“四招”轻松搞定幂的运算性质
- 格式:doc
- 大小:13.00 KB
- 文档页数:2
幂的相关运算综合题型摘要:一、幂的定义与性质1.幂的概念2.幂的性质3.幂的运算规则二、幂的运算方法1.乘方运算2.开方运算3.幂的乘方与积的乘方三、幂的常见题型1.幂的计算题2.幂的应用题3.幂的证明题四、幂的解题技巧与策略1.熟练掌握幂的性质2.灵活运用幂的运算规则3.分析题目,寻找解题思路正文:幂的相关运算综合题型是数学中的一个重要内容。
幂的定义简单来说,就是一个数不断乘以自己若干次。
例如,2 的3 次方(2^3)就是2 乘以自己3 次,结果为8。
幂的性质是指幂在进行运算时遵循的一些规律,如幂的乘方、积的乘方等。
理解并掌握这些性质对于解题至关重要。
在幂的运算方法中,乘方运算是最基本的。
例如,计算2 的5 次方,就是将2 连乘5 次,即2×2×2×2×2=32。
开方运算则是求一个数的平方根或立方根等。
例如,求8 的平方根,结果为2。
幂的乘方与积的乘方则涉及到多个幂相乘或相除的运算。
例如,计算(2^3)^2,即2 的3 次方的平方,结果为2 的6 次方。
在幂的常见题型中,幂的计算题要求我们计算给定幂的结果。
例如,计算2 的7 次方是多少。
幂的应用题则要求我们将幂的运算应用到实际问题中。
例如,计算一个数的三次方等于125,求这个数。
幂的证明题则需要我们运用幂的性质来证明一些结论。
例如,证明a 的n 次方乘以a 的m 次方等于a 的n+m 次方。
解幂的相关运算综合题型时,我们需要熟练掌握幂的性质,灵活运用幂的运算规则,并分析题目,寻找解题思路。
在解题过程中,要注意审题,理解题意,合理运用已知条件,逐步解决问题。
同时,也要注意检查答案,确保计算正确。
初中数学:幂的运算有三种,孩子是否分得清
要点一、同底数幂的乘法性质
同底数幂相乘,底数不变,指数相加.
要点诠释:
(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.
(2)三个或三个以上同底数幂相乘时,也具有这一性质
(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。
要点二、幂的乘方法则
(其中都是正整数).即幂的乘方,底数不变,指数相乘.
要点诠释:
(1)公式的推广
(2)逆用公式:根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.
要点三、积的乘方法则
(其中是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.
要点诠释:
(1)公式的推广
(2)逆用公式:逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便。
•幂的运算方法总结幂的运算的基本知识就四条性质,写作四个公式:①a m×a n=a m+n②(a m)n=a mn③(ab)m=a m b m④a m÷a n=a m-n只要理解掌握公式的形状特点,熟悉其基本要义,直接应用一般都容易,即使运用公式求其中的未知指数难度也不大。
问题1、已知a7a m=a3a10,求m的值。
思路探索:用公式1计算等号左右两边,得到等底数的同幂形式,按指数也相等的规则即可得m的值。
方法思考:只要是符合公式形式的都可套用公式化简试一试。
方法原则:可用公式套一套。
但是,渗入幂的代换时,就有点难度了。
问题2、已知x n=2,y n=3,求(x2y)3n的值。
思路探索:(x2y)3n中没有x n和y n,但运用公式3就可将(x2y)3n化成含有x n 和y n的运算。
因此可简解为,(x2y)3n =x6n y3n=(x n)6(y n)3=26×33=1728方法思考:已知幂和要求的代数式不一致,设法将代数式变形,变成已知幂的运算的形式即可代入求值。
方法原则:整体不同靠一靠。
然而,遇到求公式右边形式的代数式该怎么办呢?问题3、已知a3=2,a m=3,a n=5,求a m+2n+6的值。
思路探索:试逆用公式,变形出与已知同形的幂即可代入了。
简解:a m+2n+6=a m a2n a6=a m(a n)2(a3)2=3×25×4=300方法思考:遇到公式右边的代数式时,通常倒过来逆用公式,把代数式展开,然后代入。
方法原则:逆用公式倒一倒。
当底数是常数时,会有更多的变化,如何思考呢?问题4、已知22x+3-22x+1=48,求x的值。
思路探索:方程中未知数出现在两项的指数上,所以必须统一成一项,即用公式把它们变成同类项进行合并。
由此,可考虑逆用公式1,把其中常数的整数指数幂,化作常数作为该项的系数。
简解:22x+3-22x+1=22x×23-22x×21=8×22x-2×22x=6×22x=48 ∴22x=8 ∴2x=3∴x=1.5方法思考:冪的底数是常数且指数中有常数也有未知数时,通常把常数的整数指数冪化成常数作为其它冪的系数,然后进行其它运算。
幂的运算知识要点归纳及答案解析【要点概论】要点一、同底数幂的乘法特点+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一特点,即mnpm n pa a a a++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。
