2019-2020学年安阳市林州市八年级上册期末数学试卷(有答案)-推荐
- 格式:doc
- 大小:288.50 KB
- 文档页数:16
考试时间:120分钟满分:100分一、选择题(每题3分,共30分)1. 若a > b,则下列不等式中正确的是()A. a + 1 > b + 1B. a - 1 < b - 1C. a + 2 < b + 2D. a - 2 > b - 22. 下列各数中,有理数是()A. √9B. πC. 0.1010010001...D. √-13. 已知一元二次方程x² - 5x + 6 = 0,则该方程的解是()A. x₁ = 2, x₂ = 3B. x₁ = 3, x₂ = 2C. x₁ = -2, x₂ = -3D. x₁ = -3, x₂ = -24. 若等腰三角形底边长为8,腰长为10,则该三角形的周长为()A. 16B. 18C. 26D. 285. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x² + 1D. y = 2x³6. 已知正方形的对角线长为10cm,则该正方形的面积是()A. 50cm²B. 100cm²C. 200cm²D. 250cm²7. 若一个等边三角形的边长为6cm,则该三角形的面积是()A. 9√3cm²B. 12√3cm²C. 18√3cm²D. 24√3cm²8. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 19. 若直角三角形的两条直角边分别为3和4,则该三角形的斜边长是()A. 5B. 6C. 7D. 810. 下列函数中,是正比例函数的是()A. y = 2x + 1B. y = x²C. y = 3/xD. y = 2x二、填空题(每题3分,共30分)1. 若x + 2 = 5,则x = __________。
2. 若a² = 9,则a = __________。
河南省安阳市林州市2023-2024学年八年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________....A .36°B .38°7.如图,用四颗螺丝将不能弯曲的木条围成一个木框,不计螺丝大小,其中相邻两颗螺丝的距离依次为3、4、6、8,且相邻两根木条的夹角均可以调整,若调整木条的夹角时不破坏此木框,则任意两颗螺丝的距离的最大值是A .5B .69.已知关于x 的分式方程A .B .10.如图,在和中,2m x -2m ≤2m ≥2m ≠-ABC ADE VA.1B.2C.3D.4二、填空题三、解答题x xy16.(1)计算:(132(1)请作出△ABC向右平移5个单位长度,下移4个单位长度后的(2)作△ABC关于y轴对称的△A₂B₂C₂;(1)观察图2,试猜想式子,,(2)根据(1)中的数量关系,解决下列问题:①已知,,求的值;②已知,,求的值.()2m n +()2m n -mn 5x y -=6xy =-x y +0a >21a a -=2a a+参考答案:1.A【分析】本题主要考查了轴对称图形的概念,轴对称图形是关于对称轴两边的图形折叠后重合.【详解】解:.该图像使图形沿一条直线折叠,直线两旁的部分能够互相重合,故本选项符合题意;.该图像不能使图形沿一条直线折叠,直线两旁的部分能够互相重合,故本选项不符合题意;.该图像不能使图形沿一条直线折叠,直线两旁的部分能够互相重合,故本选项不符合题意;.该图像不能使图形沿一条直线折叠,直线两旁的部分能够互相重合,故本选项不符合题意.故选:A .2.A【分析】根据各个选项中的式子进行单项式的乘、除运算得出正确的结果,从而可以解答本题.【详解】A 、,正确,该选项符合题意;B 、,错误,该选项不符合题意;C 、,错误,该选项不符合题意;D 、,错误,该选项不符合题意;故选:A .【点睛】本题考查了单项式的乘、除运算,掌握运算法则和运算顺序是解题的关键.3.C【分析】直接根据三角形全等的判定条件进行排除选项即可.【详解】A 、由∠A =∠D ,∠B =∠E ,∠C =∠F 不能判定△ABC ≌△DEF ,故错误;B 、由“SSA”不能判定△ABC ≌△DEF ,故错误;C 、由“ASA”可以判定△ABC ≌△DEF ,故正确;D 、由△ABC 的周长等于△DEF 的周长不能判定△ABC ≌△DEF ,故错误;故选C .A B C D ()10721055x x x x x x ÷÷=÷=()()()844xy xy xy ÷=422224n n n n n n x x x x x x ÷⋅=⋅=()2111m m m x x x +++÷=∴,∴,∴.故选:C .【点睛】本题主要考查了等腰三角形的性质、三角形内角和定理、三角形外角的性质、折叠的性质等知识点,灵活运用相关的性质和定理是解答本题的关键.7.B【分析】若两个螺丝的距离最大,则此时这个木框的形状为三角形,可根据三条木棍的长来判断有几种三角形的组合,然后分别找出这些三角形的最长边即可.【详解】已知4条木棍的四边长为3、4、6、8;选3+4、6、8作为三角形,则三边长为7、6、8;,能构成三角形,此时两个螺丝间的最长距离为8;选4+6、8、3作为三角形,则三边长为10、8、3,,能构成三角形,此时两个螺丝间的最长距离为10;选6+8、3、4作为三角形,则三边长为14、3、4;,不能构成三角形,此种情况不成立;选3+8、4、6作为三角形,则三边长为11、4、6;,不能构成三角形,此种情况不成立;综上所述,任两螺丝的距离之最大值为10;故选:B .【点睛】本题实际考查的是三角形的三边关系定理,能够正确的判断出调整角度后三角形木框的组合方法是解答的关键.8.D【分析】根据作图过程可得EF 是AC 的垂直平分线,所以CD=AD ,进而可得△ABD 的周长.【详解】解:根据作图过程可知:EF 是AC 的垂直平分线,∴CD=AD ,∴△ABD 的周长为:AD+BD+AB=CD+BD+AB=BC+AB=5+3=8.故选:D .2AC D B C B ∠'=∠+∠=∠24B ∠=︒248C B ∠=∠=︒76876-<<+831083-<<+3414+<4611+<,80BAC DAE ∠=∠=︒ BAC CAD DAE ∴∠+∠=∠ AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩()SAS ABD ACE ∴ ≌,,60AOB ∠=︒ OC 1122DOH AOB ∴∠=∠=28OE OD ==后的对应点A₁,B₁,C₁再顺次连接A₁B₁C1;(2)如图所示:分别作出点A,B,C关于y轴的对称点A2,B2,C2,再首尾顺次连接可得;(3)作点B关于x轴的对称点B3,再连接B3C交y轴于点N,顺次连接点NB,NC,△NBC 的周长最小;【点睛】本题主要考查作图-轴对称变换,图形的平移,解题的关键是熟练掌握轴对称变换的定义和性质及最短路线问题.在和中,,∴,∴,∴;(2)如图,在上取,在和中,,∴,∴,,∵,∴,∴,在和中,,∴,∴,∴,即;(3)将顺时针方向旋转至,AEG △AEF △AG AF EAG EAF AE AE =⎧⎪∠=∠⎨⎪=⎩()SAS AEG AEF ≌V V EG EF =BE DF EF +=BC BG DF =ABG ADF △AB AD B ADF BG DF =⎧⎪∠=∠⎨⎪=⎩()SAS AEG AEF ≌V V AG AF =BAG DAF ∠=∠45EAF ∠=︒45BAG DAE ∠+∠=︒45EAG ∠=︒AEG △AEF △AG AF EAG EAF AE AE =⎧⎪∠=∠⎨⎪=⎩()SAS AEG AEF ≌V V GE EF =GE BE BG BE DF EF =-=-=BE DF EF -=AEC △90︒AFB △答案第15页,共15页根据旋转的性质可得,,AEC △45ABF ACD ∴∠=∠=︒454590FBE ∴∠=︒+︒=︒BF。
2019-2020学年八年级上期末考试数学试卷一.选择题(共6小题,满分12分,每小题2分)1.(2分)化简(﹣a2)•a5所得的结果是()A.a7B.﹣a7C.a10D.﹣a102.(2分)下列航空公司的标志中,是轴对称图形的是()A.B.C.D.3.(2分)无论a取何值时,下列分式一定有意义的是()A.B.C.D.4.(2分)下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形5.(2分)下列计算正确的是()A.5a4•2a=7a5B.(﹣2a2b)2=4a2b2C.2x(x﹣3)=2x2﹣6x D.(a﹣2)(a+3)=a2﹣66.(2分)在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF二.填空题(共8小题,满分24分,每小题3分)7.(3分)用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.图中,∠BAC=度.8.(3分)因式分解:4a3b3﹣ab=.9.(3分)请用代数式表示:一个长方形的长为a,宽是长的,则这个长方形的周长是.10.(3分)如图,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C=度.11.(3分)如果x2﹣mx+81是一个完全平方式,那么m的值为.12.(3分)如果分式的值为9,把式中的x,y同时扩大为原来的3倍,则分式的值是.13.(3分)如图,△ABC中,AB=AC,∠A=36°,AB的中垂线DE交AC于D,交AB 于E,下述结论:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BDC的周长等于AB+BC;(4)D是AC中点.其中正确的命题序号是.14.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC 于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为。
林州市2022-2023学年八年级(上)数学期末模拟测试一、选择题(本题共10个小题,每小题3分,共30分。
下列各题,每小题只有一个选项符合题意。
