重庆理工大学-大学物理-习题册-稳恒磁场答案
- 格式:doc
- 大小:216.73 KB
- 文档页数:10
For personal use only in study and research; not for commercial use第8章 稳恒磁场 习题及答案6. 如图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R 。
若通以电流I ,求O 点的磁感应强度。
解:O 点磁场由AB 、C B、CD 三部分电流产生,应用磁场叠加原理。
AB 在O 点产生的磁感应强度为01=BC B在O 点产生的磁感应强度大小为θπμR I B 402=RIR I 123400μππμ=⨯=,方向垂直纸面向里CD 在O 点产生的磁感应强度大小为)cos (cos 421003θθπμ-=r IB)180cos 150(cos 60cos 400︒︒-=R I πμ )231(20-=R I πμ,方向垂直纸面向里 故 )6231(203210ππμ+-=++=R I B B B B ,方向垂直纸面向里7. 如图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连。
已知圆环的粗细均匀,求环中心O 的磁感应强度。
解:圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。
且θπθ-==21221R R I I 电阻电阻 1I 产生的磁感应强度大小为)(θππμ-=24101RI B ,方向垂直纸面向外2I 产生的磁感应强度大小为θπμRIB 4202=,方向垂直纸面向里 所以, 1)2(2121=-=θθπI I B B环中心O 的磁感应强度为0210=+=B B B8. 如图所示,一无限长载流平板宽度为a ,沿长度方向通过均匀电流I ,求与平板共面且距平板一边为b 的任意点P 的磁感应强度。
解:将载流平板看成许多无限长的载流直导线,应用叠加原理求解。
以P 点为坐标原点,垂直载流平板向左为x 轴正方向建立坐标系。
稳恒磁场一、选择题1. 一圆电流在其环绕的平面内各点的磁感应强度B 【 】 (A) 方向相同, 大小相等; (B) 方向不同,大小不等; (C) 方向相同, 大小不等; (D) 方向不同,大小相等。
2. 电流由长直导线流入一电阻均匀分布的金属矩形框架,再从长直导线流出,设图中321O ,O ,O 处的磁感应强度为B B B 123,,,则 【 】(A)B B B 123==; (B) 0B 0B B 321≠== ;(C) 0B ,0B ,0B 321=≠= ; (D) 0B ,0B ,0B 321≠≠=3. 所讨论的空间处在稳恒磁场中,对于安培环路定律的理解,正确的是 【 】(A) 若⎰=⋅L0l d B ,则必定L 上B 处处为零(B) 若⎰=⋅L0l d B, 则必定L 不包围电流(C) 若⎰=⋅L0l d B, 则L 所包围电流的代数和为零(D) 回路L 上各点的B 仅与所包围的电流有关。
4. 在匀强磁场中,有两个平面线圈,其面积21A 2A =, 通有电流21I 2I =, 它们所受的最大磁力矩之比M M 12/等于 【 】 (A) 1 (B) 2(C) 4(D) 1/45. 由N 匝细导线绕成的平面正三角形线圈,边长为a , 通有电流I , 置于均匀外磁场B中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩M m 值为: 【 】(2)选择题(A) 2/IB Na 32,(B)4/IB Na 32, (C) 60sin IB Na 32,(D) 06. 一带电粒子以速度v 垂直射入匀强磁场 B 中,它的运动轨迹是半径为R 的圆, 若要半径变为2R ,磁场B 应变为: 【 】 B 22)D (B 21)C (B 2)B (B 2)A ( 7. 图中所示是从云室中拍摄的正电子和负电子的轨迹照片,均匀磁场垂直纸面向里,由两条轨迹可以判断【 】(A) a 是正电子,动能大; (B) a 是正电子, 动能小; (C) a 是负电子,动能大; (D) a 是负电子,动能小。
九、稳恒磁场磁感应强度9-1 如图9-1所示,一条无穷长载流20 A 的直导线在P 点被折成1200的钝角,设d =2cm ,求P 点的磁感应强度。