即m n m n a a a +=⋅(,m n 都是正整数).要点二、幂的乘方法则 ()=m nmna a(其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:(1)公式的推广:(())=m n pmnpa a(0≠a ,,,m n p 均为正整数)(2)逆用公式: ()()nmmnm n aa a ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.要点三、积的乘方法则()=⋅n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.要点诠释:(1)公式的推广:()=⋅⋅nnnnabc a b c (n 为正整数).(2)逆用公式:()n n na b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,算法更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭重点四、注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,算法时不要遗漏.(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方. (5)灵活地双向应用运算特点,使运算更加方便、简洁. (6)带有负号的幂的运算,要养成先化简符号的习惯. 【典型例题解析】类型一、同底数幂的乘法特点1、算法:(1)234444⨯⨯;(2)3452622a a a a a a ⋅+⋅-⋅; (3)11211()()()()()nn m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+.【标准答案与解析】 解:(1)原式234944++==.(2)原式34526177772222aa a a a a a +++=+-=+-=.(3)原式11211222()()()()2()n n m n m n m n m n m x y x y x y x y x y +++-++-+++=+++=+++=+.【总结升华】(2)(3)小题都是混合运算,算法时要注意运算顺序,还要正确地运用相应的运算法则,并要注意区别同底数幂的乘法与整式的加减法的运算法则.在第(2)小题中a 的指数是1.在第(3)小题中把x y +看成一个整体. 举一反三: 【变式】算法:(1)5323(3)(3)⋅-⋅-; (2)221()()ppp x x x +⋅-⋅-(p 为正整数);(3)232(2)(2)n⨯-⋅-(n 为正整数).【标准答案】解:(1)原式532532532103(3)333333++=⋅-⋅=-⋅⋅=-=-.(2)原式22122151()ppp p p p p x x x x x +++++=⋅⋅-=-=-. (3)原式525216222(2)22nn n +++=⋅⋅-=-=-.2、已知2220x +=,求2x 的值.【思路点拨】同底数幂乘法的逆用:22222x x +=⋅ 【标准答案与解析】 解:由2220x +=得22220x ⋅=.∴ 25x=.【总结升华】(1)本题逆用了同底数幂的乘法法则,培养了逆向思维能力.(2)同底数幂的乘法法则的逆运用:m nm n aa a +=⋅.类型二、幂的乘方法则3、算法:(1)2()m a ;(2)34[()]m -;(3)32()m a-.【思路点拨】此题是幂的乘方运算,(1)题中的底数是a ,(2)题中的底数是m -,(3)题中的底数a 的指数是3m -,乘方以后的指数应是2(3)62m m -=-. 【标准答案与解析】解:(1)2()m a 2m a =.(2)34[()]m -1212()m m =-=. (3)32()m a-2(3)62m m a a --==.【总结升华】运用幂的乘方法则进行算法时要注意符号的算法及处理,一定不要将幂的乘方与同底数幂的乘法混淆.幂的乘方法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.4、已知25mx=,求6155m x -的值.【标准答案与解析】 解:∵ 25mx=,∴ 62331115()55520555m m x x -=-=⨯-=.【总结升华】(1)逆用幂的乘方法则:()()mnm n n m a a a ==.(2)本题培养了学生的整体思想和逆向思维能力. 举一反三:【变式1】已知2a x =,3b x =.求32a bx +的值.【标准答案】 解:32323232()()238972a ba b a b xx x x x +===⨯=⨯=g g .【变式2】已知84=m,85=n,求328+m n的值.【标准答案】 解:因为3338(8)464===mm , 2228(8)525===n n .所以323288864251600+=⨯=⨯=m nm n .类型三、积的乘方法则5、指出下列各题算法是否正确,指出错误并说明原因:(1)22()ab ab =; (2)333(4)64ab a b =; (3)326(3)9x x -=-. 【标准答案与解析】解:(1)错,这是积的乘方,应为:222()ab a b =. (2)对.