)1. 下列手机手势解锁图案中,是轴对称图形是( )A. B.C. D.2. 我国北斗公司在2020年发布了一款代表国内卫星导航系统最高水平的芯片,该芯片的制造工艺达到了0.000000023米.用科学记数法表示0.000000023为( )A. 23×10﹣10B. 2.3×10﹣10C. 2.3×10﹣9D. 2.3×10﹣83. 下列运算错误的是()A. B.C. D. (a≠0)4. 若分式有意义,则x应该满足的条件是()A. B. C. D.5. 等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边长为( )A. 7cmB. 3cmC. 9cmD. 5cm6. 已知等腰三角形的一个内角为50°,则它的另外两个内角是()A. 65°,65°B. 80°,50°C. 65°,65°或80°,50°D. 不确定7. 如图,已知∠ABD=∠BAC,添加下列条件还不能判定△ABC≌△BAD的依据是()A. AC=BDB. ∠DAB=∠CBAC. ∠C=∠DD. BC=AD8. 如果关于x的方程无解,则m的值是( )A. 2B. 0C. 1D. –29. 如图,已知点P是∠AOB角平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=4cm,如果点C是OB上一个动点,则PC的最小值为( )A. 2B.C. 4D.10. 已知甲做360个零件与乙做480个零件所用的时间相同,两人每天共做140个零件,设甲每天做x 个零件,根据题意,可列方程为( )A. B.C. D.二.填空题(共5题,总计15分)11. 计算:=_________.12. 如图,∠B=∠C,要使△ABD≌△ACE,只需增加的一个条件是________(只需填写一个你认为适合的条件).13. 已知a m=2,a n=6,则a2m﹣n的值是_____.14. 如图,在锐角△ABC中,∠BAC = 40°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,当BM +MN有最小值时,_____________°.15. 如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则周长的最小值为_______.三.解答题(共8题,总计75分)16. (1)计算:(2)分解因式:17. 先化简,再求值:(1),其中.(2),再求当与互为相反数时,代数式的值.18. 如图,在平面直角坐标系中,每个小正方形的边长均为1,点A的坐标为(﹣2,3).点B的坐标为(﹣3,1),点C的坐标为(1,﹣2).(1)作出△ABC关于y轴对称的△A'B'C'.其中A',B',C'分别是A,B,C的对应点,不要求写作法;(2)在x轴上找一点P,使得PB+PA的值最小.(不要求写作法)19. 如图,ΔABC中,且,垂直平分,交于点,交于点.(1)若,求的度数;(2)若,,求的周长.20. 如图,已知△ABC.(1)用直尺和圆规按下列要求作图:①作△ABC的角平分线AD;②作∠CBE=∠ADC,BE交CA的延长线于点E;③作AF⊥BE,垂足为F.(2)直接判断图中EF与BF的数量关系.21. 阅读以下材料材料:因式分解:解:将“”看成整体,令,则原式再将“A”还原,得原式上述解题用到是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:______;(2)因式分解:;22. 随着科技与经济的发展,机器人自动化线的市场越来越大,并且逐渐成为自动化生产线的主要方式某化工厂要在规定时间内搬运1800千克化工原料,现有A,B两种机器人可供选择,已知A型机器人每小时完成的工作量是B型机器人的1.5倍,A型机器人单独完成所需的时间比B型机器人少10小时.(1)求两种机器人每小时分别搬运多少千克化工原料?(2)若A型机器人工作1小时所需的费用为80元,B型机器人工作1小时所需的费用为60元,若该工厂在两种机器人中选择其中的一种机器人单独完成搬运任务,则选择哪种机器人所需费用较小?请计算说明.23.(1)自主学习】填空:如图1,点是的平分线上一点,点A在上,用圆规在上截取,连接,可得 ,其理由根据是 ;(2)理解运用】如图2,在中,,,平分,试判断和、之间的数量关系并写出证明过程.(3)拓展延伸】如图3,在中,,,分别是,的平分线,,交于点,若,,请直接写出的长.林州市2022-2023学年八年级(上)数学期末模拟测试参考答案及解析一.选择题1.答案:C解析:A.不是轴对称图形,故此选项错误;B.不是轴对称图形,故此选项错误;C.是轴对称图形,故此选项正确;D.不是轴对称图形,故此选项错误.故选:C.2.答案:D解析:解:0.000000023=2.3×10﹣8.故选:D.2.答案:A解析:A. ,故该选项不正确,符合题意;B. ,故该选项正确,不符合题意;C. ,故该选项正确,不符合题意;D. (a≠0),故该选项正确,不符合题意;故选:A.4.答案:B解析:解:由题意,得x+1≠0,解得:x≠-1,故选:B.5.答案:B解析:当长是3cm的边是底边时,三边为3cm,5cm,5cm,等腰三角形成立;当长是3cm的边是腰时,底边长是:13﹣3﹣3=7(cm),而3+3<7,不满足三角形的三边关系.故底边长:3cm.故选:B.6.答案:C解析:若50°为顶角,则底角为,即另外两个内角为65°,65°;若50°为底角,则顶角为,即另外两个内角为80°,50°,综上可得另外两个内角为65°,65°或80°,50°,故选C.7.答案:D解析:由题意得,∠ABD=∠BAC,A.在△ABC与△BAD中,,∴△ABC≌△BAD(SAS);故选项正确;B.在△ABC与△BAD中,,△ABC≌△BAD(ASA),故选项正确;C.在△ABC与△BAD中,,△ABC≌△BAD(AAS),故选项正确;D.在△ABC与△BAD中,BC=AD,AB=BA,∠BAC=∠ABD(SSA),△ABC与△BAD不全等,故错误;故选:D.8.答案:A解析:解:方程去分母得:m+1﹣x=0,解得x=m+1,当分式方程分母为0,即x=3时,方程无解,则m+1=3,解得m=2.故选A.9.答案:C解析:解:∵P是∠AOB角平分线上的一点,∠AOB=60°,∴∠AOP=∠AOB=30°,∵PD⊥OA,M是OP的中点,DM=4cm,∴OP=2DM=8,∴PD=OP=4,∵点C是OB上一个动点,∴PC的最小值为P到OB距离,∴PC的最小值=PD=4.故选C10.答案:A解析:设甲每天做x个零件,根据题意得:;故选A.二. 填空题11.答案:3解析:原式=1+2=3故答案为:3.12.答案:或或解析:解:,添加,,后可分别根据、、判定;故答案为:或或.13.答案:解析:当a m=2,a n=6时,原式=(a m)2÷a n=22÷6=4÷6=.故答案为:.14.答案:50解析:如图,在AC上截取AE=AN,连接BE,∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,∵AM=AM,∴△AME≌△AMN,∴ME=MN,∴BM+MN=BM+ME≥BE.∵BM+MN有最小值.当BE是点B到直线AC的距离时,BE⊥AC,∴∠ABM=90°-∠BAC=90°-40°=50°;故答案为:50.15.答案:10解析:解:如图,连接,是等腰三角形,点是边的中点,,,解得,是线段的垂直平分线,点关于直线的对称点为点,的长为的最小值,周长的最小值.故答案为:10.三.解答题16答案:(1)(2)解析:小问1解析:解:原式;小问2解析:解:原式.17答案:(1),;(2),.解析:解:(1)当时,原式;(2)由题意得,解得,当时,原式.18答案:(1)如图,△A'B'C'即所求作.见解析;(2)如图,点P即为所求作,见解析.解析:(1)如图,△A'B'C'即为所求作.(2)如图,点P即为所求作.19答案:(1);(2)16cm解析:(1),,垂直平分,,,,,;(2)由(1)知:,,,的周长20答案:(1)①作图见解析;②作图见解析;③作图见解析(2)解析:小问1解析:①解:如图1,射线AD就是∠BAC的角平分线;②解:作∠EBC=∠ADC,点E就是所求作的点,如图1所示;③解:作线段的垂直平分线,如图1所示;小问2解析:解:.由(1)可知∵∠CBE=∠ADC∴∴,∴∴∴是等腰三角形∵∴.21答案:(1)(2)解析:小问1解析:解:==;故答案为:;小问2解析:设,原式,将A还原,则原式;22答案:(1)A型机器人每小时搬运90千克化工原料,B型机器人每小时搬运60千克化工原料;(2)选择A型机器人所需费用较小,理由见解析解析:(1)设B型机器人每小时搬运x千克化工原料,则A型机器人每小时搬运1.5x千克化工原料,根据题意,得整理,得1800=2700﹣1.5x解得x=60检验:当x=60时,1.5x≠0所以,原分式方程的解为x=60答:A型机器人每小时搬运90千克化工原料,B型机器人每小时搬运60千克化工原料;(2)A型机器人单独完成搬运任务所需的费用为:×80=1600(元)B型机器人单独完成搬运任务所需的费用为:×80=1800(元)因为1600<1800所以选择A型机器人所需费用较小.23答案:(1),SAS(2),证明见解析(3)5解析:(1)由角平分线的定义得出,根据可证明;(2)先截取,连接,根据判定,得出,,,进而得出结论;(3)在上取一点,使,证明,由全等三角形的性质得出,证明,由全等三角形的性质得出,则可求出答案.小问1解析:解:点是的平分线上一点,,在和中,,,故答案为:;;小问2解析:.证明:在上截取,平分,,在和中,,,,AD=DE,,,,即,,,,.小问3解析:在上取一点,使,在中,,,,,,,平分,,在和中,,,,,,是的平分线,,在和中,,,,.。
