问运动到多少秒时,四边形BPOQ 面积为长方形ABCO面积的一半;(3)如图2,将线段AC沿x轴正方向平移得到线段BD,点E(a,b)为线段BD上任意一点,试问a+2b的值是否变化?若变化,求其范围;若不变化,求其值.(直接写出结论)解:(1)∵A(m,n),C(p,q),∴m=0,n>0,p>0,q=0,∵方程x+2y=4的非负整数解为,或,或,∴A(0,2),C(4,0),∵四边形AOCB是矩形,∴BC=OA=2,AB=OC=4,∴点B的坐标为(4,2);(2)如图1所示:由题意得:AP=t,CQ=2t,∴四边形BPOQ的面积=矩形AOCB的面积﹣△ABP的面积﹣△BCQ的面积=4×2﹣×4×t﹣×2t×2=×4×2,解得:t=1,即运动到1秒时,四边形BPOQ面积为长方形ABCO面积的一半;(3)a+2b的值不变化,值为8,理由如下:作EF⊥CD于F,如图2所示:则EF∥OA∥BC,由平移的性质得:AC∥BD,AC=BD,∴四边形ABDC是平行四边形,∴CD=AB=4,∴OD=OC+CD=8,∵点E的坐标为(a,b),∴OF=a,EF=b,∴DF=8﹣a,∵EF∥BC,∴△DEF∽△DBC,∴=,即=,整理得:a+2b=8.。
2020年中考数学专题四边形精选试题满分:100分时间:100分钟一.选择题(每小题3分,共30分)1.如图,在平行四边形ABCD中,BC=8cm,CD=6cm,∠D=40°,BE平分∠ABC,下列结论错误的是()A.AE=6cm B.ED=2cm C.∠BED=150°D.∠C=140°2.在菱形ABCD中,AC是对角线,CD=CE,连结DE.AC=16,CD=10,则D E的长为()A.B.C.或D.3.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,连结OE.若OE=3,则菱形ABCD的周长是()A.6B.12C.18D.244.在平行四边形ABCD中,下列结论一定成立的是()A.AC⊥BD B.∠A+∠B=180°C.AB=AD D.∠B=∠C 5.已知菱形ABCD的对角线相交于点O,若AC=8,AB=5,则菱形的高为()A.3B.C.4D.6.如图,E是平行四边形内任一点,若S平行四边形ABCD=10,则图中阴影部分的面积是()A.3B.4C.5D.67.如图,菱形ABCD中,∠A=60°,边AB=8,E为边DA的中点,P为边CD上的一点,连接PE、PB,当PE=EB时,线段PE的长为()A.4B.8C.4D.48.如图,已知直角△ABC中,∠B=90°,AB=8,BC=6,把斜边AC分成n 段,以每段为对角线作小长方形,则所有这些小长方形的周长的和是()A.14B.28C.D.9.如图,在菱形ABCD中,DE⊥AB,AD=5,BD=4,则DE的值是()A.3B.C.4D.10.如图,正方形ABCD中,点E是AD边的中点,BD,CE交于点H,BE、AH交于点G,则下列结论:①∠ABE=∠DCE;②AG⊥BE;③S△BHE=S△;④∠AHB=∠EHD.其中正确的是()CHDA.①③B.①②③④C.①②③D.①③④二.填空题(每小题3分,共30分)11.如图,矩形OABC的顶点A、C分别在坐标轴上,B(8,7),D(5,0),点P是边AB上的一点,连接OP,DP,当△ODP为等腰三角形时,点BP 的长度为.12.如图,四边形ABCD中,∠B+∠ADC=150°,∠1,∠2分别是∠BCD和∠BAD的邻补角,则∠1+∠2=.13.如图,在正方形ABCD中,AB=6,点E、F分别在CD、AD上,CE=DF,BE,CF相交于G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为.14.一个正多边形的某个外角度数是30°,那么这个正多边形有条边,每个内角度数为.15.如图,正方形ABCD的边长为2,E为射线CD上一动点(不与C重合),以CE为边向正方形ABCD外作正方形CEFG,连接DG,直线BE、DG相交于点P,连接AP,则线段AP长度的取值范围是.16.如图,用灰白两色正方形瓷砖铺设地面,第1个图案用了4块灰色的瓷砖,第2个图案用了6块灰色的瓷砖,第3个图案用了8块灰色的瓷砖,…,第n个图案中灰色瓷砖块数为.17.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,AB=2,点E为BC上任意一点(不与点B,点C重合),连接EA,以EA,EC为邻边作平行四边形EADC,连接DE,则DE的最小值为.18.如图,正方形ABCD的面积为256,点E在AD上,点F在AB的延长线上,EC⊥FC,△CEF的面积为200,则BF的长为.19.如图,正方形ABCD中,E、F分别在AB、AD上(AE<BE),DE⊥CF于G,M在CG上,且MG=DG,连BM,N是BM的中点,连结CN,若CN =8,EG=13,则CF=.20.如图,在菱形ABCD中,AB=2,∠DAB=60°,对角线AC,BD相交于点O,过点C作CE∥BD交AB的延长线于点E,连接OE,则OE长为.三.解答题(每题8分,共40分)21.如图,在平行四边形ABCD中,点E在边AD上,点F在边CB的延长线上,联结CE、EF,CE2=DE•CF.(1)求证:∠D=∠CEF;(2)联结AC,交EF于点G,如果AC平分∠ECF,求证:AC•AE=CB•CG.22.如图,在梯形ABCD中,AD∥BC,∠C=90°,AD=2,BC=5,DC=3,点E在边BC上,tan∠AEC=3,点M是射线DC上一个动点(不与点D、C 重合),联结BM交射线AE于点N,设DM=x,AN=y.(1)求BE的长;(2)当动点M在线段DC上时,试求y与x之间的函数解析式,并写出函数的定义域;(3)当动点M运动时,直线BM与直线AE的夹角等于45°,请直接写出这时线段DM的长.23.在△ABC中,AB=AC,AM是△ABC的外角∠CAE的平分线.(1)如图1,求证:AM∥BC;(2)如图2,若D是BC中点,DN平分∠ADC交AM于点N,DQ平分∠ADB 交AM的反向延长线于Q,判断△QDN的形状并说明理由.(3)如图3,在(2)的条件下,若∠BAC=90°将∠QDN绕点D旋转一定角度,DN交边AC于F,DQ交边AB于H,当S△ABC=14时,则四边形AHDF 的面积为.24.如图,BD是平行四边形ABCD的对角线,DE⊥AB于点E,过点E的直线交BC于点G,且BG=CG.(1)求证:GD=EG.(2)若BD⊥EG垂足为O,BO=2,DO=4,画出图形并求出四边形ABCD 的面积.(3)在(2)的条件下,以O为旋转中心顺时针旋转△GDO,得到△G′D'O,点G′落在BC上时,请直接写出G′E的长.25.如图,在直角坐标系中,长方形ABCD(每个内角都是90°)的顶点的坐标分别是A(0,m),B(n,0),(m>n>0),点E在AD上,AE=AB,点F 在y轴上,OF=OB,BF的延长线与DA的延长线交于点M,EF与AB交于点N.(1)试求点E的坐标(用含m,n的式子表示);(2)求证:AM=AN;(3)若AB=CD=12cm,BC=20cm,动点P从B出发,以2cm/s的速度沿BC向C运动的同时,动点Q从C出发,以vcm/s的速度沿CD向D运动,是否存在这样的v值,使得△ABP与△PQC全等?若存在,请求出v值;若不存在,请说明理由.参考答案一.