(3)错,系数应为9,应为:326(3)9x x -=.【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方. (2)注意系数及系数符号,对系数-1不可忽略.【典型例题】类型一、同底数幂的乘法特点1、算法:(1)35(2)(2)(2)b b b +⋅+⋅+; (2)23(2)(2)x y y x -⋅- . 【标准答案与解析】解:(1)353519(2)(2)(2)(2)(2)b b b b b +++⋅+⋅+=+=+.(2)23235(2)(2)(2)[(2)](2)x y y x x y x y x y -⋅-=-⋅--=--. 【总结升华】(1)同底数幂相乘时,底数可以是多项式,也可以是单项式.(2)在幂的运算中,经常用到以下变形:()()(),n n n a n a a n ⎧⎪-=⎨-⎪⎩为偶数,为奇数 ()()()()()nnnb a n a b b a n ⎧-⎪-=⎨--⎪⎩为偶数为奇数. 类型二、幂的乘方法则 2、算法:(1)23[()]a b --; (2)32235()()2y y y y +-g ; (3)22412()()m m xx -+⋅; (4)3234()()x x ⋅.【标准答案与解析】解:(1)23[()]a b --236()()a b a b ⨯=--=--.(2)32235()()2y y y y +-⋅666662220y y y y y =+-=-=. (3)22412()()m m xx -+⋅4(22)2(1)8822106m m m m m x x x x x -+-+-=⋅=⋅=.(4)3234()()x x ⋅61218x xx =⋅=.【总结升华】(1)运用幂的乘方法则进行算法时要注意符号的算法及处理,一定不要将幂的乘方与同底数幂的乘法混淆.(2)幂的乘方的法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.3、已知84=m ,85=n ,求328+m n的值.【思路点拨】由于已知8,8mn的值,所以逆用同底数幂的乘法和幂的乘方把328+m n变成323288(8)(8)m n m n ⨯=⨯,再代入算法.【标准答案与解析】 解:因为3338(8)464===mm , 2228(8)525===n n .所以323288864251600+=⨯=⨯=m nm n .【总结升华】运用整体的观念看待数学问题,是一种重要的数学思维方法.把8,8mn当成一个整体问题就会迎刃而解.同时看到灵活地双向应用运算特点,使运算更加方便、简洁. 举一反三: 【变式】已知322,3mm ab ==,则()()()36322mm m m a b a b b +-⋅= .【标准答案】-5;提示:原式()()()()23223232m m m m ab a b =+-⋅∵∴ 原式=23222323+-⨯=-5.类型三、积的乘方法则4、算法:(1)24(2)xy - (2)24333[()]a a b -⋅- 【思路点拨】利用积的乘方的运算特点进行算法. 【标准答案与解析】解:(1)24442448(2)(1)2()16xy x y x y -=-⋅⋅⋅=-. (2)24333[()]a a b -⋅-231293636274227()()()a a b a a ba b =-⋅-=-⋅-⋅=.【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方.(2)注意系数及系数符号,对系数-1不可忽略. 举一反三:【变式】下列等式正确的个数是( ).①()3236926x yx y -=- ②()326m m a a -= ③()36933a a =④()()57355107103510⨯⨯⨯=⨯ ⑤()()1001001010.520.522-⨯=-⨯⨯A. 1个B. 2个C. 3个D. 4个 【标准答案】A ;提示:只有⑤正确;()3236928x yx y -=-;()326m maa -=-;()3618327aa =;()()57121351071035103.510⨯⨯⨯=⨯=⨯同底数幂的除法【要点梳理】要点一、同底数幂的除法法则同底数幂相除,底数不变,指数相减,即m n m na a a -÷=(a ≠0,m n 、都是正整数,并且m n >)要点诠释:(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式. (3)当三个或三个以上同底数幂相除时,也具有这一特点. (4)底数可以是一个数,也可以是单项式或多项式. 要点二、零指数幂任何不等于0的数的0次幂都等于1.即01a =(a ≠0)要点诠释:底数a 不能为0,00无意义.任何一个常数都可以看作与字母0次方的积.因此常数项也叫0次单项式.要点三、负整数指数幂任何不等于零的数的n -(n 为正整数)次幂,等于这个数的n 次幂的倒数,即1nna a -=(a ≠0,n 是正整数).引进了零指数幂和负整数指数幂后,指数的范围已经扩大到了全体整数,以前所学的幂的运算特点仍然成立.m n m n a a a +=(m 、n 为整数,0a ≠);()mm m ab a b =(m 为整数,0a ≠,0b ≠)()nm mn a a =(m 、n 为整数,0a ≠).