河南省林州市2024届八上数学期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.能说明命题“对于任何实数a ,a 2≥a ”是假命题的一个反例可以是( )A .2a =-B .1a =C .0a =D .0.2a = 2.如果关于x 的方程1033m x x x --=--无解,则m 的值是( ) A .2 B .0 C .1 D .–23.一个等腰三角形的两边长分别为3、7,则它的周长为( )A .17B .13或17C .13D .104.一个三角形的三条边长分别为4,7,x ,则x 的值有可能是下列哪个数( )A .3B .7C .11D .125.已知x ﹣y =﹣2,xy =3,则x 2y ﹣xy 2的值为( )A .2B .﹣6C .5D .﹣36.下列各式从左边到右边的变形中,是因式分解的是( )A .()2983(3)8x x x x x -+=+-+B .()24444x x x x -+=-+ C .()-=-ax ay a x y D .2(32)(32)49a a a ---=-7.如图,直线l 1∥l 2,若∠1=140°,∠2=70°,则∠3的度数是( )A .70°B .80°C .65°D .60°8.如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB ,交BC 于点D ,DE ⊥AB 于点E ,且AB =6cm ,则△DEB的周长为( )A .4cmB .6cmC .8cmD .以上都不对9.对于一次函数y =﹣2x +1,下列说法正确的是( )A .图象分布在第一、二、三象限B .y 随x 的增大而增大C .图象经过点(1,﹣2)D .若点A (x 1,y 1),B (x 2,y 2)都在图象上,且x 1<x 2,则y 1>y 210.若15,5x ya a ==,则x y a -等于( )A .3B .5C .10D .12 二、填空题(每小题3分,共24分)11.一个等腰三角形的两边长分别为4和8,则这个等腰三角形的周长是__________.12.如图,己知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,点1B ,2B ,3B ,…在射线OM 上,112A B A ∆,223A B A ∆,334A B A ∆,…均为等边三角形,若12OA =,则556A B A ∆的边长为________.13.如图,已知∠A =47°,∠B =38°,∠C =25°,则∠BDC 的度数是______.14._____3(填>,<或=)15.如果直角三角形的一个内角为40°,则这个直角三角形的另一个锐角为_____.16.用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE .图中,BAC ∠=____度.17.规定一种新的运算:A★B=A×B-A÷B,如4★2=4×2-4÷2=6,则6★(-2)的值为______.a-是同类二次根式,那么a=________.18.如果最简二次根式1+a与42三、解答题(共66分)19.(10分)山地自行车越来越受中学生的喜爱.一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是27000元.(1)求二月份每辆车售价是多少元?(2)为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆山地自行车的进价是多少元?20.(6分)如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD(1)求证:CE∥GF;(2)试判断∠AED与∠D之间的数量关系,并说明理由;(3)若∠EHF=100°,∠D=30°,求∠AEM的度数.∠)相等的三角形是等腰三角形”.但21.(6分)猜想与证明:小强想证明下面的问题:“有两个角(图中的B和C∠和边BC.他不小心将图弄脏了,只能看见图中的C(1)请问:他能够把图恢复成原来的样子吗?若能,请你帮他写出至少两种以上恢复的方法并在备用图上恢复原来的样子.(2)你能够证明这样的三角形是等腰三角形吗?(至少用两种方法证明)22.(8分)已知:如图,在等腰三角形ABC中,120︒<∠BAC<180︒,AB=AC,AD⊥BC于点D,以AC为边作等边三角形ACE,∆ACE与∆ABC在直线AC的异侧,直线BE交直线AD于点F,连接FC交AE于点M.(1)求∠EFC的度数;(2)求证:FE+FA=FC.23.(8分)小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y(米)与小张出发后的时间x(分)之间的函数图象如图所示.(1)求小张骑自行车的速度;(2)求小张停留后再出发时y与x之间的函数表达式:.(3)求小张与小李相遇时x的值.24.(8分)在日历上,我们可以发现其中某些数满足一定的规律,如图是2020年1月份的日历.如图所选择的两组四个数,分别将每组数中相对的两数相乘,再相减,例如:9×11﹣3×17= ,12×14﹣6×20= ,不难发现,结果都是.(1)请将上面三个空补充完整;(2)请你利用整式的运算对以上规律进行证明.A B C D都在直角坐标系网格的格点上,每个25.(10分)如图是小亮同学设计的一个轴对称图形的一部分.其中点,,,小正方形的边长都等于1.(1)请画出关于y轴成轴对称图形的另一半,并写出B,C两点的对应点坐标.ABCDC B的面积.(2)记B,C两点的对应点分别为1B,1C,请直接写出封闭图形11A B C的坐标.26.(10分)ABC在直角坐标系中如图所示,请写出点、、参考答案一、选择题(每小题3分,共30分)1、D【分析】根据题意、乘方的意义举例即可.【题目详解】解:当a=0.2时,a2=0.04,∴a2<a,故选D.【题目点拨】本题考查的是命题的真假判断,正确举出反例是解题的关键.2、A【分析】先求得分式方程的增根为x=3,再将原方程化为整式方程,然后把方程的增根x=3代入即可求得m的值. 【题目详解】解:方程去分母得:m+1﹣x=0,解得x=m+1,当分式方程分母为0,即x=3时,方程无解,则m+1=3,解得m=2.故选A.【题目点拨】本题主要考查分式方程无解的条件:(1)去分母后所得整式方程无解;(2)解去分母后的整式方程得到的解使原方程的分母等于0.3、A【分析】题目中没有明确底和腰,故要先进行分类讨论,再结合三角形三边关系定理分析即可解答.【题目详解】∵①当3为腰、7为底时,三角形的三边分别为3、3、7,此时不满足三角形三边关系定理舍去;②当3为底、7为腰时,三角形的三边分别为3、7、7,此时满足三角形三边关系定理.++=∴等腰三角形的周长是:37717故选:A【题目点拨】本题考查了等腰三角形的性质以及三角形三边关系定理.解题的关键是熟练掌握三角形三边关系定理:任意两边之和大于第三边,任意两边之差小于第三边.4、B【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围,从而得出结果.【题目详解】解:根据题意得:7-4<x<7+4,即3<x<11,故选:B .【题目点拨】本题考查三角形的三边关系,关键是理解如何根据已知的两条边求第三边的范围.5、B【分析】先题提公因式xy ,再用公式法因式分解,最后代入计算即可.【题目详解】解:x 2y ﹣xy 2=xy (x ﹣y )=3×(﹣2)=﹣6,故答案为B .【题目点拨】本题考查了因式分解,掌握先提取公因式、再运用公式法的解答思路是解答本题的关键.6、C【分析】根据因式分解的定义即可得.【题目详解】A 、()2983(3)8x x x x x -+=+-+不是因式分解,此项不符题意; B 、()24444x x x x -+=-+不是因式分解,此项不符题意; C 、()-=-ax ay a x y 是因式分解,此项符合题意;D 、2(32)(32)49a a a ---=-不是因式分解,此项不符题意;故选:C .【题目点拨】本题考查了因式分解的定义,熟记定义是解题关键.7、A【题目详解】解:如图,∵直线l 1∥l 2,∠1=140°,∴∠1=∠4=140°,∴∠5=180°﹣140°=40°.∵∠2=70°,∴∠6=180°﹣70°﹣40°=70°.∵∠3=∠6,∴∠3=70°.故选A .8、B【分析】根据角平分线上的点到角的两边的距离相等可得CD =DE ,根据全等三角形对应边相等可得AC =AE, 求出△DEB的周长=AB.【题目详解】解:∵AD平分∠CAB,∠C=90°,DE⊥AB,∴CD=DE,在△ACD和△AED中,AD AD CD DE=⎧⎨=⎩,∴△ACD≌△AED(HL),∴AC=AE,∴可得△DEB的周长=BD+DE+BE,=BD+CD+BE,=BC+BE,=AC+BE,=AE+BE,=AB,∵AB=6cm,∴△DEB的周长为6cm.故选:B.【题目点拨】角平分线上的点到角的两边的距离相等与根据HL证明全等,等量代换理清逻辑。
河南省安阳市林州市2020-2021学年八年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列平面图形中,不是轴对称图形的是( )A .B .C .D . 2.下列计算结果为6a 的是( )A .7a a -B .83•a aC .28a a ÷D .42()a 3.多项式22ab bc a c -+-分解因式的结果是( )A .()()a c a b c -++B .()()a c a b c -+-C .()()a c abc ++- D .()()a c a b c +-+4.将代数式44x y x y-+的分子,分母都扩大5倍,则代数式的值( ) A .扩大5倍B .缩小5倍C .不变D .无法确定 5.已知等腰三角形的一个外角是110〫,则它的底角的度数为( )A .110〫B .70〫C .55〫D .70〫或55〫 6.如图,ΔABC 中,∠C=90°,AC=BC ,AD 平分∠CAB ,交BC 于D ,DE ⊥AB 于E ,且AB=6cm , 则ΔDEB 的周长为( )A .4cmB .6cmC .10cmD .以上都不对 7.若关于x 的多项式26x px --含有因式2x -,则实数p 的值为( )A .5-B .5C .1-D .18.已知一个等腰三角形两边长之比为1:4,周长为18,则这个等腰三角形底边长为( ) A .2 B .6 C .8 D .2或89.无论x 、y 取何值,多项式22246x y x y +--+的值总是( )A .正数B .负数C .非负数D .无法确定 10.要使分式337x x -有意义,则x 的取值范围是( ) A .x=73 B .x>73 C .x<73 D .x≠73二、填空题11.分解因式:34x x -=______.12.