选择题1.解:∵四边形ABCD是平行四边形,∠D=50°,∴AD∥BC,AD=BC=8cm,AB=CD=6cm,∠ABC=∠D=40°,∴∠C=180°﹣∠D=140°,故D正确;∵BE平分∠ABC,∴∠ABE=∠EBC=∠ABC=20°,∴∠AEB=∠EBC=20°,∴∠BED=180°﹣∠AEB=160°,故C错误;∴∠AEB=∠ABE,∴AE=AB=6cm,故A正确;A D=BC=8cm,∴ED=AD﹣AE=2cm,故B正确.故选:C.2.解:连接BD交AC于K.∵四边形ABCD是菱形,∴AC⊥BD,AK=CK=8,在Rt△AKD中,DK===6,∵CD=CE,∴EK=CE﹣CK=10﹣8=2,在Rt△DKE中,DE==2.故选:A.3.解:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△AOD为直角三角形.∵OE=3,且点E为线段AD的中点,∴AD=2OE=6.C菱形ABCD=4AD=4×6=24.故选:D.4.解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠A=∠C,∠B=∠D,AB∥CD,AD∥BC,AC与BD 互相平分,∴∠A+∠B=180°,故选:B.5.解:∵四边形ABCD是菱形,AC=8,AB=5,∴AC⊥BD,OA=AC=4,OB===3,∴BD=2OB=6,∵S菱形ABCD=AC•BD=BC•AE,∴×6×8=5×AE,∴AE=.故选:B.6.解:设两个阴影部分三角形的底为AD,CB,高分别为h1,h2,则h1+h2为平行四边形的高,∴S△EAD+S△ECB=AD•h1+CB•h2=AD(h1+h2)=S四边形ABCD=5.故选:C.7.解:∵四边形ABCD是菱形,∴AB=AD=8,且∠A=60°,∴△ABD是等边三角形,且点E是AD的中点,∴BE⊥AD,且∠A=60°,∴AE=4,BE=AE=4,∴PE=BE=4,故选:D.8.解:∵∠B=90°,AB=8,BC=6,且斜边AC平均分成n段,∴小矩形的长为=,宽为=,∴一个小矩形的周长为:2(+)=,∴这些小矩形的面积和是n•=28.故选:B.9.解:设AE=x,则BE=AB﹣BE=5﹣x,∵DE⊥AB,∴AD2﹣AE2=DB2﹣BE2,即:52﹣x2=42﹣(5﹣x)2,解得:x=,∴DE==,故选:B.10.解:∵四边形ABCD是正方形,E是AD边上的中点,∴AE=DE,AB=CD,∠BAD=∠CDA=90°,∴△BAE≌△CDE(SAS),∴∠ABE=∠DCE,故①正确;∵四边形ABCD是正方形,∴AD=DC,∠ADB=∠CDB=45°,DH=DH,∴△ADH≌△CDH(SAS),∴∠HAD=∠HCD,∵∠ABE=∠DCE∴∠ABE=∠HAD,∵∠BAD=∠BAH+∠DAH=90°,∴∠ABE+∠BAH=90°,∴∠AGB=180°﹣90°=90°,∴AG⊥BE,故②正确;∵AD∥BC,∴S△BDE=S△CDE,∴S△BDE﹣S△DEH=S△CDE﹣S△DEH,即;S△BHE=S△CHD,故③正确;∵△ADH≌△CDH,∴∠AHD=∠CHD,∴∠AHB=∠CHB,∵∠BHC=∠DHE,∴∠AHB=∠EHD,故④正确;故选:B.二.填空题(共10小题)11.解:∵四边形OABC是矩形,B(8,7),∴OA=BC=8,OC=AB=7,∵D(5,0),∴OD=5,∵点P是边AB的一点,∴OD=DP=5,∵AD=3,∴P A==4,∴PB=3故答案为:3.12.解:∵∠B+∠ADC+∠DAB+∠DCB=360°∠DAB+∠DCB+∠1+∠2=360°∴∠1+∠2=∠B+∠ADC=150°故答案为150°13.解:∵四边形ABCD是正方形,∴∠BCE=∠D=90°,BC=CD,∵阴影部分的面积与正方形ABCD的面积之比为2:3,正方形ABCD的面积=62=36,∴阴影部分的面积为×36=24,∴空白部分的面积为36﹣24=12,在△BCE和△CDF中,∴△BCE≌△CDF(SAS),∴∠CBE=∠DCF,△BCG的面积与四边形DEGF的面积相等,均为×12=6,∵∠DCF+∠BCG=90°,∴∠CBG+∠BCG=90°,即∠BGC=90°,设BG=a,CG=b,则ab=6,又∵a2+b2=62,∴a2+2ab+b2=36+24=60,即(a+b)2=60,∴a+b=2,即BG+CG=2,∴△BCG的周长=6+2,故答案为:6+2.14.解:这个正多边形的边数:360°÷30°=12,每个内角度数为:180°﹣30°=150°.故答案为:12;150°15.解:∵四边形ABCD和四边形CEFG为正方形,∴CB=CD,CE=CG,∠BCD=∠ECG=90°,在△BCE和△DCG中,∴△BCE≌△DCG(SAS),∴∠CBE=∠CDG,而∠BEC=∠DEP,∴∠DPE=∠BCE=90°,连接BD,如图,点P在以BD为直径的圆上,即点P在正方形ABCD的外接圆上,∴AP为此外接圆的弦,∵BD=AB=2,∴0<AP<2,故答案为:0<AP<2.16.解:n=1时,黑瓷砖的块数为:4;n=2时,黑瓷砖的块数为:6;n=3时,黑瓷砖的块数为:8;…;当n=n时,黑瓷砖的块数为:2n+2.故答案为2n+2.17.解:∵∠BAC=90°,∠B=60°,∴∠ACB=30°,∴BC=2AB=4,AC=AB=2,∵四边形EADC是平行四边形,∴EO=DO,CO=AO=,∵DE最短也就是EO最短,∴过O作BC的垂线OF,∵∠ACB=∠FCO,∠CFO=∠CAB=90°,∴△CAB∽△CFO,∴=,即=,∴FO=,∴则DE的最小值为2FO=,故答案为:.18.解:∵∠ECF=90°,∠DCB=90°,∴∠BCF=∠DCE,∵在△CDE与△CBF中,∴△CDE≌△CBF,∴CE=CF.因为Rt△CEF的面积是200,即•CE•CF=200,故CF=20.正方形ABCD的面积=BC2=256,得BC=16.根据勾股定理得:BF==12.故答案为:12.19.解:如图,过点B作BH∥FC,连接GN并延长交BH于点H,连接CH,∵BH∥FC,∴∠BHN=∠MGN,∠HBC=∠GCB,∵N是BM的中点,∴BN=MN,∵∠BHN=∠MGN,BN=MN,∠BNH=∠GNM,∴△BH N≌△MGN(AAS)∴BH=GM,HN=GN,∵DG=GM,∴BH=GD,∵四边形ABCD是正方形,∴BC=CD,∠BCD=90°,∴∠DCG+∠BCG=90°,∵DE⊥CF,∴∠DCG+∠CDG=90°,∴∠BCG=∠CDG=∠HBC,且BC=CD,DG=BH,∴△DGC≌△BHC(SAS)∴CH=CG,∠BCH=∠DCG,∴∠BCH+∠BCG=∠DCG+∠BCG=90°,∴∠GCH=90°,且C G=CH,HN=NG,∴CN=NH=NG=8,CN⊥HF,∴CG===16,∵∠A=∠FGD=90°,∴∠AED+∠ADE=90°,∠ADE+∠DFG=90°,∴∠DFG=∠AED,且AD=CD,∠A=∠ADC=90°,∴△ADE≌△DCF(AAS)∴CF=DE,∠ADE=∠DCF,∵∠ADE=∠DCF,∠DGF=∠DGC,∴△DGF∽△CGD,∴∴DG2=FG•GC∴(DE﹣EG)2=(FC﹣EG)2=(16+FG﹣13)2=16•FG ∴FG=9(不合题意舍去),FG=1,∴FC=FG+GC=17,故答案为:17.20.