9-2半径为R 的圆弧形导线与一直导线组成回路,回路中通有电流I ,如图9-2所示,求弧心O 点的磁感应强度(图中 ϕ 为已知量)。
9-3 两根长直导线沿半径方向引到铁环上A 、B 两点,并与很远的电源相连。
如图9-3所示,求环中心的磁感应强度。
图9-1磁矩9-4一半径为R的薄圆盘,其中半径为r的阴影部分均匀带正电,面电荷密度为+s,其余部分均匀带负电,面电荷密度为-s(见图9-4)。
设此盘以角速度为ω绕其轴线匀速转动时,圆盘中心O处的磁感应强度为零,问R和r有什么关系?并求该系统的磁矩。
图9-49-5氢原子处在正常态(基态)时,它的电子可看作是在半径为a=0.53×10-8cm的轨道(称为玻尔轨道)上作匀速圆周运动,若电子在轨道中心处产生的磁感应强度大小为12.5T,求(1)电子运动的速度大小?(2)该系统的磁矩。
(电子的电荷电量e=1.6×10-19C)。
磁通量9-6已知一均匀磁场的磁感应强度B=2T,方向沿x轴正方向,如图9-6所示,已知ab=cd =40cm,bc=ad=ef=30cm,be=cf=30cm。
求:(1)通过图中abcd面的磁通量;(2)通过图中befc面的磁通量;(3)通过图中aefd面的磁通量。
图9-69-7两平行长直导线相距d=40cm,每根导线载有等量同向电流I,如图9-7所示。
求:(1)两导线所在平面内,与左导线相距x(x在两导线之间)的一点P处的磁感应强度。
(2)若I=20A,通过图中斜线所示面积的磁通量(r1=r3=10cm,l=25cm)。
图9-7安培环路定律9-8如图9-8所示的导体圆管,内、外半径分别为a和b,导体内载有电流I,设电流I均匀分布在导体圆管的横截面上,求:(1)磁感应强度的分布;(2)通过每米导体圆管S平面内(阴影部分)的磁感应通量。
第7章 稳恒磁场一、思考讨论题1、如图4.1所示的电流元Idl 是否在空间所有点的磁感应强度均不为零?请你指出Idl在a 、b 、c 、d 四点产生的磁感应强度的方向。
解:不是,电流元Idl在自身产生的磁感应强度为零。
a 、垂直纸面向外b 、垂直纸面向外c 、垂直纸面向内d 、垂直纸面向内2、分别求图4.2中的三种情况下,通有电流I 的直线电流在图中点产生磁感应强度B 的大小和方向。
解:a 图,()a I cos cos a I B πμπμ823145304--=-=方向垂直纸面向内 b 图,()aIcos cos a I B πμπμ82345604--=-= 方向垂直纸面向内 c 图() 30041cos cos a I B -=πμ () 1806030402cos cos tan c a I B -=πμ aIB B B πμ41312-=-= 方向垂直纸面向内3、电流分布如图4.3所示,分别求出各图中O 点的磁感应强度O B的大小和方向。
图4.1图4.2a图4.2ba图4.2c1 R 3解:a 图, 321B B B B ++=()30060431cos cos cos R IB B -==πμ23601202a I B μ=方向垂直纸面向内b 图, 01=B ,RIR I B 126122μμ==,()2322180150243-=-⋅=R I cos cos R I B πμπμ所以,⎪⎪⎭⎫⎝⎛-+=R R I B πμ432121 方向垂直纸面向内 c 图,RIR I B 834321μμ==,052==B B R I B B πμ16243==,所以,⎪⎪⎭⎫ ⎝⎛+=πμ238R I B 方向垂直纸面向外 4、若空间中存在两根无限长直载流导线,则磁场的分布就不存在简单的对称性,因此:(A )安培环路定理已不成立,故不能直接用此定理计算磁场分布。
(B )安培环路定理仍然成立,故仍可直接用此定理计算磁场分布。