已知一个多边形的每一个外角都等于,则这个多边形的边数是 .13.a 2b b 2a a b b a a b++----=_________; 14.如果一个多边形的内角和为1260°,那么从这个多边形的一个顶点出发共有________条对角线.15.若关于x 的分式方程2112x a x -=-的解为非负数,则a 的取值范围是___________.三、解答题16.分解因式: ()221(32)(27)x x --+ ()222882ab b a --.17.解方程: (1) 32322x x x +=+- ; (2)242111x x x ++=--- . 18.如图,已知M 是AB 的中点,CM=DM ,∠1=∠2.(1)求证:△AMC ≌△BMD .(2)若∠1=50°,∠C=45°,求∠B 的度数.19.若x +y =3,且(x +2)(y +2)=12.(1)求xy 的值;(2)求x 2+3xy +y 2的值.20.一列火车从车站开出,预计行程450千米.当它开出3小时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地.求这列火车的速度.21.如图,ABC ∆为等边三角形,AE CD =,AD 、BE 相交于点P ,BQ AD ⊥于点Q ,3PQ =,1PE =.(1)求证:AD BE =;(2)求AD 的长.22.如图,已知(2,4)A -(4,2)B ,(2,1)C -,三点.(1)作ABC ∆关于x 轴的对称图形111A B C ∆,写出点C 关于x 轴的对称点1C 的坐标; (2)P 为x 轴上一点,请在图中找出使PAB ∆的周长最小时的点P 并直接写出此时点P 的坐标(保留作图痕迹).23.多好佳水果店在批发市场购买某种水果销售,第一次用1500元购进若干千克,并以每千克9元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1694元所购买的水果比第一次多20千克,以每千克10元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价45%售完剩余的水果.(1)第一次水果的进价是每千克多少元?(2)该水果店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?参考答案1.A【解析】试题分析:根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解:根据轴对称图形的概念,可知只有A 沿任意一条直线折叠直线两旁的部分都不能重合. 故选A .考点:轴对称图形.2.C【解析】【分析】根据幂的运算法则分别判断各选项是否正确即可解答.【详解】解:76a a a -≠,故A 错误;8311•=a a a ,故B 错误;286=a a a ÷,故C 正确;428()=a a ,故D 错误;故选:C.【点睛】本题考查了幂的运算法则,准确计算是解题的关键.3.A【分析】根据提取公因式和平方差公式进行因式分解即可解答.【详解】解:22))))))=((((((+)+(ab bc a c b a c a c a c a c b a c a c a b c -+--++-=-+=-+; 故选:A.【点睛】本题考查了利用提取公因式和平方差公式进行因式分解,熟练掌握是解题的关键.4.C【分析】分析:根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.【详解】如果把分式44x yx y-+中的x 、y 的值都扩大5 倍可得5545(4)45545(4)4x y x y x yx y x y x y-⨯--==+⨯++,则分式的值不变,故选;C.【点睛】本题考查了分式的基本性质,解题的关键是灵活运用分式的基本性质.5.D【分析】根据等腰三角形的一个外角等于110°,进行讨论可能是底角的外角是110°,也有可能顶角的外角是110°,从而求出答案.【详解】解:①当110°外角是底角的外角时,底角为:180°-110°=70°,②当110°外角是顶角的外角时,顶角为:180°-110°=70°,则底角为:(180°-70°)×12=55°,∴底角为70°或55°.故选:D.【点睛】此题主要考查了等腰三角形的性质,应注意进行分类讨论,熟练应用是解题的关键.6.B【解析】解:∵DE⊥AB,∴∠C=∠AED=90°,∵AD平分∠CAB,∴∠CAD=∠EAD,在△ACD和△AED中,∵∠C=∠AED,∠CAD=∠EAD,AD=AD,∴△ACD≌△AED(AAS),∴AC=AE,CD= DE,∴BD+DE=BD+CD=BC=AC=AE,BD+DE+BE=AE+BE=AB=6,所以,△DEB的周长为6cm .故选B .7.C【分析】设26(2)()x px x x a --=--,然后利用多项式乘多项式法则计算,合并后根据多项式相等的条件即可求出p 的值.【详解】解:根据题意设226(2)()(2)2x px x x a x a x a --=--=-++,∴-p=-a-2,2a=-6,解得:a=-3,p=-1.故选:C .【点睛】此题考查了因式分解的意义,熟练掌握并灵活运用是解题的关键.8.A【分析】题中只给出了两边之比,没有明确说明哪个是底哪个是腰,所以应该分两种情况进行分析,再结合三角形三边的关系将不合题意的解舍去.【详解】因为两边长之比为1:4,所以设较短一边为x ,则另一边为4x ;(1)假设x 为底边,4x 为腰;则8x +x =18,x =2,即底边为2;(2)假设x 为腰,4x 为底边,则2x +4x =18,x =3,4x =12;∵3+3<12,∴该假设不成立.所以等腰三角形的底边为2.故选:A .【点睛】本题考查了等腰三角形的性质和三角形的三边关系;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论. 9.A【分析】利用完全平方公式把多项式分组配方变形后,利用非负数的性质判断即可.【详解】解:∵22222224621441(1)(2)1x y x y x x y y x y +--+=-++-++-+-+=≥1>0, ∴多项式的值总是正数.故选:A .【点睛】本题考查了利用完全平方公式化简多项式,熟练掌握并灵活运用是解题的关键.10.D【解析】【分析】本题主要考查分式有意义的条件:分母不能为0,即3x−7≠0,解得x .【详解】∵3x−7≠0,∴x≠73. 故选D .【点睛】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.11.x (x +2)(x ﹣2).【解析】试题分析:34x x -=2(4)x x -=x (x+2)(x ﹣2).故答案为x (x+2)(x ﹣2).考点:提公因式法与公式法的综合运用;因式分解.12.5【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5, ∴这个多边形的边数为5.故答案为5.13.-1【分析】因为b-a=-(a-b ),所以可以看成是同分母的分式相加减.【详解】a 2b b 2a a b b a a b ++----=221a b b a b a a b a b a b a b+---==----- 【点睛】本题考查了分式的加减法,解题的关键是构建出相同的分母进行计算.14.6【分析】设此多边形的边数为x ,根据多边形内角和公式求出x 的值,再计算对角线的条数即可.【详解】设此多边形的边数为x ,由题意得:(x-2)×180=1260,解得;x=9,从这个多边形的一个顶点出发所画的对角线条数:9-3=6,故答案为6.【点睛】本题考查了多边形内角和公式,多边形的对角线,关键是掌握多边形的内角和公式180(n-2),n 边形的一个顶点有(n-3)条对角线.15.12a ≥且2a ≠ 【分析】在方程的两边同时乘以2(x-1),解方程,用含a 的式子表示出x 的值,再根据x ≥0,且x ≠1,求解即可.【详解】解:两边同时乘以2(x-1),得:4x-2a=x-1,解得x=213a -, 由题意可知,x ≥0,且x ≠1,∴21032113a a -⎧≥⎪⎪⎨-⎪≠⎪⎩ ,解得:12a ≥且2a ≠, 故答案为:12a ≥且2a ≠. 【点睛】本题主要考查分式方程的解,熟练应用并准确计算是解题的关键.16.(1)()()519x x +-;(2)22(2)a b --. 【解析】【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【详解】()1原式()()()()32273227x x x x ⎡⎤⎡⎤=-++--+⎣⎦⎣⎦()()32273227x x x x =-++---()()559x x =+-()()519x x =+-;()2原式()2222442(2)a ab b a b =--+=--.【点睛】此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 17.(1) x =4; (2) x =13. 【解析】试题分析:(1)方程两边都乘以公因式(x+2)(x-2),化为整式方程后求解,注意验根;(2)方程两边都乘以公因式(x+1)(x-1),化为整式方程后求解,注意验根;试题解析:(1)方程两边乘(x+2)(x-2),得3x(x-2)+2(x+2)=3(x+2)(x-2).化简得-4x=-16,解得x=4.经检验,x=4是原方程的解.所以原方程的解是x=4;(2)方程两边都乘以(x+1)(x-1),去分母,得4-(x+1)(x+2)=-(x+1)(x-1).解得x=13.经检验,x=13是原方程的解.所以原方程的解是x=13.18.(1)详见解析;(2)85°.【解析】【分析】(1)根据SAS证明即可;(2)由三角形内角和定理求得∠A,在根据全等三角形对应角相等,即可求得∠B的度数. 【详解】(1)∵M是AB的中点,∴AM=BM,∵CM=DM,∠1=∠2∴△AMC≌△BMD(SAS)(2)∵△AMC≌△BMD,∴∠A=∠B,在△ACM中,∠A+∠1+∠C=180°,∴∠A=85°,∴∠B=85° .19.(1)2;(2)11【解析】【分析】(1)先去括号,再整体代入即可求出答案;(2)先配方变形,再整体代入,即可求出答案.