解:∵四边形ABCD是菱形,∠DAB=60°,∴∠OAB=30°,∠AOB=90°.OB=OD,AO=CO,∵AB=2,∴OB=1,AO=OC=,∴DB=2,∵CE∥DB,∴四边形DBEC是平行四边形.∴CE=DB=2,∠ACE=90°,∴OE===,故答案为:.三.解答题(共5小题)21.(1)证明:∵CE2=DE•CF,即=∵四边形ABCD为平行四边形,∴AD∥BC,∴∠DEC=∠ECF,∴△CDE∽△CEF,∴∠D=∠CEF.(2)如图所示:∵AC平分∠ECF,∴∠ECA=∠BCA,∵∠D=∠CEF,∠D=∠B,∴∠CEF=∠B,∴△CGE∽△CAB,∴=,∵AD∥BC,∴∠DAC=∠BCA,∵∠ECA=∠DAC,∴AE=CE,∴=,即AC•AE=CB•CG.22.解:(1)如图1中,作AH⊥BC于H,∵AD∥BC,∠C=90°,∴∠AHC=∠C=∠D=90°,∴四边形AHCD是矩形,∴AD=CH=2,AH=CD=3,∵tan∠AEC=3,∴=3,∴EH=1,CE=1+2=3,∴BE=BC﹣CE=5﹣3=2.(2)延长AD交BM的延长线于G.∵AG∥BC,∴=,∴=,∴DG=,AG=2+=,∵=,∴=,∴y=(0<x<3).(3)①如图3﹣1中,当点M在线段DC上时,∠BNE=∠ABC=45°,∵△EBN∽△EAB,∴EB2=EN•AE,∴,解得x=.②如图3﹣2中,当点M在线段DC的延长线上时,∠ANB=∠ABE=45°,∵△BNA∽△EBA,∴AB2=AE•AN,∴(3)2=•[+解得x=13,综上所述DM的长为或13.23.解:(1)∵AB=AC,∴∠B=∠C,∵AM平分∠EAC,∴∠EAM=∠MAC=∠EAC,∵∠EAC=∠B+∠C,∴∠B=∠EAC,∴∠EAM=∠B,∴AM∥BC;(2)△ADN是等腰直角三角形,理由:∵D是BC的中点,AB=AC,∴AD⊥BC,∴∠ADB=∠ADC=90°,∵DN平分∠ADC,DQ平分∠ADB,∴∠ADN=∠NDC=45°,∠ADQ=∠BDQ=45°,∴∠QDN=90°,∵AM∥BC,∴∠AND=∠NDC=45°,∠AQD=∠BQD=45°,∴∠AND=∠AQD,∴DQ=DN,∴△ADN是等腰直角三角形;(3)由(2)知,∠QDN=90°,∵∠BAC=90°,∴∠QDN+∠BAC=180°,∴∠AHD+∠AFD=180°,∵∠AHD+∠BHD=180°,∴∠BHD=∠AFD,由(2)知,∠ADB=∠QDN=90°,∴∠BDH=∠ADF,在Rt△ABC中,AB=AC,∠ADC=90°,∴BD=CD=AD,∴△BDH≌△ADF(AAS),∴S△BDH=S△ADF,∴S四边形AHDF=S△ADF+S△ADH=S△BDH+S△ADH=S△ABD=S△ABC=7,故答案为:7.24.证明:(1)如图1,延长EG交DC的延长线于点H,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,AB=CD,AB∥CD,∵AB∥CD,∴∠H=GEB,且BG=CG,∠BGE=∠CGH,∴△CGH≌△BGE(AAS)∴GE=GH,∵DE⊥AB,DC∥AB,∴DC⊥DE,且GE=GH,∴DG=EG=GH;(2)如图1:∵DB⊥EG,∴∠DOE=∠DEB=90°,且∠EDB=∠EDO,∴△DEO∽△DBO,∴∴DE×DE=4×(2+4)=24,∴DE=2,∴EO===2,∵AB∥CD,∴,∴HO=2EO=4,∴EH=6,且EG=GH,∴EG=3,GO=EG﹣EO=,∴GB===,∴BC=2=AD,∴AD=DE,∴点E与点A重合,如图2:∵S四边形ABCD=2S△ABD,∴S四边形ABCD=2××BD×AO=6×2=12;(3)如图3,过点O作OF⊥BC,∵旋转△GDO,得到△G′D'O,∴OG=OG',且OF⊥BC,∴GF=G'F,∵OF∥AB,∴==,∴GF=BG=,∴GG'=2GF=,∴BG'=BG﹣GG'=,∵AB2=AO2+BO2=12,∵EG'=AG'==,=.25.解:(1)过E作EG⊥AO于G.∵∠EGA=∠EAB=∠AOB=90°,∴∠EAG+∠AEG=90°,∠EAG+∠BAO=90°,∴∠BAO=∠AEG,∵AE=AB,∴△EGA≌△AOB(AAS),∴EG=OA=m,AG=OB=n∴E(m,m+n).(2)∵OB=OF,∠BOF=90°,∴∠OFB=∠OBF=45°,∵△EGA≌△AOB,∴AG=OB=OF,∴OA=FG=EG,∴∠GFE=45°,∴∠EFB=90°,∴∠NAE=∠NFB=90°,∵∠ANE=∠FNB,∴∠AEN=∠ABM,∵∠EAN=∠BAM=90°,EA=BA,∴△EAN≌△BAM(ASA),∴AN=AM.(3)如图,∵△ABP与△PCQ全等,∠ABP=∠PCQ=90°∴有两种情形:①当AB=CD,PB=CP时,t==5(s),∴v=(cm/s),②当AB=PC,CQ=PB时,PB=20﹣12=8,∴t==4(s),∴v===2(cm/s).。
2020中考数学临考大专题复习:四边形(含答案)一、选择题(本大题共6道小题)1. 已知菱形的边长为3,较短的一条对角线的长为2,则该菱形较长的一条对角线的长为()A.2√2B.2√5C.4√2D.2√102. 如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为()A.4√5B.4√3C.10D.83. 如图,在四边形ABCD中,AB=CD,AC,BD是对角线,E,F,G,H分别是AD,BD,BC,AC的中点,连接EF,FG,GH,HE,则四边形EFGH的形状是()A.平行四边形B.矩形C.菱形D.正方形4. 如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处,若∠B=60°,AB=3,则△ADE的周长为()A.12B.15C.18D.215. 如图,四边形ABCD的对角线相交于点O,且O是BD的中点,若AB=AD=5,BD=8,∠ABD=∠CDB,则四边形ABCD的面积为()A.40B.24C.20D.156. 如图,在正方形ABCD中,AB=1,点E,F分别在边BC和CD上,AE=AF,∠EAF=60°,则CF的长是()A.√3+14B.√32C.√3-1D.23二、填空题(本大题共6道小题)7. 如图,菱形ABCD的边长为10 cm,DE△AB,sin A=35,则这个菱形的面积= cm2.8. 将平行四边形OABC放置在如图所示的平面直角坐标系中,点O为坐标原点.若点A的坐标为(3,0),点C的坐标为(1,2),则点B的坐标为.9. 把图①中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图②,图③所示的正方形,则图①中菱形的面积为.图K24-810. 如图,将两张长为4,宽为1的矩形纸条交叉并旋转,使重叠部分成为一个菱形.旋转过程中,当两张纸条垂直时,菱形周长的最小值是4,那么菱形周长的最大值是.11. 如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF△AC于点F,连接EC,AF=3,若△EFC的周长为12,则EC的长为.12. 如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C'与CD交于点M,若∠B'MD=50°,则∠BEF的度数为.