第12单元 稳恒电流的磁场第七章 静电场和恒定磁场的性质(三)磁感应强度序号 学号 姓名 专业、班级一 选择题[ C ]1.一磁场的磁感应强度为B ai bj ck =++(T ),则通过一半径为R ,开口向z 正方向的半球壳表面的磁通量的大小是: (A) Wb 2a R π(B) Wb 2b R π (C) Wb 2c R π(D) Wb 2abc R π[ B ]2. 若要使半径为4×103-m 的裸铜线表面的磁感应强度为7.0×105- T ,则铜线中需要通过的电流为(μ0=4π×107-T ·m ·A1-)(A) 0.14A (B) 1.4A (C) 14A (D) 28A[ B ]3. 一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管(R=2r),两螺线管单位长度上的匝数相等,两螺线管中的磁感应强度大小R B 和r B 应满足: (A) R B =2r B(B) R B =rB (C) 2R B =r B (D) R B R=4r B[ D ]4.如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感应强度B沿图中闭合路径L 的积分l B d ⋅⎰等于(A)I 0μ(B)I 031μ (C) I 041μ(D)I 032μ[ D ]5. 有一由N 匝细导线绕成的平面正三角形线圈,边长为a ,通有电流I ,置于均匀外磁场 B 中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩mM(A) 2/32IB Na (B) 4/32IB Na (C) 0260sin 3IB Na (D) 0二 填空题1.一无限长载流直导线,通有电流I ,弯成如图形状,设各线段皆在纸面内,则P 点磁感应强度 B 的大小为aIπμ830。
3.半径为0.5cm 的无限长直圆柱形导体上,沿轴线方向均匀地流着I=3A 的电流,作一个半径r=5cm 、长l=5cm 且与电流同轴的圆柱形闭合曲面S ,则该曲面上的磁感应强度 B 沿曲面的⎰=⋅Sd s B _______0_________________________。
第14章 稳恒电流的磁场 参考答案一、选择题1(B),2(A),3(D),4(C),5(B),6(D),7(B),8(C),9(D),10(A) 二、填空题(1). 最大磁力矩,磁矩 ; (2). πR 2c ; (3). )4/(0a I μ; (4).RIπ40μ ;(5). μ0i ,沿轴线方向朝右. ; (6). )2/(210R rI πμ, 0 ; (7). 4 ; (8).B I R2,沿y 轴正向; (9). ωλB R 3π,在图面中向上; (10). 正,负.三 计算题1. 将通有电流I 的导线在同一平面内弯成如图所示的形状,求D 点的磁感强度B的大小.解:其中3/4圆环在D 处的场 )8/(301a I B μ=AB 段在D 处的磁感强度 )221()]4/([02⋅π=b I B μBC 段在D 处的磁感强度)221()]4/([03⋅π=b I B μ1B、2B 、3B 方向相同,可知D 处总的B 为)223(40baI B +ππ=μ2. 半径为R 的导体球壳表面流有沿同一绕向均匀分布的面电流,通过垂直于电流方向的每单位长度的电流为K .求球心处的磁感强度大小.解:如图θd d d KR s K I ==2/32220])cos ()sin [(2)sin (d d θθθμR R R I B +=32302d sin R KR θθμ=θθμd sin 2120K =⎰π=020d sin 21θθμK B ⎰π-=00d )2cos 1(41θθμK π=K 041μ3. 如图两共轴线圈,半径分别为R 1、R 2,电流为I 1、I 2.电流的方向相反,求轴线上相距中点O 为x 处的P 点的磁感强度. 解:取x 轴向右,那么有2/322112101])([2x b R I R B ++=μ 沿x 轴正方向 2/322222202])([2x b R I R B -+=μ 沿x 轴负方向21B B B -=[2μ=2/32211210])([x b R I R ++μ]])([2/32222220x b R I R -+-μ若B > 0,则B方向为沿x 轴正方向.若B < 0,则B的方向为沿x 轴负方向.4.