【详解】解:(1)∵x+y=3,(x+2)(y+2)=12,∴xy+2x+2y+4=12,∴xy+2(x+y)=8,∴xy+2×3=8,∴xy=2;(2)∵x+y=3,xy=2,∴x2+3xy+y2=(x+y)2+xy=32+2=11.【点睛】本题考查了整式的混合运算和完全平方公式的应用,题目是一道比较典型的题目,难度适中.20.这列火车原来的速度为每小时75千米【分析】如果设这列火车原来的速度为每小时x千米,那么提速后的速度为每小时(x+0.2x)千米,根据等量关系:按原速度行驶所用时间-提速后时间=,列出方程,求解即可.【详解】设这列火车原来的速度为每小时x千米.由题意得:4503xx--45030.2xx x-+=12.整理得:12x=900.解得:x=75.经检验:x=75是原方程的解.答:这列火车原来的速度为每小时75千米.【点睛】列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.而难点则在于对题目已知条件的分析,也就是审题,一般来说应用题中的条件有两种,一种是显性的,直接在题目中明确给出,而另一种是隐性的,是以题目的隐含条件给出.如本题:车速提高了0.2倍,是一种隐含条件.21.(1)见解析;(2)7.【分析】(1)根据等边三角形的三条边都相等可得AB=CA ,每一个角都是60°可得,∠BAE=∠ACD=60°,然后利用“边角边”证明△ABE 和△CAD 全等,根据全等三角形对应边相等证明即可;(2)根据全等三角形对应角相等可得∠CAD=∠ABE ,然后求出∠BPQ=60°,再根据直角三角形两锐角互余求出∠PBQ=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半求出BP=2PQ ,再根据AD=BE=BP+PE 代入数据进行计算即可得解.【详解】(1)证明:ABC ∆为等边三角形,AB CA BC ∴==,60BAE ACD ∠=∠=︒;在ABE ∆和CAD ∆中,60AB CA BAE ACD AE CD =⎧⎪∠=∠=︒⎨⎪=⎩,()ABE CAD SAS ∴∆≅∆,AD BE ∴=;(2)ABE CAD ∆≅∆,CAD ABE ∴∠=∠,60BPQ ABE BAD BAD CAD BAE ∴∠=∠+∠=∠+∠=∠=︒;BQ AD ⊥,90AQB ∴∠=︒,906030PBQ ∴∠=︒-︒=︒,3PQ =,∴在Rt BPQ ∆中,26BP PQ ==,又1PE =,617AD BE BP PE ∴==+=+=.【点睛】本题考查了等边三角形的性质,全等三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半,熟记性质并求出BP=2PQ 是解题的关键.22.(1)画图见解析;(2)画图见解析,点P 的坐标为(2,0)【分析】(1)分别作出点A 、B 、C 关于x 轴的对称点,再顺次连接可得;(2)连接AB 1,交x 轴于点P ,根据图形可得点P 的坐标.【详解】(1)如图所示,111A B C 即为所求;1C 的坐标为(2,1),(2)如图所示,连接1AB ,交x 轴于点P ,点P 的坐标为(2,0).【点睛】本题考查了作图-轴对称变换,轴对称-最短路线问题,熟练掌握轴对称的性质是解题的关键. 23.(1) 2元;(2) 盈利了8241元.【解析】【分析】(1)设第一次水果的进价是每千克x 元,则第二次水果的进价是每千克1.1x 元,根据数量=总价÷单价结合第二次比第一次多购进20千克,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)利用数量=总价÷单价可求出第一次购进水果数量,由总利润=每千克利润×销售数量可求出第一次购进水果的销售利润,同理可求出第二次购进水果的销售利润,将二者相加即可得出结论.【详解】解:(1)设第一次水果的进价是每千克x元,则第二次水果的进价是每千克1.1x元,根据题意,得:169415001.1x x=20,解得:x=2,经检验,x=2是原方程的解,且符合题意.答:第一次水果的进价是每千克2元.(2)第一次购买水果1500÷2=750(千克),第一次利润为750×(9﹣2)=5250(元).第二次购买水果750+20=770(千克),第二次利润为100×(10﹣2.2)+(770﹣100)×(10×0.55﹣2.2)=2991(元).5250+2991=8241(元).答:该水果店在这两次销售中,总体上是盈利了,盈利了8241元.【点睛】考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列式计算.。
一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √9B. √-1C. πD. 0.1010010001…2. 下列各式中,同类项是()A. 3a²b和5ab²B. 2x²和4x³C. 5xy和3x²yD. 4m和-4m3. 若a=-3,b=2,则a²-b²的值是()A. -5B. 5C. 7D. -74. 已知方程x²-5x+6=0,则x的值是()A. 2或3B. 1或4C. 2或4D. 1或35. 下列函数中,是二次函数的是()A. y=3x+2B. y=x²+2x-1C. y=2x³-3D. y=4x-56. 已知直角三角形的一条直角边长为3cm,斜边长为5cm,则另一条直角边长是()A. 2cmB. 4cmC. 6cmD. 8cm7. 若点P在第二象限,且OP=4,则P的坐标可能是()A. (-2, 3)B. (-3, 2)C. (2, -3)D. (3, -2)8. 下列命题中,正确的是()A. 直线与平面垂直B. 平面与平面平行C. 线段与直线垂直D. 线段与平面平行9. 若一个正方体的体积是64立方厘米,则它的表面积是()A. 128平方厘米B. 256平方厘米C. 384平方厘米D. 512平方厘米10. 已知函数y=kx+b(k≠0),若当x=-1时,y=3;当x=2时,y=-1,则k和b 的值分别是()A. k=-1,b=2B. k=1,b=-2C. k=-1,b=-2D. k=1,b=2二、填空题(每题4分,共40分)11. 若a=-2,b=3,则a²+b²的值是______。
12. 若方程x²-6x+9=0的两个根相等,则这个根是______。
13. 若函数y=kx²+2x+1(k≠0)的图象开口向上,则k的取值范围是______。
八年级(上)期末数学试卷一、选择题(以下每题只有一个正确的选项,每小题3分,共30分)1.(3分)下列图标是节水、节能、低碳和绿色食品的标志,其中是轴对称图形的是()A.B.C.D.2.(3分)下列二次根式中,最简二次根式的是()A. B.C.D.3.(3分)点M(﹣2,1)关于y轴的对称点N的坐标是()A.(2,1)B.(1,﹣2)C.(﹣2,﹣1)D.(2,﹣1)4.(3分)下列运算中正确的是()A.b3•b3=2b3B.2•3=6C.(a5)2=a7D.a5÷a2=a35.(3分)下列各式中,从左到右的变形是因式分解的是()A.3+3y﹣5=3(+y)﹣5 B.(+1)(﹣1)=2﹣1C.42+4=4(+1)D.67=32•256.(3分)分式方程+=1的解是()A.1 B.2 C.3 D.47.(3分)等腰三角形的周长为13cm,其中一边长为5cm,则该等腰三角形的底边为()A.5cm B.4cm C.5cm或3cm D.8cm8.(3分)若m+=5,则m2+的结果是()A.23 B.8 C.3 D.79.(3分)如图,三角形纸片ABC中,∠A=75°,∠B=60°,将纸片的角折叠,使点C落在△ABC内,若∠α=35°,则∠β等于()A.48°B.55°C.65°D.以上都不对10.(3分)2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是100,小正方形的面积为20,那么每个直角三角形的周长为()A.10+6 B.10+10C.10+4D.24二、填空题(每小题3分,共24分)11.(3分)若分式的值为零,则的值等于.12.(3分)已知a+b=2,则a2﹣b2+4b的值为.13.(3分)若+|3﹣y|=0,则y= .14.(3分)2++9是完全平方式,则= .15.(3分)如图,△ABC中,AB=AC,AB的垂直平分线交AC 于P点,若AB=6cm,BC=4cm,△PBC 的周长等于cm.16.(3分)如图,正方形网格中的△ABC,若小方格边长都为1,则△ABC是:三角形.17.(3分)如图,从点A(0,2)发出一束光,经轴反射,过点B(4,3),则这束光从点A 到点B所经过的路径的长为.18.(3分)下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图2(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.所以直线PQ就是所求的垂线.请回答:该作图的依据是.三、解答题(第19、20题每小题3分,第21-28题每小题3分,共46分)19.(3分)因式分解:3ab2+6ab+3a.20.(3分)计算:(a+b)(a﹣b)﹣(a﹣b)2.21.(5分)计算: +|﹣|+()﹣3+(π﹣3.14)0.22.(5分)解方程: +=.23.(5分)先化简,再求值:(+)÷,其中=12.24.(5分)如图,在△ABC中,∠B=60°,AC=15,AB=6,求BC的长.25.(5分)北京时间2015年7月31日,国际奥委会主席巴赫宣布:中国北京获得2022年第24届冬季奥林匹克运动会举办权.北京也创造历史,成为第一个既举办过夏奥会又举办冬奥会的城市,张家口也成为本届冬奥会的协办城市.近期,新建北京至张家口铁路可行性研究报告已经获得国家发改委批复,同意新建北京至张家口铁路,铁路全长约180千米.按照设计,京张高铁列车的平均行驶速度是普通快车的1.5倍,用时比普通快车用时少了20分钟,求高铁列车的平均行驶速度.26.(5分)已知:如图,在△ABC中,∠C=90°,AE是△ABC的角平分线;ED平分∠AEB,交AB于点D;∠CAE=∠B.(1)求∠B的度数.(2)如果AC=3cm,求AB的长度.(3)猜想:ED与AB的位置关系,并证明你的猜想.27.(5分)阅读下列材料,并回答问题.