要点诠释:()0na a -≠是n a 的倒数,a 可以是不等于0的数,也可以是不等于0的代数式.例如()1122xy xy -=(0xy ≠),()()551a b a b -+=+(0a b +≠). 要点四、科学记数法的一般形式(1)把一个绝对值大于10的数表示成10na ⨯的形式,其中n 是正整数,1||10a ≤<(2)利用10的负整数次幂表示一些绝对值较小的数,即10na -⨯的形式,其中n 是正整数,1||10a ≤<.用以上两种形式表示数的方法,叫做科学记数法. 【典型例题】类型一、同底数幂的除法1、算法:(1)83x x ÷;(2)3()a a -÷;(3)52(2)(2)xy xy ÷;(4)531133⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭.【思路点拨】利用同底数幂相除的法则算法.(2)、(4)两小题要注意符号. 【标准答案与解析】解:(1)83835x x xx -÷==.(2)3312()a a aa --÷=-=-.(3)5252333(2)(2)(2)(2)8xy xy xy xy x y -÷===.(4)535321111133339-⎛⎫⎛⎫⎛⎫⎛⎫-÷-=-=-= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭. 【总结升华】(1)运用法则进行算法的关键是看底数是否相同.(2)运算中单项式的系数包括它前面的符号.2、算法下列各题:(1)5()()x y x y -÷- (2)125(52)(25)a b b a -÷- (3)6462(310)(310)⨯÷⨯ (4)3324[(2)][(2)]x y y x -÷-【思路点拨】(1)若被除式、除式的底数互为相反数时,先将底数变为相同底数再算法,尽可能地去变偶次幂的底数,如1212(52)(25)a b b a -=-.(2)注意指数为1的多项式.如x y -的指数为1,而不是0. 【标准答案与解析】解:(1)5514()()()()x y x y x y x y --÷-=-=-.(2)1251257(52)(25)(25)(25)(25)a b b a b a b a b a -÷-=-÷-=- (3)64626426212(310)(310)(310)(310)910-⨯÷⨯=⨯=⨯=⨯.(4)3324[(2)][(2)]x y y x -÷-9898(2)(2)(2)2x y x y x y x y -=-÷-=-=-.【总结升华】底数都是单项式或多项式,把底数作一个整体利用同底数幂的除法法则进行算法.3、已知32m =,34n =,求129m n+-的值.【标准答案与解析】解: 121222222221222244449(3)33333(3)399(3)33(3)(3)m m m m m m m nn n n n n n ++++-======g g g . 当32m=,34n=时,原式224239464⨯==. 【总结升华】逆用同底数除法公式,设法把所求式转化成只含3m ,3n的式子,再代入求值.本题是把除式写成了分数的形式,为了便于观察和算法,我们可以把它再写成除式的形式. 举一反三:【变式】已知2552mm⨯=⨯,求m 的值. 【标准答案】解:由2552m m ⨯=⨯得1152m m --=,即11521m m --÷=,1512m -⎛⎫= ⎪⎝⎭,∵ 底数52不等于0和1, ∴ 15522m -⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,即10m -=,1m =. 类型二、负整数次幂的运算4、算法:(1)223-⎛⎫- ⎪⎝⎭;(2)23131()()a b a b ab ---÷.【标准答案与解析】解:(1)222119434293-⎛⎫-=== ⎪⎝⎭⎛⎫- ⎪⎝⎭; (2)2313123330()()a b a b ab a b a b ab a b b -----÷===g g .【总结升华】要正确理解负整数指数幂的意义. 举一反三:【变式】算法:4513012222( 3.14)2π----⎛⎫++⨯⨯+- ⎪⎝⎭.【标准答案】解: 4513012222( 3.14)2π----⎛⎫++⨯⨯+- ⎪⎝⎭ 45311111122116212223228=++⨯⨯+=++⨯⨯+ 1151611732832=+++= 5、 已知1327m =,1162n⎛⎫= ⎪⎝⎭,则n m 的值=________. 【标准答案与解析】解: ∵ 331133273m -===,∴ 3m =-. ∵ 122n n -⎛⎫= ⎪⎝⎭,4162=,∴ 422n -=,4n =-. ∴ 4411(3)(3)81n m -=-==-. 【总结升华】先将127变形为底数为3的幂,122n n -⎛⎫= ⎪⎝⎭,4162=,然后确定m 、n 的值,最后代值求nm .举一反三: 【变式】算法:(1)1232()a b c --;(2)3232312b c b c ---⎛⎫⨯ ⎪⎝⎭; 【标准答案】 解:(1)原式424626b a b c a c --==. (2)原式8236981212888b b c b cb c c---=⨯==. 