一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定 律可得: )(220R r rRIB ≤π=μ因而,穿过导体内画斜线部分平面的磁通Φ1为⎰⎰⋅==S B S B d d 1 Φr r RI Rd 2020⎰π=μπ=40Iμ在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为)(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通Φ2为⎰⋅=S Bd 2Φr r I R Rd 220⎰π=μ2ln 20π=I μ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40I μ2ln 20π+I μ5. 一半径为 4.0 cm 的圆环放在磁场中,磁场的方向对环而言是对称发散的,如图所示.圆环所在处的磁感强度的大小为0.10 T ,磁场的方向与环面法向成60°角.求当圆环中通有电流I =15.8 A 时,圆环所受磁力的大小和方向.1 m解:将电流元I d l 处的B分解为平行线圈平面的B 1和垂直线圈平面的B 2两分量,则 ︒=60sin 1B B ; ︒=60cos 2B B分别讨论线圈在B 1磁场和B 2磁场中所受的合力F 1与F 2.电流元受B 1的作用力l IB lB I F d 60sin 90sin d d 11︒=︒=方向平行圆环轴线.因为线圈上每一电流元受力方向相同,所以合力⎰=11d F F ⎰π︒=Rl IB 20d 60sin R IB π⋅︒=260sin = 0.34 N ,方向垂直环面向上.电流元受B 2的作用力l IB lB I F d 60cos 90sin d d 22︒=︒= 方向指向线圈平面中心. 由于轴对称,d F 2对整个线圈的合力为零,即02=F . 所以圆环所受合力 34.01==F FN , 方向垂直环面向上.6. 如图所示线框,铜线横截面积S = 2.0 mm 2,其中OA 和DO '两段保持水平不动,ABCD 段是边长为a 的正方形的三边,它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B中,B 的方向竖直向上.已知铜的密度ρ = 8.9×103 kg/m 3,当铜线中的电流I =10 A 时,导线处于平衡状态,AB段和CD 段与竖直方向的夹角α =15°.求磁感强度B的大小.解:在平衡的情况下,必须满足线框的重力矩与线框所受的磁力矩平衡(对OO '轴而言). 重力矩 αραρs i n s i n 2121gSa a a gS a M +⋅=αρsin 22g Sa =B 2d l磁力矩ααcos )21sin(222B Ia BIa M =-π=平衡时 21M M = 所以 αρsin 22g Sa αcos 2B Ia = 31035.9/tg 2-⨯≈=I g S B αρT7. 半径为R 的半圆线圈ACD 通有电流I 2,置于电流为I 1的无限长直线电流的磁场中,直线电流I 1恰过半圆的直径,两导线相互绝缘.求半圆线圈受到长直线电流I 1的磁力.解:长直导线在周围空间产生的磁场分布为 )2/(10r I B π=μ取xOy 坐标系如图,则在半圆线圈所在处各点产生的磁感强度大小为:θμsin 210R I B π=, 方向垂直纸面向里,式中θ 为场点至圆心的联线与y 轴的夹角.半圆线圈上d l 段线电流所受的力为:l B I B l I F d d d 22=⨯= θθμd sin 2210R R I I π=θsin d d F F y =. 根据对称性知: F y =0d =⎰y F θcos d d F F x = ,⎰π=0x x dF F ππ=2210I I μ2210I I μ=∴半圆线圈受I 1的磁力的大小为: 2210I I F μ=,方向:垂直I 1向右.I 2I 1A DC8. 如图所示.一块半导体样品的体积为a ×b ×c .沿c 方向有电流I ,沿厚度a 边方向加有均匀外磁场B (B的方向和样品中电流密度方向垂直).实验得出的数据为 a =0.10 cm 、b =0.35 cm 、c =1.0 cm 、I =1.0 mA 、B =3.0×10-1 T ,沿b 边两侧的电势差U =6.65 mV ,上表面电势高.(1) 问这半导体是p 型(正电荷导电)还是n 型(负电荷导电)?(2) 求载流子浓度n 0 (即单位体积内参加导电的带电粒子数).解:(1) 根椐洛伦兹力公式:若为正电荷导电,则正电荷堆积在上表面,霍耳电场的方向由上指向下,故上表面电势高,可知是p 型半导体。