事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方,这个结论就是著名的勾股定理.请利用这个结论,完成下面活动:(1)一个直角三角形的两条直角边分别为6、8,那么这个直角三角形斜边长为.(2)如图1,AD⊥BC 于D,AD=BD,AC=BE,AC=3,DC=1,求BD的长度.(3)如图2,点A在数轴上表示的数是,请用类似的方法在图2数轴上画出表示数的B点(保留作图痕迹).28.(5分)如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,BD=CD=AB.于是可得出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.请根据从上面材料中所得到的信息解答下列问题:(1)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,∠B=30°时,△ACD的周长= .(2)如图3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,垂足为E,那么BE:EA= .(3)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且AE=DC,AD、BE交于点P,作BQ⊥AD于Q,若BP=2,求BQ的长.八年级(上)期末数学试卷参考答案与试题解析一、选择题(以下每题只有一个正确的选项,每小题3分,共30分)1.(3分)下列图标是节水、节能、低碳和绿色食品的标志,其中是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.2.(3分)下列二次根式中,最简二次根式的是()A. B.C.D.【解答】解:A、中被开方数是分数,故不是最简二次根式;B、中被开方数是分数,故不是最简二次根式;C、中被开方数不含分母,不含能开得尽方的因数,故是最简二次根式;D、中含能开得尽方的因数,故不是最简二次根式;故选:C.3.(3分)点M(﹣2,1)关于y轴的对称点N的坐标是()A.(2,1)B.(1,﹣2)C.(﹣2,﹣1)D.(2,﹣1)【解答】解:点M(﹣2,1)关于y轴的对称点N的坐标是(2,1).故选:A.4.(3分)下列运算中正确的是()A.b3•b3=2b3B.2•3=6C.(a5)2=a7D.a5÷a2=a3【解答】解:A、b3•b3=b6,故A不符合题意;B、2•3=5,故B不符合题意;C、(a5)2=a10,故C不符合题意;D、a5÷a3=a2,故D符合题意;故选:D.5.(3分)下列各式中,从左到右的变形是因式分解的是()A.3+3y﹣5=3(+y)﹣5 B.(+1)(﹣1)=2﹣1C.42+4=4(+1)D.67=32•25【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、是整式的乘法,不是因式分解,故本选项错误;C、42+4=4(+1),是因式分解,故本选项正确;D、67=32•25,不是因式分解,故本选项错误.故选:C.6.(3分)分式方程+=1的解是()A.1 B.2 C.3 D.4【解答】解:去分母得:2+2+6﹣12=2﹣4,移项合并得:8=8,解得:=1,经检验=1是分式方程的解,故选:A.7.(3分)等腰三角形的周长为13cm,其中一边长为5cm,则该等腰三角形的底边为()A.5cm B.4cm C.5cm或3cm D.8cm【解答】解:当5cm是等腰三角形的底边时,则其腰长是(13﹣5)÷2=4(cm),能够组成三角形;当5cm是等腰三角形的腰时,则其底边是13﹣5×2=3(cm),能够组成三角形.所以该等腰三角形的底边为5cm或3cm,故选:C.8.(3分)若m+=5,则m2+的结果是()A.23 B.8 C.3 D.7【解答】解:∵m+=5,∴m2+=(m+)2﹣2=25﹣2=23,故选:A.9.(3分)如图,三角形纸片ABC中,∠A=75°,∠B=60°,将纸片的角折叠,使点C落在△ABC内,若∠α=35°,则∠β等于()A.48°B.55°C.65°D.以上都不对【解答】解:∠α+∠β+(180°﹣∠C)+∠A+∠B=360°,整理可得∠β=55°.故选:B.10.(3分)2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是100,小正方形的面积为20,那么每个直角三角形的周长为()A.10+6 B.10+10C.10+4D.24【解答】解:根据题意得:c2=a2+b2=100,4×ab=100﹣20=80,即2ab=80,则(a+b)2=a2+2ab+b2=100+80=180,∴每个直角三角形的周长为10+=10+故选:A.二、填空题(每小题3分,共24分)11.(3分)若分式的值为零,则的值等于 2 .【解答】解:根据题意得:﹣2=0,解得:=2.此时2+1=5,符合题意,故答案是:2.12.(3分)已知a+b=2,则a2﹣b2+4b的值为 4 .【解答】解:∵a+b=2,∴a2﹣b2+4b,=(a+b)(a﹣b)+4b,=2(a﹣b)+4b,=2a+2b,=2(a+b),=2×2,=4.故答案为:4.13.(3分)若+|3﹣y|=0,则y= 6 .【解答】解:由题意得,﹣2=0,3﹣y=0,解得=2,y=3,所以,y=2×3=6.故答案为:6.14.(3分)2++9是完全平方式,则= ±6 .【解答】解:中间一项为加上或减去和3的积的2倍,故=±6.15.(3分)如图,△ABC中,AB=AC,AB的垂直平分线交AC 于P点,若AB=6cm,BC=4cm,△PBC 的周长等于10 cm.【解答】解:∵△ABC中,AB=AC,AB=6cm,∴AC=6cm,∵AB的垂直平分线交AC于P点,∴BP+PC=AC,∴△PBC的周长=(BP+PC)+BC=AC+BC=6+4=10cm.故答案为:10.16.(3分)如图,正方形网格中的△ABC,若小方格边长都为1,则△ABC是:直角三角形.【解答】解:∵AC2=22+32=13,AB2=62+42=52,BC2=82+12=65,∴AC2+AB2=BC2,∴△ABC是直角三角形.17.(3分)如图,从点A(0,2)发出一束光,经轴反射,过点B(4,3),则这束光从点A 到点B所经过的路径的长为.【解答】解:如图,过点B作BD⊥轴于D,∵A(0,2),B(4,3),∴OA=2,BD=3,OD=4,根据题意得:∠ACO=∠BCD,∵∠AOC=∠BDC=90°,∴△AOC∽△BDC,∴OA:BD=OC:DC=AC:BC=2:3,∴OC=OD=×4=,∴AC==,∴BC=,∴AC+BC=.即这束光从点A到点B所经过的路径的长为:.故答案为:.18.(3分)下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图2(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.所以直线PQ就是所求的垂线.请回答:该作图的依据是到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上).【解答】解:到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上),理由:如图,∵PA=AQ,PB=QB,∴点A、点B在线段PQ的垂直平分线上,∴直线AB垂直平分线段PQ,∴PQ⊥AB.三、解答题(第19、20题每小题3分,第21-28题每小题3分,共46分)19.(3分)因式分解:3ab2+6ab+3a.【解答】解:3ab2+6ab+3a=3a(b2+2b+1)=3a(b+1)2.20.(3分)计算:(a+b)(a﹣b)﹣(a﹣b)2.【解答】解:原式=a2﹣b2﹣a2+2ab﹣b2=2ab﹣2b2.21.(5分)计算: +|﹣|+()﹣3+(π﹣3.14)0.【解答】解:原式=2++8+1=3+9.22.(5分)解方程: +=.【解答】解:两边都乘(+3)(﹣3),得+3(﹣3)=+3,解得=4,经检验:=4是原分式方程的根.23.(5分)先化简,再求值:(+)÷,其中=12.【解答】解:(+)÷,=[+]•,=,=,=,当=12时,原式==.24.(5分)如图,在△ABC中,∠B=60°,AC=15,AB=6,求BC的长.【解答】解:作AD⊥BC于D,∵∠B=60°,∴∠BAD=30°,∴BD=AB=3,在Rt△ABD中,AD==9,在Rt△ADC中,CD==12,∴BC=BD+CD=3+12.25.(5分)北京时间2015年7月31日,国际奥委会主席巴赫宣布:中国北京获得2022年第24届冬季奥林匹克运动会举办权.北京也创造历史,成为第一个既举办过夏奥会又举办冬奥会的城市,张家口也成为本届冬奥会的协办城市.近期,新建北京至张家口铁路可行性研究报告已经获得国家发改委批复,同意新建北京至张家口铁路,铁路全长约180千米.按照设计,京张高铁列车的平均行驶速度是普通快车的1.5倍,用时比普通快车用时少了20分钟,求高铁列车的平均行驶速度.【解答】解:设普通快车的平均行驶速度为千米/时,则高铁列车的平均行驶速度为1.5千米/时.根据题意得:﹣=,解得:=180,经检验,=80是所列分式方程的解,且符合题意.则1.5=1.5×180=270.答:高铁列车的平均行驶速度为270千米/时.26.(5分)已知:如图,在△ABC中,∠C=90°,AE是△ABC的角平分线;ED平分∠AEB,交AB于点D;∠CAE=∠B.(1)求∠B的度数.(2)如果AC=3cm,求AB的长度.(3)猜想:ED与AB的位置关系,并证明你的猜想.【解答】解:(1)∵AE是△ABC的角平分线,∴∠CAE=∠EAB,∵∠CAE=∠B,∴∠CAE=∠EAB=∠B.∵在△ABC中,∠C=90°,∴∠CAE+∠EAB+∠B=3∠B=90°,∴∠B=30°;(2)∵在△ABC中,∠C=90°,∠B=30°,AC=3cm,∴AB=2AC=6cm;(3)猜想:ED⊥AB.理由如下:∵∠EAB=∠B,∴EB=EA,∵ED平分∠AEB,∴ED⊥AB.27.(5分)阅读下列材料,并回答问题.事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方,这个结论就是著名的勾股定理.