类型三、科学记数法6、用科学记数法表示下列各数:(1)0.00001;(2)0.000000203;(3)-0.000135;(4)0.00067【标准答案与解析】解:(1)0.00001=510-;(2)0.000000203=72.0310-⨯;(3)-0.000135=41.3510--⨯;(4)0.00067=46.710-⨯.【总结升华】注意在10n a -⨯中n 的取值是这个数从左边起第一个不是零的数前面零的个数(包括小数点前边的零).【巩固练习】一.选择题1. ()()35c c -⋅-的值是( ).A. 8c -B. ()15c -C. 15cD.8c 2.2n n a a +⋅的值是( ).A. 3n a +B. ()2n n a +C. 22n a +D. 8a 3.下列算法正确的是( ).A.224x x x +=B.347x x x x ⋅⋅=C. 4416a a a ⋅=D.23a a a ⋅=4.下列各题中,算法结果写成10的幂的形式,其中正确的是( ).A. 100×210=310B. 1000×1010=3010C. 100×310=510D. 100×1000=4105.下列算法正确的是( ).A.()33xy xy =B.()222455xy x y -=-C.()22439x x -=-D.()323628xy x y -=-6.若()391528m n a b a b =成立,则( ).A. m =6,n =12B. m =3,n =12C. m =3,n =5D. m =6,n =5二.填空题7. 若26,25m n ==,则2m n +=____________.8. 若()319x a a a ⋅=,则x =_______.9. 已知35n a =,那么6n a =______.10.若38m a a a ⋅=,则m =______;若31381x +=,则x =______.11. ()322⎡⎤-=⎣⎦______; ()33n ⎡⎤-=⎣⎦ ______; ()523-=______.12.若n 是正整数,且210n a =,则3222()8()n n a a --=__________.三.解答题13. 判断下列算法的正误.(1)336x x x += ( ) (2) 325()y y -=- ( )(3)2224(2)2ab a b -=- ( ) (4) 224()xy xy = ( )14.(1) 3843()()x x x ⋅-⋅-; (2)2333221()()3a b a b -+-;(3)3510(0.310)(0.410)-⨯-⨯⨯⨯; (4)()()3522b a a b --;(5)()()2363353a a a -+-⋅;15.(1)若3335n n x x x +⋅=,求n 的值.(2)若()3915n m a b b a b ⋅⋅=,求m 、n 的值.【标准答案与解析】一.选择练习题1. 【标准答案】D ;【解析】()()()()353588c c c c c +-⋅-=-=-=. 2. 【标准答案】C ;【解析】2222n n n n n a a a a ++++⋅==.3. 【标准答案】D ;【解析】2222x x x +=;348x x x x ⋅⋅=;448a a a ⋅=.4. 【标准答案】C ;【解析】100×210=410;1000×1010=1310;100×1000=510.5. 【标准答案】D ;【解析】()333xy x y =;()2224525xy x y -=;()22439x x -=.6. 【标准答案】C ;【解析】()333915288,39,315m n m n a ba b a b m n ====,解得m =3,n =5. 二.填空题7. 【标准答案】30;【解析】2226530m n m n +==⨯=g .8. 【标准答案】6;【解析】3119,3119,6x a a x x +=+==.9. 【标准答案】25;【解析】()2632525n n a a ===. 10.【标准答案】5;1;【解析】338,38,5m m a a a a m m +⋅==+==;3143813,314,1x x x +==+==.11.【标准答案】64;9n -;103-;12.【标准答案】200;【解析】()()32322222()8()81000800200n n n n a a a a --=-=-=. 三.解答题13.【解析】解:(1)×;(2)×;(3)×;(4)×14.【解析】解:(1)3843241237()()x x x x x xx ⋅-⋅-=-⋅⋅=-; (2)233322696411()()327a b a b a b a b -+-=-+; (3)3535810(0.310)(0.410)0.30.4101010 1.210-⨯-⨯⨯⨯=⨯⨯⨯⨯=⨯;(4)()()()()()3535822222b a a b a b a b a b --=---=--; (5)()()236331293125325272aa a a a a a -+-⋅=-⋅=-. 15.【解析】解:(1)∵3335n n x xx +⋅= ∴ 4335n x x +=∴4n +3=35∴n =8(2)m =4,n =3解:∵()3915n m a b ba b ⋅⋅= ∴ 333333915n m n m a b b a b a b +⋅⋅=⋅=∴3n =9且3m +3=15∴n =3且m =4就这么多了,祝大家思修不挂科!!!页眉设计。