三、解答题(本大题共5道小题)13. 如图,在四边形ABCD中,AB∥CD,AD⊥CD,∠B=45°,延长CD到点E,使DE=DA,连接AE.(1)求证:AE=BC;(2)若AB=3,CD=1,求四边形ABCE的面积.14. 如图,在▱ABCD中,点E是BC边的一点,将边AD延长至点F,连接CF,DE,使得∠AFC=∠DEC.(1)求证:四边形DECF是平行四边形;(2)如果AB=13,DF=14,tan∠DCB=125,求CF的长.15. 如图,AB是☉O的直径,DO⊥AB于点O,连接DA交☉O于点C,过点C 作☉O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF.(2)连接AF并延长,交☉O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.16. 如图,已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分别是AC、AB边上的点,连接EF.(1)如图①,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF =3S△EDF,求AE的长;(2)如图②,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M 处,且使MF∥CA.①试判断四边形AEMF的形状,并证明你的结论;②求EF的长.17. 如图①,在四边形ABCD中,点P是AB上一点,点E在射线DP上,且∠BED=∠BAD,连接AE.(1)若AB=AD,在DP上截取点F,使得DF=BE,连接AF,求证:△ABE≌△ADF;(2)如图②,若四边形ABCD是正方形,点P在AB的延长线上,BE=1,AE=32,求DE的长;(3)如图③,若四边形ABCD是矩形,AD=2AB,点P在AB的延长线上,AE=5BE,若AE=nDE,求n的值.图①图②图③2020中考数学 临考大专题复习:四边形-答案一、选择题(本大题共6道小题) 1. 【答案】C2. 【答案】A[解析]连接AE ,如图,∵EF 是AC 的垂直平分线, ∴OA=OC ,AE=CE. ∵四边形ABCD 是矩形,∴∠B=90°,AD ∥BC ,∴∠OAF=∠OCE.在△AOF 和△COE 中,{∠AOF =∠COE ,OA =OC ,∠OAF =∠OCE ,∴△AOF ≌△COE (ASA),∴CE=AF=5,∴AE=CE=5,BC=BE +CE=3+5=8. 在Rt △ABE 中,AB=√AE 2-BE 2=√52-32=4, ∴AC=√AB 2+BC 2=√42+82=4√5.故选A .3. 【答案】C[解析]∵点E ,F ,G ,H 分别是四边形ABCD 中AD ,BD ,BC ,CA的中点,∴EF=GH=12AB ,EH=FG=12CD ,∵AB=CD ,∴EF=FG=GH=EH ,∴四边形EFGH 是菱形,故选C .4. 【答案】C[解析]∵折叠后点D 恰好落在DC 的延长线上的点E 处,∴AC ⊥DE ,EC=CD=AB=3, ∴ED=6.∵∠B=60°,∴∠D=60°,∴AD=2CD=6,∴AE=6,∴△ADE 的周长=AE +AD +ED=18,故选C .5. 【答案】B[解析]∵∠ABD=∠CDB ,∴AB ∥CD ,∵O 是BD 的中点,∴BO=DO ,又∠AOB=∠COD ,∴△AOB ≌△COD , ∴AB=CD ,又AB ∥CD ,∴四边形ABCD 是平行四边形. ∵AB=AD ,∴四边形ABCD 是菱形. ∴AC ⊥BD.在Rt △ABO 中,BO=12BD=4,AO=√AB 2-BO 2=√52-42=3,∴AC=2AO=6, ∴四边形ABCD 的面积为12AC ·BD=12×6×8=24.故选B .6. 【答案】C [解析]连接EF .∵AE=AF ,∠EAF=60°,∴△AEF 为等边三角形,∴AE=EF .∵四边形ABCD 为正方形,∴∠B=∠D=∠C=90°,AB=AD ,∴Rt △ABE ≌Rt △ADF (HL),∴BE=DF ,∴EC=CF .设CF=x ,则EC=x ,AE=EF=√EC 2+FC 2=√2x ,BE=1-x.在Rt △ABE 中,AB 2+BE 2=AE 2,∴1+(1-x )2=(√2x )2,解得x=√3-1(舍负).故选C . 二、填空题(本大题共6道小题)7. 【答案】60 [解析]菱形的面积可以用边长×高,即AB ×DE 计算,在Rt △ADE 中,∵AD=10,sin A=35,∴DE=6,∴菱形的面积为60 cm 2.8. 【答案】(4,2)[解析]因为四边形OABC 是平行四边形,所以BC=OA=3. 所以点B (4,2).9. 【答案】12[解析]设图①中小直角三角形的两直角边长分别为a ,b (b>a ),则由图②,图③可列方程组{a +b =5,b -a =1,解得{a =2,b =3,所以菱形的面积S=12×4×6=12.故答案为12.10. 【答案】172[解析]如图,当两矩形纸条有一条对角线互相重合时,菱形的周长最大,设菱形的边长AC=x ,则AB=4-x , 在Rt △ABC 中,AC 2=AB 2+BC 2, 即x 2=(4-x )2+12,解得x=178, ∴菱形的最大周长=178×4=172.11. 【答案】5[解析]∵四边形ABCD 是正方形,AC 为对角线,∴∠F AE=45°,又∵EF ⊥AC , ∴∠AFE=90°,∴∠AEF=45°, ∴EF=AF=3,∵△EFC 的周长为12, ∴FC=12-3-EC=9-EC ,在Rt △EFC 中,EC 2=EF 2+FC 2, ∴EC 2=9+(9-EC )2,解得EC=5.12. 【答案】70° [解析]依题意∠B=∠B'=∠B'MD +∠B'EA=90°,所以∠B'EA=90°-50°=40°,所以∠B'EB=180°-∠B'EA=140°,又∠B'EF=∠BEF ,所以∠BEF=12∠B'EB=70°,故应填:70°. 三、解答题(本大题共5道小题)13. 【答案】解:(1)证明:∵AD ⊥CD ,AB ∥CD , ∴∠ADE=∠DAB=90°.∵AD=DE ,∴∠E=∠DAE=45°, ∴∠EAB=135°.∵∠B=45°,∴∠B +∠EAB=180°, ∴AE ∥BC ,∴四边形ABCE 是平行四边形, ∴AE=BC.(2)由(1)知AB=CE , ∵CD=1,AB=3, ∴DE=2. ∵AD=DE , ∴AD=2,∴S 四边形ABCE =3×2=6.14. 【答案】解:(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC. ∴∠ADE=∠DEC. ∵∠AFC=∠DEC ,∴∠AFC=∠ADE,∴DE∥FC.∴四边形DECF是平行四边形.(2)如图,过点D作DH⊥BC于点H,∵四边形ABCD是平行四边形,∴AB=CD=13.∵tan∠BCD=12,CD=13,5∴DH=12,CH=5.∵DF=14,∴CE=14.∴EH=9.∴DE=√92+122=15.∴CF=DE=15.15. 【答案】解:(1)证明:连接OC.∵CE是☉O的切线,∴OC⊥CE.∴∠FCO+∠ECF=90°.∵DO⊥AB,∴∠B+∠BFO=90°.