请利用这个结论,完成下面活动:(1)一个直角三角形的两条直角边分别为6、8,那么这个直角三角形斜边长为10 .(2)如图1,AD⊥BC 于D,AD=BD,AC=BE,AC=3,DC=1,求BD的长度.(3)如图2,点A在数轴上表示的数是﹣,请用类似的方法在图2数轴上画出表示数的B点(保留作图痕迹).【解答】解:(1)直角三角形的两条直角边分别为6、8,则这个直角三角形斜边长==10,故答案为:10;(2)在Rt△ADC中,AD==2,∴BD=AD=2;(3)点A在数轴上表示的数是:﹣=﹣,由勾股定理得,OC=,以O为圆心、OC为半径作弧交轴于B,则点B即为所求,故答案为:﹣.28.(5分)如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,BD=CD=AB.于是可得出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.请根据从上面材料中所得到的信息解答下列问题:(1)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,∠B=30°时,△ACD的周长= 15cm .(2)如图3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,垂足为E,那么BE:EA= 3:1 .(3)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且AE=DC,AD、BE交于点P,作BQ⊥AD于Q,若BP=2,求BQ的长.【解答】解:(1)∵DE是线段BC的垂直平分线,∠ACB=90°,∴CD=BD,AD=BD.又∵在△ABC中,∠ACB=90°,∠B=30°,∴AC=AB,∴△ACD的周长=AC+AB=3BD=15cm.故答案为:15cm;(2)连接AD,如图所示.∵在△ABC中,AB=AC,∠A=120°,D是BC的中点,∴∠BAD=60°.又∵DE⊥AB,∴∠B=∠ADE=30°,∴BE=BD,EA=AD,∴BE:EA=BD: AD,又∵BD=AD,∴BE:AE=3:1.故答案为:3:1.(3)∵△ABC为等边三角形.∴AB=AC,∠BAC=∠ACB=60°,在△BAE和△ACD中,,∴△BAE≌△ACD(SAS),∴∠ABE=∠CAD.∵∠BPQ为△ABP外角,∴∠BPQ=∠ABE+∠BAD.∴∠BPQ=∠CAD+∠BAD=∠BAC=60°∵BQ⊥AD,∴∠PBQ=30°,∴BP=2PQ=2,∴PQ=1,∴BQ===.。
河南省安阳市2019-2020学年数学八上期末模拟调研试卷(1)一、选择题1.计算(11x -﹣1﹣x )÷(1111x x +-+)的结果为( )A .﹣()12x x -B .﹣x (x+1)C .﹣()12x x +D .()12x x +2.下列运算正确的是( )A .(﹣a 2)2=﹣a 4B .a 2+a 2=a 4C .(x ﹣0)0=0D .3﹣2=193.定义运算“※”:a aba b a b b a bb a ⎧>⎪⎪-=⎨⎪<⎪-⎩,※, .若5※x=2,则x 的值为( )A .52 B .52或10 C .10 D .52或1524.下列运算中正确的是( )A .x 2÷x 8=x ﹣4B .a •a 2=a 2C .(a 3)2=a 6D .(3a )3=9a 35.下列各式从左到右的变形为分解因式的是( )A .x (x ﹣y )=x 2﹣xyB .x 2+2xy+1=x (x+2y )+1C .(y ﹣1)(y+1)=y 2﹣1D .x (x ﹣3)+3(x ﹣3)=(x+3)(x ﹣3)6.下列分解因式正确的是( )A .a ﹣16a 3=(1+4a )(a ﹣4a 2)B .4x ﹣8y+4=4(x ﹣2y )C .x 2﹣5x+6=(x+3)(x+2)D .2221(1)x x x -+-=--7.下面图形中是轴对称不是中心对称图形的是 ( )A .正方形B .正六边形C .圆D .正五边形8.如图,在△ABC 中,已知AB =AC ,DE 垂直平分AC ,∠A =50°,则∠DCB 的度数是( )A .15°B .20°C .25°D .30°9.如图,点A 的坐标为(-1,0),点B 在直线y=x 上运动,当线段AB 最短时,点B 的坐标为()A.(-12,-12)B.(2,2)C.-D.(0,0)10.如图,△ABC ≌△DEF ,DF 和AC ,FE 和CB 是对应边.若∠A =100°,∠F =46°,则∠DEF 等于( )A .100°B .54°C .46°D .34°11.如图是由8个全等的长方形组成的大正方形,线段AB 的端点都在小长方形的顶点上,如果点P 是某个小长方形的顶点,连接PA ,PB ,那么使△ABP 为等腰..三角形的点P 的个数是A.3个B.4个C.5个D.6个12.如图,ABC △中,AB AC =,30B ∠=︒,点D 是AC 的中点,过点D 作DE AC ⊥交BC 于点E ,连接EA .则BAE ∠的度数为( )A .30°B .80°C .90°D .110°13.一个三角形的两条边长分别为3和7,则第三边的长可能是( )A .3B .7C .10D .1114.如图,12345∠+∠+∠+∠+∠等于( )A .360︒B .540︒C .720︒D .900︒ 15.一个多边形的内角和是外角和的2倍,则这个多边形是( ) A.六边形B.五边形C.八边形D.四边形 二、填空题16.关于的x 方程5m x -=1的解是正数,则m 的取值范围是_____. 17.计算(x ﹣2)﹣3(yz ﹣1)3=_____.18.如图,BD 平分∠ABC ,DE ⊥AB 于E ,DF ⊥BC 于F ,AB =6,BC =8.若S △ABC =21,则DE =________.19.如图,在5×4的方格纸中,每个小正方形边长为1,点O 、A 、B 在方格纸的交点(格点)上,在第四象限内的格点上找点C ,使△ABC 的面积为3,则这样的点C 共有个_____个.20.如图,在Rt △ABC 中,∠ACB =90°,CD 为AB 边上的中线,过点A 作AE ⊥CD 交BC 于点E ,如果AC =2,BC =4,那么cot ∠CAE =_____.三、解答题21.列方程解应用题:商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求;商厦又用17.6万元购进了第二批这种衬衫,所购衬衫数量是第一批购进量的2倍,但单价贵了4元.(1)第一批和第二批共购进衬衫多少件?(2)商厦销售这种衬衫时,每件定价都是58元,如果把所有衬衫都售完,商厦共盈利多少元?22.计算:2255574457⨯-⨯.23.问题背景:某数学兴趣小组把两个等腰直角三角形的直角顶点重合,发现了一些有趣的结论. 结论一:(1)如图1,在△ABC 、△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,连接BD ,CE ,试说明△ADB ≌△AEC ;结论二:(2)如图2,在(1)的条件下,若点E 在BC 边上,试说明DB ⊥BC ;应用:(3)如图3,在四边形ABCD 中,∠ABC =∠ADC =90°,AB =CB ,∠BAD+∠BCD =180°,连接BD ,BD =7cm ,求四边形ABCD 的面积.24.如图,直线l 与m 分别是ABC ∆边AC 和BC 的垂直平分线,它们分别交边AB 于点D 和点E.(1)若10AB =,则CDE ∆的周长是多少?为什么?(2)若125ACB ︒∠=,求DCE ∠的度数.25.如图,在三角形ABC 中,AD ⊥BC 于点D ,BE ⊥AC 于点E ,若AC=4,BC=6,BE=5.(1)求点B 到直线AC 的距离;(2)求点A 到直线BC 的距离.【参考答案】***一、选择题16.m >﹣5且m≠017.x6y3z ﹣318.319.320.2三、解答题21.(1)6000(2)两次生意共获利润92000元22.77000023.(1)见解析;(2)见解析;(3)S 四边形ABCD =24.5(cm 2).【解析】【分析】(1)根据全等三角形的判定SAS 进行证明即可得到答案;(2)根据全等三角形的性质和三角形内角和定理进行计算,即可得到答案;(3)作BE ⊥BD ,交DC 的延长线于点E ,根据三角形内角和和全等三角形的判定定理(ASA ),即可得到答案.【详解】(1)∵∠BAC =∠DAE =90°,∴∠BAE+∠CAE =∠BAE+∠BAD ,∴∠CAE =∠BAD ,又∵AB =AC ,AD =AE ,∴△ADB ≌△AEC (SAS );(2)由(1)得△ADB ≌△AEC ,∴∠C =∠ABD ,又∵∠ABC+∠C =90°,∴∠ABC+∠ABD =90°,∴DB ⊥BC ;(3)作BE ⊥BD ,交DC 的延长线于点E ,∵BE ⊥BD ,∴∠CBE+∠DBC =90°,又∵∠ABD+∠DBC =90°,∴∠ABD =∠EBC ,∵∠BAD+∠BCD =180°,∠BCE+∠BCD =180°,∴∠BAD =∠BCE ,又∵BA =BC ,∴△BAD ≌△BCE (ASA ),∴BD =BE ,且S △BAD =S △BCE ,∴S 四边形ABCD =S △ABD +S △DBC=S △BCE +S △BCD=S △BDE=×7×7=24.5(cm 2).【点睛】本题考查全等三角形的判定(SAS 、ASA )和性质、三角形内角和定理,解题的关键是掌握全等三角形的判定(SAS 、ASA )和性质、三角形内角和定理.24.(1)10;(2)70DCE ︒∠=【解析】【分析】根据垂直平分线定理即可推出CD AD =,同理CE BE =,即CDE ∆的周长为10由垂直平分线定理可得ACD A ∠=∠,BCE B ∠=∠,再根据三角形内角和定理2CDE A ∠=∠,2CDE A ∠=∠即22180DCE A B ︒∠+∠+∠=,再由三角形外角和定理得125DCE A B ︒∠+∠+∠= ,即可计算出70DCE ︒∠=.【详解】解:(1)CDE ∆的周长为10∵l 是AC 的垂直平分线∴CD AD =同理CE BE =∴CDE ∆的周长10CD DE CB AD DE BE AB =++=++==(2)∵l 是AC 的垂直平分线∴ACD A ∠=∠同理BCE B ∠=∠∴2CDE A ∠=∠,2CDE A ∠=∠∵180DCE CDE CED ︒∠+∠+∠=①∴22180DCE A B ︒∠+∠+∠=∵125DCE ACD BCE ACB ︒∠+∠+∠=∠=∴125DCE A B ︒∠+∠+∠=②联立①②,解得:70DCE ︒∠=【点睛】本题考查垂直平分线和三角形的内角和定理,熟练掌握垂直平分线定理推出CDE ∆=AB 是解题关键.25.(1)点B 到直线AC 的距离为5;(2)点A 到直线BC 的距离为103.。