幂的四种运算法则摘要:一、幂的定义与性质1.幂的定义2.幂的性质二、幂的运算法则1.幂的乘方2.幂的除法3.幂的加法4.幂的减法三、实际应用与例子1.幂在实际生活中的应用2.幂的运算例子四、总结与展望1.总结幂的四种运算法则2.展望幂的进一步研究正文:幂的四种运算法则广泛应用于数学、物理、化学等领域,掌握这些运算法则对于解决实际问题具有重要的意义。
一、幂的定义与性质幂是指将一个数连乘若干次,其中乘方的指数表示连乘的次数。
例如,2的3 次方(2)表示将2 连乘3 次,即2×2×2=8。
幂的性质包括:幂的乘方、幂的除法、幂的加法和幂的减法等。
二、幂的运算法则1.幂的乘方:幂的乘方是指将一个幂与另一个幂相乘,例如,a 的m 次方与a 的n 次方相乘,结果为a 的m+n 次方。
如:2 × 2 = 2。
2.幂的除法:幂的除法是指将一个幂除以另一个幂,例如,a 的m 次方除以a 的n 次方,结果为a 的m-n 次方。
如:2 ÷ 2 = 2。
3.幂的加法:幂的加法是指将两个同底数的幂相加,例如,a 的m 次方与a 的n 次方相加,结果为a 的m+n 次方。
如:2 + 2 = 2。
4.幂的减法:幂的减法是指将两个同底数的幂相减,例如,a 的m 次方与a 的n 次方相减,结果为a 的m-n 次方。
如:2 - 2 = 2。
三、实际应用与例子幂在实际生活中有广泛的应用,如计算机科学中的二进制运算、物理学中的量子力学、化学中的化学反应等。
例如,在计算机科学中,二进制数的幂运算可以用于实现加密和解密算法。
在物理学中,量子力学中的波函数和薛定谔方程都涉及幂运算。
以下是一些幂运算的例子:1.计算2 的5 次方:2 = 2×2×2×2×2 = 32。
2.计算2 的3 次方除以2 的2 次方:2 ÷ 2 = 2×2×2 ÷ 2×2 = 2。
学好幂的运算法那么三个关键幂的运算法那么是整式乘除运算的根底,要想学好它必须掌握好三个关键。
一、在理解推导的根底上,掌握法那么的使用条件和结论幂的运算性质的推导,主要依据是幂的意义。
n 个相同因素a 的积的运算的结果记为n a 。
注意“n a 〞有双重意义:既表示a 的n 次幂,也表示n 个a 积的运算〔即乘方〕。
同底数幂乘法法那么是“底数不变,指数相加〞。
使用这个法那么的条件是:同底数幂相乘。
不同底的幂相乘不能用此法那么,结论是:底数不变,指数相加。
例1 判断以下运算是否正确:①n n x x x 33=⋅;②m m y x y x y x ++=++22)()()(; ③m m m y y y 2=+;④y x y y y y x n m n m m n +⋅=⋅⋅⋅32解:①⨯;②√;③⨯;④√“幂的乘方〞的运算法那么,其使用条件是幂的乘方,其结论是底数不变,指数相乘。
例2 判断以下运算是否正确:①mn n m a a 22])[(=;②642)(])[(y x y x +=+;③xy y x n m n m n m n m ++=+++22)(])[())((解:①√;②⨯;③⨯ 二、进行相关法那么间的比拟,分清它们之间的区别和联系“幂的乘方〞与“同底数幂相乘〞最容易混淆,为了弄清它们的关系,列表如下: 法那么名称条 件 结 论 公 式 运算的变化 同底数幂相乘 同底数的幂相乘 ①底数不变; ②指数相加。
n m n m a a a +=⋅ 由幂相乘降为指数相加 幂的乘方 幂的乘方 ①底数不变;②指数相乘。
mn n m a a =)( 由幂的乘方降为指数相乘。
同底数幂相乘的法那么与整式的加法法那么比拟。
同底数幂相乘,只要求幂的底相同,指数可以不同,归结为“指数相加〞;而整式的加法中,可以合并的项,不仅要求底数相同,而且指数也必须相同,即合并的项必须是同类项,归结为“幂不变,系数相加〞。
欢迎共阅第八章幂的运算知识点总结
知识点一:同底数幂相乘
同底数幂的乘法数
数,负数的偶次幂是正数;负数的奇次幂是负正数的任何次幂都是正逆运算:
是正整数相加。
即法则:底数不变,指数a a a a a a m n m n m m n n
n )
,m (知识点二:幂的乘方与积的乘方
1、幂的乘方)
()()
,(a a a a m n m m n
mn mn n 逆运算:是正整数即底数不变,指数相乘。
2、积的乘方(ab)
(ab)n n n n n n )
(,b a b a n 逆运算;是正整数再把所得的幂相乘。
即
把每一个因式分别乘方知识点三:同底数幂的除法
同底数幂的除法m
nm a n m n m a a a a a a n 10101095-5n -0n -m n m 1)
0010(02.50000502.0)
1-10(96.6696000)
,
0a (110)0a (1),,,0a (的个数数字前第一个非的负几次方原数字个数的几次方科学记数法是正整数定负整指数幂的意义:规的数的零次幂都等于。
即任何不等于零指数幂的意义:规定是正整数变,指数相减。
即同底数幂相除,底数不。
《幂的运算》解题策略乘⽅运算是我们学习了加减乘除运算后的第五种运算,乘⽅运算的结果称为“幂”,因此,乘⽅运算也称为幂的运算。