∵∠CFE=∠BFO,∴∠B+∠CFE=90°.∵OC=OB,∴∠FCO=∠B.∴∠ECF=∠CFE.∴CE=EF.(2)∵AB是☉O的直径,∴∠ACB=90°.∴∠DCF=90°.∴∠DCE+∠ECF=90°,∠D+∠EFC=90°.由(1)得∠ECF=∠CFE , ∴∠D=∠DCE. ∴ED=EC. ∴ED=EC=EF .即点E 为线段DF 的中点.①四边形ECFG 为菱形时,CF=CE. ∵CE=EF ,∴CE=CF=EF . ∴△CEF 为等边三角形. ∴∠CFE=60°. ∴∠D=30°. 故填30°.②四边形ECOG 为正方形时,△ECO 为等腰直角三角形. ∴∠CEF=45°.∵∠CEF=∠D +∠DCE , ∴∠D=∠DCE=22.5°. 故填22.5°.16. 【答案】(1)如解图①,∵折叠后点A 落在AB 边上的点D 处,解图①∴EF ⊥AB ,△AEF ≌△DEF , ∴S △AEF =S △DEF ,∵S 四边形ECBF =3S △EDF , ∴S 四边形ECBF =3S △AEF ,∵S △ACB =S △AEF +S 四边形ECBF ,∴S △ACB =S △AEF +3S △AEF =4S △AEF , ∴14△△AEF ACB S S , ∵∠EAF =∠BAC ,∠AFE =∠ACB =90°, ∴△AEF ∽△ABC ,∴2△△()AEF ACB S AE ABS =, ∴214()=,AE AB 在Rt △ACB 中,∠ACB =90°,AC =4,BC =3,∴AB 2=AC 2+BC 2,即AB =42+32=5,∴(AE 5)2=14,∴AE =52; (2)①四边形AEMF 是菱形.证明:如解图②,∵折叠后点A 落在BC 边上的点M 处,∴∠CAB =∠EMF ,AE =ME ,又∵MF ∥CA ,∴∠CEM =∠EMF ,∴∠CAB =∠CEM ,∴EM ∥AF ,∴四边形AEMF 是平行四边形,而AE =ME ,∴四边形AEMF 是菱形,解图②②如解图②,连接AM ,与EF 交于点O ,设AE =x ,则AE =ME =x ,EC =4-x ,∵∠CEM =∠CAB ,∠ECM =∠ACB =90°,∴Rt △ECM ∽Rt △ACB ,∴EC AC =EM AB ,∵AB =5, ∴445-,x x =解得x =209, ∴AE =ME =209,EC =169,在Rt △ECM 中,∵∠ECM =90°,∴CM 2=EM 2-EC 2,即CM =(209)2-(169)2=43,∵四边形AEMF 是菱形,∴OE =OF ,OA =OM ,AM ⊥EF ,∴S AEMF 菱形=4S △AOE =2OE ·AO ,在Rt △AOE 和Rt △ACM 中,∵tan ∠EAO =tan ∠CAM ,∴OE AO =CM AC ,∵CM =43,AC =4,∴AO =3OE ,∴S AEMF 菱形=6OE 2,又∵S AEMF 菱形=AE ·CM ,∴6OE 2=209×43,解得OE =2109,∴EF =2OE =4109. 17. 【答案】(1)证明:∵∠BED =∠BAD ,∠BPE =∠DP A ,∴∠ABE =∠ADF ,又∵AB =AD ,BE =DF ,∴△ABE ≌△ADF ;(2)解:如解图①,延长ED 到点F ,使得DF =BE ,连接AF ,解图①∵四边形ABCD 是正方形,∴∠BAD =∠BED =∠BEP ,∵∠P =∠P ,∴∠PBE =∠ADP ,∴∠ABE =∠ADF ,∵BE =DF ,AB =AD ,∴△ABE ≌△ADF ,∴AE =AF ,∠BAE =∠F AD , ∴∠F AD +∠EAD =∠BAE +∠EAD =90°,∴EF =2AE =32×2=6,∴DE =EF -DF =EF -BE =6-1=5;(3)解:如解图②,过点A 作AF ⊥AE 交ED 的延长线于点F ,解图②∵四边形ABCD 是矩形,∴∠BAD =∠BED =∠BEP =90°,∵AF ⊥AE ,∠P =∠P ,∴∠PBE =∠ADP ,∠EAB =90°-∠EAD =∠F AD , ∴∠ABE =180°-∠PBE =180°-∠ADP =∠ADF , ∴△ABE ∽△ADF , ∴,21===AF AE DF BE AD AB ∴AF =2AE ,DF =2BE ,在Rt △AEF 中,由勾股定理得EF =5AE , ∵AE =5BE ,∴EF =5AE =5·5BE =5BE ,。
2020年中考数学培优专题:《四边形压轴专练》1.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF为邻边作平行四边形ECFG.(1)证明平行四边形ECFG是菱形;(2)若∠ABC=120°,连结BG、CG、DG,①求证:△DGC≌△BGE;②求∠BDG的度数;(3)若∠ABC=90°,AB=8,AD=14,M是EF的中点,求DM的长.2.如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过点A作AG∥BD交CB的延长线于点G.(1)求证:DE∥BF.(2)若∠G=90°.①求证:四边形DEBF是菱形;②当AG=4,BG=3时,求四边形DEBF的面积.3.如图1,在矩形ABCD中,点P是BC边上一点,连接AP交对角线BD于点E,BP=BE.作线段AP的中垂线MN分别交线段DC,DB,AP,AB于点M,G,F,N.(1)求证:∠BAP=∠BGN;(2)若AB=6,BC=8,求;(3)如图2,在(2)的条件下,连接CF,求tan∠CFM的值.4.如图①所示,已知正方形ABCD和正方形AEFG,连接DG,BE.(1)发现:当正方形AEFG绕点A旋转,如图②所示.①线段DG与BE之间的数量关系是;②直线DG与直线BE之间的位置关系是;(2)探究:如图③所示,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG=2AE 时,上述结论是否成立,并说明理由.(3)应用:在(2)的情况下,连接BG、DE,若AE=1,AB=2,求BG2+DE2的值(直接写出结果).5.在四边形ABCD中,E为BC边中点.(Ⅰ)已知:如图1,若AE平分∠BAD,∠AED=90°,点F为AD上一点,AF=AB.求证:(1)△ABE≌AFE;(2)AD=AB+CD;(Ⅱ)已知:如图2,若AE平分∠BAD,DE平分∠ADC,∠AED=120°,点F,G均为AD 上的点,AF=AB,GD=CD.求证:(1)△GEF为等边三角形;(2)AD=AB+BC+CD.6.如图将正方形ABCD绕点A顺时针旋转角度α(0°<α<90°)得到正方形AB′C′D′.(1)如图1,B′C′与AC交于点M,C′D′与AD所在直线交于点N,若MN∥B′D′,求α;(2)如图2,C′B′与CD交于点Q,延长C′B′与BC交于点P,当α=30°时.①求∠DAQ的度数;②若AB=6,求PQ的长度.7.如图,在梯形ABCD中,AD∥BC,∠C=90°,AD=2,BC=5,DC=3,点E在边BC上,tan∠AEC=3,点M是射线DC上一个动点(不与点D、C重合),联结BM交射线AE于点N,设DM=x,AN=y.