第十章 稳恒电流的磁场1、四条相互平行的无限长直载流导线,电流强度均为I ,如图放置,若正方形每边长为2a ,求正方形中心O 点的磁感应强度的大小和方向。
解:43210B B B B B r r r r r +++=无限长载流直导线产生的磁感应强度 rI2B 0πμ=由图中的矢量分析可得a 2I a 2I22B B 0042πμ=πμ=+a I45cos a2I 2B 0000πμ=⋅πμ= 方向水平向左2、把一根无限长直导线弯成图 (a)、(b) 所示形状,通以电流I ,分别求出O 点的磁感应强度B 的大小和方向。
解:(a )(b )均可看成由两个半无限长载流直导线1、3和圆弧2组成,且磁感应强度在O 点的方向相同 (a )方向垂直纸面向外。
)38(R16I43R 4I R 4I R 4I B 00000π+πμ=π⋅πμ+πμ+πμ=(b )由于O 点在电流1、3的延长线上,所以0B B 31==r r方向垂直纸面向外。
R8I323R I 4B B 0020μ=π⋅πμ==14(a ) I(b )3、真空中有一边长为l 的正三角形导体框架,另有互相平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连 (如图) 。
已知直导线中的电流为I ,求正三角形中心点O 处的磁感应强度B 。
解:三角形高为 l l360sin h .0==4 它在 θθπμ=θ=d sin R 2Isin dB dB 20x θθπμ−=θ−=d cos R2I cos dB dB 20yRI d sin R2I dB B 20200x x πμ=∫θθπμ∫==π0d cos R2I dB B 020y y =∫∫θθπμ−==π)T (1037.6100.10.5104RI B B 522720x P −−−×=××π××π=πμ==∴轴正方向。
x2 27-3 图中三棱柱面高 h =1.0m ,底面各边长分别为 ab=0.6m ,bc=0.4m ,ac=0.3m ,沿 ad第七章 稳 恒 磁 场7-1 两根无限长直导线相互垂直地放置在两正交平面内, 分别通有电流 I 1=2A ,I 2=3A , 如图所示。
求点 M 1和 M 2处的磁感应强度。
图中 AM 1=AM 2=lcm ,AB=2cm. 。
解: 无限长电流的磁感应强度为 B 0I ,两无限长2d 电流在点 M 1 和 M 2 处的磁感应强度相互垂直,合磁感 应强度为I I 25T B M 1 2 0I 102 ( I 12 I 23 ) 2 33 10 54 1=4.47 10 B M 20I ( I 12 I 22 ) 2 10 54 9=7.21 10 5T 2 10 2习题 7- 1 图7- 2一无限长的载流导线中部被弯成圆弧形,圆弧半径 R=3cm ,导线中的电流 I=2A , 如图所示,求圆弧中心 O 点的磁感应强度。
解:两半无限长电流在 O 点产生的磁感应强度 方向相同,叠加为 B O1 2 0方向 ? O14 R 3/4圆电流在 O 点产生的磁感应强度为 B O23 0I4 2R 方向 O 点的合磁感应强度为B OBO1BO2-74 10-722 3 10 20.43 1.8 10-5 T 方向x2 2习题 7-3 图边有直长导线,导线申通有电流 I=4A 。
求通过 cbef 面的磁通量。
解 :通过 cbef 面的磁通量应与通过 gbje 面的磁通量相当ag=ac=0.3m ,有=B SdS0.6 0I0.32xhdx 0Ih ln 0.60.34 10 1ln2 5.54 10-7 Wbd j e7-4 两根平行直长导线载有电流 I 1=I 2=20A 。
试求( 1)两导线所在平面内与两导线等 A 处的磁感应强度; ( 2)通过图中矩形面积的磁通量。
图中 r 1=r 3=10cm ,r2=20cm ,1)两半无限长电流在中点 A 点产生的磁感应强度方向相同,叠加为B A 2 2)= BS 0Il22.2 20 1 0220 1dS 300I 102 1 1 (1 x40x 30410-740-x-610)ldx x 0I220 25 10 224 10 204 10-5T方向?2 ln37- 5 两个半径为 R 示, o 点是两环心 o1、o 2 的中点,求在两环心 o 1、o 2连线上离 强度。