在初中数学教材《幂的运算》⼀章的学习过程中,学⽣感觉困难重重,主要原因有两点:⼀是对幂的内涵理解不够,导致计算⽅法(公式)棍淆;⼆是思路不明确,⽆从下⼿.本⽂将通过对运算法则的归类揭⽰乘⽅运算的内涵,从⽽得出解题的策略.⼀、幂的运算公式及应⽤幂的运算公式如下表:通过上表可以看出,两个幂的运算公式满⾜下列三条规律(记住这三条规律,可以避免公式混淆):1.越低级的运算,对幂的要求越⾼幕的加减运算(⼀级运算),要求两个幂的底数和指数都相同;幂的乘除运算,要求两个幂的底数和底数中有⼀项相同;幂的乘⽅运算则没有要求.2.幂的运算过程中,两个幂的相同部分不变幂的加减运算中,底数和指数都不变,系数相加减(即:合并同类项).幂的乘除运算中,底数相同,则底数不变;指数相同,则指数不变. 幂的乘⽅运算中,底数不变⼆-3.底数之间的运算,⽤原运算符号,指数之间的运算,⽤原运算符号的降级运算符号(各运算之间的降级关系如下表)幂的加法(或减法)运算中,系数处于低层,仍⽤原运算——加法(或减法)运算.幂的乘法(或除法)运算中,若指数根同,则指数不变,底数仍⽤原运算——乘法(或除法)运算;若底数相同,则底数不变,指数处于上层,则按下表中的降级规律,⽤对应的加法(或减法)运算.幂的乘⽅运算,底数不变,指数降级为乘法运算.疑问:在幂的运算过程中,两个幂不符合上述运算特征怎么办?这是学⽣在学习幂的运算过程中遇到的最常见的困难,解决的⽅法是“转化”。
通过转化两个幂的底数或指数,从⽽使两个幂达到符合相应运算的条件.具体转化⽅法如下:1.化为底数相同如果两个幂的底数可以化成同⼀个数的幂的形式,那么这两个幂就可以⽤幂的乘⽅公式,把它们化作同底数幂.⼆、求有关幂的等式中未知数的⽅法当两个相等的幂的底数相等时,它们的指数也相等,如已知a²=aⁿ,则n=2;当两个相等的幂的指数相等时,它们的底数也相等,如已知3ⁿ=xⁿ,则x=3.当两个相等的幂的底数和指数都不相同时,则⽆法直接转化为整式⽅程求未知数的值,此时需要转化两个幂的底数或指数,使它们相同.当等式两边有多个幂时,需要依据运算符号进⾏运算,先转化成只有两个幂的等式再进⾏求解.分析因等式两边有三个幂,且字母m在指数上,故需要先计算出等号左边的积,使等号两边各保留⼀个幂,然后再化底数相等,最后⽤指数相等列等式.三、⽐较幂的⼤⼩的⽅法.当两个幂的底数相同时,通过⽐较他们的指数可以判断它们的⼤⼩.⼩结:在学习《幂的运算》这⼀章节内容时,记住公式是解题的基础,熟练掌握转化底数和指数的⽅法是解题的关键.分析题⽬中幂的运算所需要的条件,可以明确解题思路;观察幂的底数和指数的特点,可以明确解题的具体过程.您给我转评赞,有⼀样就谢谢您!。
幂的运算一、知识网络归纳二、学习重难点学习本章需关注的几个问题:●在运用n m n m a a a +=•(m 、n 为正整数),n m n m a a a -=÷(0≠a ,m 、n 为正整数且m >n ),mn n m a a =)((m 、n 为正整数),n n n b a ab =)((n 为正整数),)0(10≠=a a ,n n aa 1=-(0≠a ,n 为正整数)时,要特别注意各式子成立的条件。
◆上述各式子中的底数字母不仅仅表示一个数、一个字母,它还可以表示一个单项式,甚至还可以表示一个多项式。
换句话说,将底数看作是一个“整体”即可。
◆注意上述各式的逆向应用。
如计算20052004425.0⨯,可先逆用同底数幂的乘法法则将20054写成442004⨯,再逆用积的乘方法则计算11)425.0(425.02004200420042004==⨯=⨯,由此不难得到结果为1。
◆通过对式子的变形,进一步领会转化的数学思想方法。
如同底数幂的乘法就是将乘法运算转化为指数的加法运算,同底数幂的除法就是将除法运算转化为指数的减法运算,幂的乘方就是将乘方运算转化为指数的乘法运算等。
◆在经历上述各个式子的推导过程中,进一步领悟“通过观察、猜想、验证与发现法则、规律”这一重要的数学研究的方法,学习并体会从特殊到一般的归纳推理的数学思想方法。
一、同底数幂的乘法1、同底数幂的乘法同底数幂相乘,底数不变,指数相加.公式表示为:()mnm na a am n +⋅=、为正整数2、同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即()m n p m m p a a a a m n p ++⋅⋅=、、为正整数注意点:(1) 同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数.(2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算.例题:例1:计算列下列各题(1) 34a a ⋅; (2) 23b b b ⋅⋅ ; (3) ()()()24c c c -⋅-⋅- 简单练习: 一、选择题1. 下列计算正确的是( )A.a2+a3=a5B.a2·a3=a5C.3m +2m =5mD.a2+a2=2a42. 下列计算错误的是( )A.5x2-x2=4x2B.am +am =2amC.3m +2m =5mD.x·x2m-1= x2m3. 下列四个算式中①a3·a3=2a3 ②x3+x3=x6 ③b3·b·b2=b5④p 2+p 2+p 2=3p 2正确的有( )A.1个B.2个C.3个D.4个4. 下列各题中,计算结果写成底数为10的幂的形式,其中正确的是( )A.100×102=103B.1000×1010=103C.100×103=105D.100×1000=104二、填空题1. a4·a4=_______;a4+a4=_______。