(1)求BE的长;(2)当动点M在线段DC上时,试求y与x之间的函数解析式,并写出函数的定义域;(3)当动点M运动时,直线BM与直线AE的夹角等于45°,请直接写出这时线段DM的长.8.在正方形ABCD中,AB=6,M为对角线BD上任意一点(不与B、D重合),连接CM,过点M作MN⊥CM,交AB(或AB的延长线)于点N,连接CN.感知:如图①,当M为BD的中点时,易证CM=MN.(不用证明)探究:如图②,点M为对角线BD上任一点(不与B、D重合).请探究MN与CM的数量关系,并证明你的结论.应用:(1)直接写出△MNC的面积S的取值范围;(2)若DM:DB=3:5,则AN与BN的数量关系是.9.矩形ABCD中,AB=2,AD=4,将矩形ABCD绕点C顺时针旋转至矩形EGCF(其中E、G、F分别与A、B、D对应).(1)如图1,当点G落在AD边上时,直接写出AG的长为;(2)如图2,当点G落在线段AE上时,AD与CG交于点H,求GH的长;(3)如图3,记O为矩形ABCD对角线的交点,S为△OGE的面积,求S的取值范围.10.如图,已知在Rt△ABC中,∠C=90°,AC=8,BC=6,点P、Q分别在边AC、射线CB 上,且AP=CQ,过点P作PM⊥AB,垂足为点M,联结PQ,以PM、PQ为邻边作平行四边形PQNM,设AP=x,平行四边形PQNM的面积为y.(1)当平行四边形PQNM为矩形时,求∠PQM的正切值;(2)当点N在△ABC内,求y关于x的函数解析式,并写出它的定义域;(3)当过点P且平行于BC的直线经过平行四边形PQNM一边的中点时,直接写出x的值.11.(1)问题探究:如图①,在四边形ABCD中,AB∥CD,E是BC的中点,AE是∠BAD的平分线,则线段AB,AD,DC之间的等量关系为;(2)方法迁移:如图②,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,E是BC的中点,AE是∠BAF的平分线,试探究线段AB,AF,CF之间的等量关系,并证明你的结论;(3)联想拓展:如图③,AB∥CF,E是BC的中点,点D在线段AE上,∠EDF=∠BAE,试探究线段AB,DF,CF之间的数量关系,并证明你的结论.12.如图,在菱形ABCD中,对角线AC与BD相交于点M,已知BC=5,点E在射线BC上,tan∠DCE=,点P从点B出发,以每秒2个单位沿BD方向向终点D匀速运动,过点P作PQ⊥BD交射线BC于点O,以BP、BQ为邻边构造▱PBQF,设点P的运动时间为t(t >0).(1)tan∠DBE=;(2)求点F落在CD上时t的值;(3)求▱PBQF与△BCD重叠部分面积S与t之间的函数关系式;(4)连接▱PBQF的对角线BF,设BF与PQ交于点N,连接MN,当MN与△ABC的边平行(不重合)或垂直时,直接写出t的值.13.如图,在Rt△ABC中,∠A=90°,AC=3,AB=4,动点P从点A出发,沿AB方向以每秒2个单位长度的速度向终点B运动,点Q为线段AP的中点,过点P向上作PM⊥AB,且PM=3AQ,以PQ、PM为边作矩形PQNM.设点P的运动时间为t秒.(1)线段MP的长为(用含t的代数式表示).(2)当线段MN与边BC有公共点时,求t的取值范围.(3)当点N在△ABC内部时,设矩形PQNM与△ABC重叠部分图形的面积为S,求S与t 之间的函数关系式.(4)当点M到△ABC任意两边所在直线距离相等时,直接写出此时t的值.14.如图,在△ABC中,∠BAC=90°,∠B=45°,BC=8.过点A作AD∥BC.且点D在点A的右侧.点P从点A出发沿射线AD方向以每秒1个单位的速度运动,同时点Q从点C 出发沿射线CB方向以每秒2个单位的速度运动,在线段QC上取点E,使得QE=2,连结PE,设点P的运动时间为t秒.(1)直接写出线段AP,CQ的长.(用含t的代数式表示)(2)①当PE⊥BC时,求t的值.②当t值取①问结果时,判断四边形APEQ的形状,并说明理由.(3)是否存在t的值,使以A、B、E、P为顶点的四边形是平行四边形?若存在,求出t 的值;若不存在,请说明理由.(4)若将点Q沿射线CB方向运动的速度改为每秒a个单位,当四边形APCE为菱形时,直接写出a的值.15.如图,已知△ABC中,∠ACB=90°,AC=4,BC=3,点M、N分别是边AC、AB上的动点,连接MN,将△AMN沿MN所在直线翻折,翻折后点A的对应点为A′.(1)如图1,若点A′恰好落在边AB上,且AN=AC,求AM的长;(2)如图2,若点A′恰好落在边BC上,且A′N∥AC.①试判断四边形AMA′N的形状并说明理由;②求AM、MN的长;(3)如图3,设线段NM、BC的延长线交于点P,当且时,求CP的长.参考答案1.解:(1)证明:∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形;(2)①∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,AD∥BC,∵∠ABC=120°,∴∠BCD=60°,∠BCF=120°由(1)知,四边形CEGF是菱形,∴CE=GE,∠BCG=∠BCF=60°,∴CG=GE=CE,∠DCG=120°,∵EG∥DF,∴∠BEG=120°=∠DCG,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD,∴△DGC≌△BGE(SAS);②∵△DGC≌△BGE,∴BG=DG,∠BGE=∠DGC,∴∠BGD=∠CGE,∵CG=GE=CE,∴△CEG是等边三角形,∴∠CGE=60°,∴∠BGD=60°,∵BG=DG,∴△BDG是等边三角形,∴∠BDG=60°;(3)如图2中,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵,∴△BME≌△DMC(SAS),∴M B=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形.∵AB=8,AD=14,∴BD=2,∴DM=BD=.2.证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵E、F分别为AB、CD的中点,∴DF=DC,BE=AB,∴DF∥BE,DF=BE,∴四边形DEBF为平行四边形,∴DE∥BF;(2)①∵AG∥BD,∴∠G=∠DBC=90°,∴△DBC为直角三角形,又∵F为边CD的中点.∴BF=DC=DF,又∵四边形DEBF为平行四边形,∴四边形DEBF是菱形;②∵AD∥BG,AG∥BD,∠G=90°,∴四边形AGBD是矩形,∴S△ABD =S△ABG=3×4=6,∵E为边AB的中点,∴S△BDE =S△ABD=3,∴四边形DEBF的面积=2S△BDE=6.3.(1)证明:如图1中,∵四边形ABCD是矩形,∴∠ABC=90°,∴∠BAP=∠APB=90°∵BP=BE,∴∠APB∠BEP=∠GEF,∵MN垂直平分线段AP,∴∠GFE=90°,∴∠BGN+∠GEF=90°,∴∠BAP=∠BGN.(2)解:∵四边形ABCD是矩形,∴∠BAD=∠ABP=90°,AD∥BC,AD=BC=8,∴BD===10,∵AD∥BC,∴∠DAE=∠APB,∴∠DAE=∠DEA,∴DA=DE=8,∴BE=BP=BD﹣DE=10﹣8=2,∴PA===2,∵MN垂直平分线段AP,∴AF=PF=,∵PB∥AD,∴===,∴PE=PA=,∴EF=PF﹣PE=﹣=,∴==.(3)解:如图3中,连接AM,MP.设CM=x.∵四边形ABCD是矩形,∴∠ADM=∠MCP=90°,AB=CD=6,AD=BC=8,∵MN垂直平分线段AP,∴MA=MP,∴AD2+DM2=PC2+CM2,∴82+(6﹣x)2=62+x2,∴x=,∴P,F,M,C四点共圆,∴∠CFM=∠CPM,∴tan∠CFM=tan∠CFM===.4.解:(1)①如图②中,∵四边形ABCD和四边形AEFG是正方形,∴AE=AG,AB=AD,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,在△ABE和△DAG中,,∴△ABE≌△DAG(SAS),∴BE=DG;②如图2,延长BE交AD于T,交DG于H.由①知,△ABE≌△DAG,∴∠ABE=∠ADG,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG,故答案为:BE=DG,BE⊥DG;(2)数量关系不成立,DG=2BE,位置关系成立.如图③中,延长BE交AD于T,交DG于H.∵四边形ABCD与四边形AEFG都为矩形,∴∠BAD=∠EAG,∴∠BAE=∠DAG,∵AD=2AB,AG=2AE,∴==,∴△ABE∽△ADG,∴∠ABE=∠ADG,=,∴DG=2BE,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG;(3)如图④中,作ET⊥A D于T,GH⊥BA交BA的延长线于H.设ET=x,AT=y.∵△AHG∽△ATE,∴===2,∴GH=2x,AH=2y,∴4x2+4y2=4,∴x2+y2=1,∴BG2+DE2=(2x)2+(2y+2)2+x2+(4﹣y)2=5x2+5y2+20=25.5.(Ⅰ)证明:(1)如图1中,∵AE平分∠BAD,∴∠BAE=∠FAE,在△ABE和△AFE中,,∴△ABE≌△AFE(SAS),(2)∵△ABE≌△AFE,∴∠AEB=∠AEF,BE=BF,∵AE平分BC,∴BE=CE,∴FE=CE,∵∠AED=∠AEF+∠DEF=90°,∴∠AEB+∠DEC=90°,∴∠DEF=∠DEC,在△DEF和△DEC中,,∴△DEF≌△DEC(SAS),∴DF=DC,∵AD=AF+DF,∴AD=AB+CD;(Ⅱ)证明:(1)如图2中,∵E是BC的中点,∴BE=CE=BC,同(1)得:△ABE≌△AFE(SAS),△DEG≌△DEC(SAS),∴BE=FE,∠AEB=∠AEF,CE=EG,∠CED=∠GED,∵BE=CE,∴EF=EG,∵∠AED=120°,∠AEB+∠CED=180°﹣120°=60°,∴∠AEF+∠GED=60°,∴∠FEG=60°,∴△FEG是等边三角形.(2)由(1)可知FG=GE=EF=BC,∵AD=AG+GH+HD,∴AD=AB+CD+BC.6.解:(1)如图1中,∵MN∥B′D′,∴∠C′MN=∠C′B′D′=45°,∠C′NM=∠C′D′B′=45°,∴∠C′MN=∠C′NM,∴C′M=C′N,∵C′B′=C′D′,∴MB′=ND′,∵AB′=AD′,∠AB′M=∠AD′N=90°,∴△AB′M≌△AD′N(SAS),∴∠B′AM=∠D′AN,∵∠B′AD′=90°,∠MAN=45°,∴∠B′AM=∠D′AN=22.5°,∵∠BAC=45°,∴∠BAB′=22.5°,∴α=22.5°.(2)①如图2中,∵∠AB′Q=∠ADQ=90°,AQ=AQ,AB′=AD,∴Rt△AQB′≌Rt△AQD(HL),∴∠QAB′=∠QAD,∵∠BAB′=30°,∠BAD=90°,∴∠B′AD=30°,∴∠QAD=∠B′AD=30°.②如图2中,连接AP,在AB上取一点E,使得AE=EP,连接EP.设PB=a.∵∠ABP=∠AB′P=90°,AP=AP,AB=AB′,∴Rt△APB≌Rt△APB′(HL),∴∠BAP=∠PAB′=15°,∵EA=EP,∴∠EAP=∠EPA=15°,∴∠BEP=∠EAP+∠EPA=30°,∴PE=AE=2a,BE=a,∵AB=6,∴2a+a=6,∴a=6(2﹣).∴PB=6(2﹣),∴PC=BC﹣PB=6﹣6(2﹣)=6﹣6,∵∠CPQ+∠BPB′=180°,∠BAB′+∠BPB′=180°,∴∠CPQ=∠BAB′=30°,∴PQ===12﹣4.7.解:(1)如图1中,作AH⊥BC于H,∵AD∥BC,∠C=90°,∴∠AHC=∠C=∠D=90°,∴四边形AHCD是矩形,∴AD=CH=2,AH=CD=3,∵tan∠AEC=3,∴=3,∴EH=1,CE=1+2=3,∴BE=BC﹣CE=5﹣3=2.(2)延长AD交BM的延长线于G.∵AG∥BC,∴=,∴=,∴DG=,AG=2+=,∵=,∴=,∴y=(0<x<3).(3)①如图3﹣1中,当点M在线段DC上时,∠BNE=∠ABC=45°,∵△EBN∽△EAB,∴EB2=EN•AE,∴,解得x=.②如图3﹣2中,当点M在线段DC的延长线上时,∠ANB=∠ABE=45°,∵△BNA∽△EBA,∴AB2=AE•AN,∴(3)2=•[+解得x=13,综上所述DM的长为或13.8.解:探究:如图①中,过M分别作ME∥AB交BC于E,MF∥BC交AB于F,则四边形BEMF是平行四边形,∵四边形ABCD是正方形,∴∠ABC=90°,∠ABD=∠CBD=∠BME=45°,∴ME=BE,∴平行四边形BEMF是正方形,∴ME=MF,∵CM⊥MN,∴∠CMN=90°,∵∠FME=90°,∴∠CME=∠FMN,∴△MFN≌△MEC(ASA),∴MN=MC;应用:(1)当点M与D重合时,△CNM的面积最大,最大值为18,当DM=BM时,△CNM的面积最小,最小值为9,综上所述,9≤S<18.(2)如图②中,由(1)得FM∥AD,EM∥CD,∴===,∵AN=BC=6,∴AF=3.6,CE=3.6,∵△MFN≌△MEC,∴FN=EC=3.6,∴AN=7.2,BN=7.2﹣6=1.2,∴AN=6BN,故答案为AN=6BN.9.解:(1)如图1中,∵四边形ABCD是矩形,∴BC=AD=CG=4,∠B=90°,∵AB=CD=2,∴DG===2,∴AG=AB﹣BG=4﹣2,故答案为4﹣2.(2)如图2中,由四边形CGEF是矩形,得到∠CGE=90°,∵点G在线段AE上,∴∠AGC=90°,∵CA=CA,CB=CG,∴Rt△ACG≌Rt△ACB(HL).∴∠ACB=∠ACG,∵AB∥CD∴∠ACG=∠DAC,∴∠ACH=∠HAC,∴AH=CH,设AH=CH=m,则DH=AD﹣AH=5﹣m,在Rt△DHC中,∵CH2=DC2+DH2,∴m2=22+(4﹣m)2,∴m=,∴AH=,GH===.(3)如图,当点G在对角线AC上时,△OGE的面积最小,最小值=×OG×EG=×2×(4﹣)=4﹣.当点G在AC的延长线上时,△OE′G′的面积最大.最大值=×E′G′×OG′=×2×(4+)=4+综上所述,4﹣≤S≤4+.10.解:(1)在Rt△ACB中,∵∠C=90°,AC=8,BC=6,∴AB===10,当四边形PQMN是矩形时,PQ∥AB.∴tan∠PQM===.(2)如图1中,延长QN交AB于K.由题意BQ=6﹣x,QN=PM=x,AM=x,KQ=BQ=,BK=BQ=,∴MK=AB﹣AM﹣BK=,∵QN<QK,∴x<,∴x<,∴y=PM•MK=(0≤x<).