学好“幂的运算”三点建议本章是在学习了有理数乘方的基础上研究幂的运算:同底数幂的乘法、幂的乘方与积的乘方、同底数幂的除法.这些运算是今后学习整式乘法运算的基础.学习本章,要了解整数指数幂的意义和基本性质,能正确运用这些性质进行计算,会用科学记数法表示数.如何学好幂的运算?下面给出三点建议.一、牢固掌握四条运算性质是基础1. 同底数幂的乘法的运算性质:同底数幂相乘,底数不变,指数相加.用字母表示为:am·an=am+n(m、n是正整数).同底数幂的乘法法则是本章中的第一个幂的运算性质,也是整式乘法的主要依据之一,学习这个性质应注意以下几点:(1)该表达式中,等式左边是两个幂相乘,且它们的底数相同;等式右边也是一个幂,与左边相比,底数不变,指数是左边两个指数的和.(2)底可以是一个具体的数或字母,也可以是一个单项式或多项式,如:(__2y)2·(__2y)3=(__2y)5,底数是多项式(__2y).(3)这个性质可以推广到三个或三个以上的同底数幂相乘,即am·an·ap=am+n+p(m、n、p是正整数).(4)不要与整式加法混淆. 同底数幂乘法是只要求底数相同则可用法则计算,即底数不变指数相加,如:a4·a2=a4+2=a6;而整式加法法则要求两个相同——底数相同且指数也必须相同,实际上是合并同类项,如:-3a4+2a4=(-3+2)a4=-a4,而a4+a2不能进行运算.2. 幂的乘方的运算性质:幂的乘方,底数不变,指数相乘.用字母表示为:(am)n=amn(m、n是正整数).该性质的显著特点就是将原来的乘方运算降次为乘法运算,即底数不变,指数相乘.学习这个性质要注意两点:(1)幂的底数a可以是具体的数,也可以是多项式.如[(x+y)3]2=(x+y)6,底数(x+y)是一个多项式.(2)要注意与同底数幂的乘法的区别和联系.区别:幂的乘方是把指数相乘,同底数幂的乘法是把指数相加,不要出现下面的错误,如:(x3)5=x8,x3·x5=x15;联系:两种运算都是底数不变.3. 积的乘方的运算性质:积的乘方,等于把积的每个因式分别乘方,再把所得的幂相乘.用字母表示为:(ab)n=anbn(m、n是正整数).学习这个性质要注意:积的乘方可推广到3个以上因式的积的乘方:(a1·a2·。
“四招”轻松搞定幂的运算性质
作者:康海芯王振宏
来源:《初中生世界·七年级》2014年第04期
幂的运算性质是整式乘法运算的重点内容,也是难点内容,为帮助同学们学好幂的运算性质,本文将从四个方面加以分析,供同学们参考.
一、弄清幂的每个运算性质的由来
学习幂的运算性质时,应弄清楚每个运算性质产生或推导的过程,不要只是被动地记忆公式,因为被动记忆时我们只能记住它的外形,无法理解性质的本质,一旦遇到外形类似的公式,就容易混淆.例如有些同学初学幂的运算时,常与幂的乘方运算混淆,出现a2·a4=a8的错误,这是由于没有弄清楚同底数幂乘法运算的实质,即am·an=·==am+n.
理解和记忆同底数幂的运算性质时,应结合上面这个推导过程,从本质上掌握同底数乘积的结果的幂指数是和不是积,对于幂的其他运算性质也应结合推理过程来理解并记忆,这样才能真正把握运算性质本质,避免张冠李戴.
二、明确幂的运算性质的相同点与不同点
2. 同底数幂的除法、0指数幂和负指数幂性质的相同点与不同点
三、拓展幂的运算性质中字母的含义
同底数幂的乘法、幂的乘方、积的乘方这三条运算性质中的字母a、b既可以表示任意的数,也可以表示单项式和多项式,而同底数幂的除法中的除数既可以表示不等于零的数,也可以表示值不等于零的单项式和多项式.如计算(x-y)·[(x-y)3]3·(x-y)2,通常把(x-y)看作底数,先运用幂的乘方性质,然后运用同底数幂的乘法运算性质进行计算,可以得到(x-y)·(x-y)9·(x-y)2=(x-y)12. 这里需要避免出现这类错误:(x+y)3=x3+y3.
四、活用幂的运算性质解题
学习幂的运算性质,不仅要能从左到右运用性质计算,还要善于应用逆向思维,尝试从右到左使用性质. 灵活运用,往往能避繁就简,化难为易,提高解题效率.
例1 计算:-
-2013×
22013.
【解析】面对这么大的两个数相乘,直接计算一定很难得到正确的结果,通过积的乘方运算法则的逆向运用,则可以将问题转化为两个简单的分数相乘. 即-
-2013×
22013=-
-
×2013=-(-1)2013=1.
例2 比较a=3555,b=4444,c=5333的大小.
【解析】由于a、b、c的指数都较大,即使用计算器也有一定的难度,故直接由乘方求解较繁,但仔细观察分析知555、444、333都是111的倍数,这时可逆用幂的乘方的法则.
解:因为3555=35×111=(35)111=243111;4444=44×111=(44)111=256111;
5333=53×111=(53)111=
125111.
而由乘方的意义可知,125111
【反思】本题要不是逆用幂的乘方法则,还不知道要在运算的黑暗里摸索多久.
(作者单位:江西省赣县江口中学、江苏省兴化市茅山中心校)。