(3)①如图3﹣1中,当平分MN时,D为MN的中点,作NE∥BC交PQ于E,作NH⊥CB 交CB的延长线于H,EG⊥BC于G.∵PD∥BC,EN∥BC,∴PD∥NE,∵PE∥DN,∴四边形PDNE是平行四边形,∴PE=DN,∵DN=DM,PQ=MN,∴PE=EQ,∵EG∥PC,∴CG=GQ,∴EG=PC,∵四边形EGHN是矩形,∴NH=EG=NQ=PM=x,PC=8﹣x,∴x=•(8﹣x),解得x=.②如图3﹣2中,当平分NQ时,D是NQ的中点,作DH⊥CB交CB的延长线于H.∵DH=PC,∴8﹣x=•x,解得x=,综上所述,满足条件x的值为或.11.解:(1)探究问题:结论:AD=AB+DC.理由:如图①中,延长AE,DC交于点F,∵AB∥CD,∴∠BAF=∠F,在△ABE和△FCE中,CE=BE,∠BAF=∠F,∠AEB=∠FEC,∴△ABE≌△FEC(AAS),∴CF=AB,∵AE是∠BAD的平分线,∴∠BAF=∠FAD,∴∠FAD=∠F,∴AD=DF,∵DC+CF=DF,∴DC+AB=AD.故答案为AD=AB+DC.(2)方法迁移:结论:AB=AF+CF.证明:如图②,延长AE交DF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥DC,∴∠BAE=∠G.且BE=CE,∠AEB=∠GEC∴△AEB≌△GEC(AAS)∴AB=GC∵AE是∠BAF的平分线∴∠BAG=∠FAG,∵∠BAG∠G,∴∠FAG=∠G,∴FA=FG,∵CG=CF+FG,∴AB=AF+CF.(3)联想拓展:结论;AB=DF+CF.证明:如图③,延长AE交CF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥CF,∴∠BAE=∠G,在△AEB和△GEC中,,∴△AEB≌△GEC,∴AB=GC,∵∠EDF=∠BAE,∴∠FDG=∠G,∴FD=FG,∴AB=DF+CF.12.解:(1)如图1中,作DH⊥BE于H.在Rt△BCD中,∵∠DHC=90°,CD=5,tan∠DCH=,∴DH=4,CH=3,∴BH=BC+CH=5+3=8,∴tan∠DBE===.故答案为.(2)如图2中,∵四边形ABCD是菱形,∴AC⊥BD,∵BC=5,tan∠CBM==,∴CM=,BM=DM=2,∵PF∥CB,∴=,∴=,解得t=.(3)如图3﹣1中,当0<t≤时,重叠部分是平行四边形PBQF,S=PB•PQ=2t•t =10t2.如图3﹣2中,当<t ≤1时,重叠部分是五边形PBQRT ,S =S平行四边形PBQF ﹣S △TRF =10t 2﹣•[5t ﹣(5﹣t )]• [5t ﹣(5﹣t )]=﹣t 2+30t ﹣10.如图3﹣3中,当1<t ≤2时,重叠部分是四边形PBCT ,S =S △BCD ﹣S △PDT =×5×4﹣•(5﹣t )•(4﹣2t )=﹣t 2+10t .(4)如图4﹣1中,当MN ∥AB 时,设CM 交BF 于T .∵PN ∥MT , ∴=, ∴=,∴MT=,∵M N∥AB,∴===2,∴PB=BM,∴2t=×2,∴t=.如图4﹣2中,当MN⊥BC时,易知点F落在DH时,∵PF∥BH,∴=,∴=,解得t=.如图4﹣3中,当MN⊥AB时,易知∠PNM=∠ABD,可得tan∠PNM==,∴=,解得t=,当点P与点D重合时,MN∥BC,此时t=2,综上所述,满足条件的t的值为或或或2.13.解:(1)由题意AP=2t,AQ=PQ=t,∵PM=3PQ,∴PM=3t.故答案为3t.(2)如图2﹣1中,当点M落在BC上时,∵PM∥AC,∴=,∴=,解得t=如图2﹣2中,当点N落在BC上时,∵NQ∥AC,∴=,∴=,解得t=,综上所述,满足条件的t的值为≤t≤.(3)如图3﹣1中,当0<t≤时,重叠部分是矩形PQNM,S=3t2如图3﹣2中,当<t≤时,重叠部分是五边形PQNEF.S=S矩形PQNM ﹣S△EFM=3t2﹣•[3t﹣(4﹣2t)]• [3t﹣(4﹣2t)]=﹣t2+18t﹣6,综上所述,S=.(4)如图4﹣1中,当点M落在∠ABC的角平分线BF上时,满足条件.作FE⊥BC于E.∵∠FAB=∠FEB=90°,∠FBA=∠FBE,BF=BF,∴△BFA≌△BFE(AAS),∴AF=EF,AB=BE=4,设AF=EF=x,∵∠A=90°,AC=3,AB=4,∴BC==5,∴EC=BC﹣BE=5﹣4=1,在Rt△EFC中,则有x2+12=(3﹣x)2,解得x=,∵PM∥AF,∴=,∴=,∴t=如图4﹣2中,当点M落在∠ACB的角平分线上时,满足条件作EF⊥BC于F.同法可证:△ECA≌△ECF(AAS),∴AE=EF,AC=CF=3,设AE=EF=y,∴BF=5﹣3=2,在Rt△EFB中,则有x2+22=(4﹣x)2,解得x=,∵PM∥AC,∴=,∴=,解得t=.如图4﹣3中,当点M落在△ABC的∠ACB的外角的平分线上时,满足条件.设MC的延长线交BA的延长线于E,作EF⊥BC交BC的延长线于分,同法可证:AC=CF=3,EF=AE,设EF=EA=x,在Rt△EFB中,则有x2+82=(x+4)2,解得x=6,∵AC∥PM,∴=,∴=,解得t=,综上所述,满足条件的t的值为或或14.解:(1)由题意:AP=t,CQ=2t.(2)①作AM⊥BC于M,如图所示,∵∠BAC=90°,∠B=45°,∴∠C=45°=∠B,∴AB=AC,∴BM=CM=4,∵AD∥BC,∴∠PAC=∠C=45°,∵PE⊥BC,∴AM∥PE,∴四边形AMEP是平行四边形,∴AP=EM,∴4﹣(2t﹣2)=t,∴t=2.②∵t=2,∴PA=2,∵EQ=2,∴点Q与点M重合,∴四边形AQEP是矩形.(3)存在.理由如下:(ⅰ)当点Q、E在线段BC上时,若以A,B,E,P为顶点的四边形为平行四边形,则AP=BE,∴t=8﹣2t+2,解得:t=,(ⅱ)当点Q、E在线段CB的延长线上时,若以A,B,E,P为顶点的四边形为平行四边形则AP=BE,t=2t﹣2﹣8解得:t=10∴存在t的值,使以A,B,E,P为顶点的四边形为平行四边形,t=或10秒.(4)∵四边形APC E是菱形,AC是对角线,∠ACE=∠ACP=45°,∴∠PCE=90°,∴四边形APCE是正方形,∴点E与M重合,此时CQ=4+2=6.AP=4,∴t=4,∴点Q的运动速度为=单位长度/秒.15.解:(1)如图1中,在Rt△ABC中,∵∠C=90°,AC=4,BC=3,∴AB===5,∵∠A=∠A,∠ANM=∠C=90°,∴△ANM∽△ACB,∴=,∴=,∴AM=.(2)①如图2中,∵NA′∥AC,∴∠AMN=∠NMA′,由翻折可知:MA=MA′,∠AMN=∠NMA′,∴∠MNA′=∠A′MN,∴A′N=A′M,∴AM=A′N,∵AM∥A′N,∴四边形AMA′N是平行四边形,∵MA=MA′,∴四边形AMA′N是菱形.②连接AA′交MN于O.设AM=MA′=x,∵MA′∥AB,∴=,∴=,解得x=,∴AM=,∴CM=,∴CA′===,∴AA′===,∵四边形AMA′N是菱形,∴AA′⊥MN,OM=ON,OA=OA′=,∴OM===,∴MN=2OM=.(3)如图3中,作NH⊥BC于H.∵NH∥AC,∴==∴==∴NH=,BH=,∴CH=BC﹣BH=3﹣=,∴AM=AC=,∴CM=AC﹣AM=4﹣=,∵CM∥NH,∴=,∴=,∴PC=1.。