八年级数学试卷注意:本试卷共 8 页,三道大题, 26 小题。
总分 120 分。
时间 120 分钟。
二 26 总分题号 得分得分 评卷人一、 选择题(本题共16 小题,总分42 分。
1-10 小题,每题3 分; 11-16 小题,每题 2 分。
在每小题给出的四个选项中,只有一项是 符合题目要求的。
请将正确选项的代号填写在下面的表格中)1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16题号 答案1.点 P (﹣1,2)关于 y 轴的对称点坐标是( A .(1,2)B .(﹣1,2)C .(1,﹣2),则∠α 等于(C .58°D .50°3.用一条长 16cm 的细绳围成一个等腰三角形,若其中一 )D .(﹣1,﹣2)ABC EF G )边长 4cm ,则该等腰三角形的腰长为( A .4cmB .6cm4.在以下四个图案中,是轴对称图形的是()C .4cm 或 6cmD .4cm 或 8cm)A .B .C .D .5.一个多边形,每一个外角都是 45°,则这个多边形的边数是( A .6 B .7C .8) D .9m的乘积中不含 的一次项,则实数 的值是(x+m 2﹣x与x 6.若 )A .﹣2B .2x+y C .0) D .1x y 7.若 3 =4,3 =6,则 3 的值是(A .24B .10C .3D .28. “已知∠AOB ,求作射线 OC ,使 OC 平分∠AOB ”的作法的合理顺序是()①作射线 OC ; ②在 OA 和 OB 上分别截取 OD 、 OE ,使 OD=OE ;③分别以 D 、E 为圆心,大于 DE 的长为半径作弧,在∠AOB 内,两弧交于 C . A .①②③9. 下列计算中,正确的是( 3 2 4 B .②①③C .②③①D .③②①) 2 2x •x =x (x+y )(x ﹣y )=x +y B .A . 3 2 2 4 x (x ﹣2)=﹣2x+x 2.3xy ÷xy =3x C D .10.下列各式中,从左到右的变形是因式分解的是( )A .2a 2﹣2a+1=2a (a ﹣1)+1(x+y )(x ﹣y )=x 2﹣y 2B .C .x 2﹣6x+5=(x ﹣5)(x ﹣1)D .x 2+y 2=(x ﹣y )2+2xyl)A .30°B .45°C .50°D .75°12. 某市政工程队准备修建一条长 1200 米的污水处理管道。
2019-2020学年河南省安阳市林州市八年级(上)期末数学试卷一、选择题(本题共10小题,每小题3分,满分30分,每小题的4个选项中,仅有一个符合题目要求,请把符合题目要求的选项序号填在题后括号内)1.(3分)下列图形中,是轴对称图形的是()A.B.C.D.2.(3分)下列运算正确的是()A.m6÷m2=m3B.3m3﹣2m2=m C.(3m2)3=27m6D. m•2m2=m23.(3分)把a2﹣4a多项式分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣44.(3分)分式有意义,则x的取值范围是()A.x≠1 B.x=1 C.x≠﹣1 D.x=﹣15.(3分)如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF6.(3分)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个7.(3分)下列各式可以写成完全平方式的多项式有()A.x2+xy+y2B.x2﹣xy+C.x2+2xy+4y2D.8.(3分)将下列多项式分解因式,结果中不含因式x+1的是()A.x2﹣1 B.x2﹣2x+1 C.x(x﹣2)+(x﹣2)D.x2+2x+19.(3分)若a、b、c为△ABC的三边长,且满足|a﹣4|+=0,则c的值可以为()A.5 B.6 C.7 D.810.(3分)如图,在等腰三角形ABC中,∠ABC=120°,点P是底边AC上一个动点,M,N分别是AB,BC的中点,若PM+PN的最小值为2,则△ABC的周长是()A.2 B.2+C.4 D.4+2二、填空题(本题共5小题,每小题3分,满分15分,把答案写在题中横线上)11.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为.12.(3分)使分式的值为0,这时x= .13.(3分)在Rt△ABC中,锐角∠A=35°,则另一个锐角∠B= .14.(3分)若x2+y2=10,xy=﹣3,则(x+y)2= .15.(3分)平行四边形ABCD中,∠ABC的角平分线BE将边AD分成长度为5cm和6cm的两部分,则平行四边形ABCD的周长为cm.三、解答题(解答题有必要的文字说明,证明过程或计算步骤)16.(10分)因式分解(1)﹣x3+2x2y﹣xy2(2)x2(x﹣2)+4(2﹣x)(9分)如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,17.求∠ADB的度数.18.(10分)解方程(1)(2)19.(8分)如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作AB边上的垂直平分线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);(2)连接BD,求证:BD平分∠CBA.20.(8分)如图,已知AB=CD,∠B=∠C,AC和BD相交于点O,E是AD的中点,连接OE.(1)求证:△AOB≌△DOC;(2)求∠AEO的度数.21.(9分)为顺利通过“国家文明城市”验收,某市政府拟对城区部分路段的人行道地砖、绿化带、排水管等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍.若甲、乙两工程队合作只需要10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又使工程费用最少.22.(9分)如图,方格纸中每个小方格都是边长为1的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)画出△ABC关于y轴成轴对称的△A1B1C1;(其中A1、B1、C1是A、B、C的对应点,不写画法)(2)写出A1、B1、C1的坐标;(3)求出△A1B1C1的面积.23.(12分)如图所示,把纸片△A′BC沿DE折叠,点A′落在四边形BCDE内部点A处.(1)写出图中一对全等的三角形,并写出它们的所有对应角.(2)设∠AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少?(用含有x或y的式子表式)(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律,并说明理由.2019-2020学年河南省安阳市林州市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,满分30分,每小题的4个选项中,仅有一个符合题目要求,请把符合题目要求的选项序号填在题后括号内)1.(3分)下列图形中,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意.故选:B.2.(3分)下列运算正确的是()A.m6÷m2=m3B.3m3﹣2m2=m C.(3m2)3=27m6D. m•2m2=m2【解答】解:A、m6÷m2=m4,故A错误;B、3m3﹣2m2不能合并,故B错误;C、(3m2)3=27m6,故C正确;D、m•2m2=m3,故D错误;故选:C.3.(3分)把a2﹣4a多项式分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣4【解答】解:a2﹣4a=a(a﹣4),故选:A.4.(3分)分式有意义,则x的取值范围是()A.x≠1 B.x=1 C.x≠﹣1 D.x=﹣1【解答】解:根据题意可得x﹣1≠0;解得x≠1;故选:A.5.(3分)如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选:D.6.(3分)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P 3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选:C.7.(3分)下列各式可以写成完全平方式的多项式有()A.x2+xy+y2B.x2﹣xy+C.x2+2xy+4y2D.【解答】解:A、应为x2+2xy+y2,原式不能写成完全平方式,故错误;B、,正确;C、应为x2+4xy+4y2,原式不能写成完全平方式,故错误;D、应为,原式不能写成完全平方式,故错误;故选:B.8.(3分)将下列多项式分解因式,结果中不含因式x+1的是()A.x2﹣1 B.x2﹣2x+1 C.x(x﹣2)+(x﹣2)D.x2+2x+1【解答】解:A、x2﹣1=(x+1)(x﹣1),故此选项不合题意;B、x2﹣2x+1=(x﹣1)2,故此选项符合题意;C、x(x﹣2)+(x﹣2)=(x+1)(x﹣2),故此选项不合题意;D、x2+2x+1=(x+1)2,故此选项不合题意;故选:B.9.(3分)若a、b、c为△ABC的三边长,且满足|a﹣4|+=0,则c的值可以为()A.5 B.6 C.7 D.8【解答】解:∵|a﹣4|+=0,∴a﹣4=0,a=4;b﹣2=0,b=2;则4﹣2<c<4+2,2<c<6,5符合条件;故选:A.10.(3分)如图,在等腰三角形ABC中,∠ABC=120°,点P是底边AC上一个动点,M,N分别是AB,BC的中点,若PM+PN的最小值为2,则△ABC的周长是()A.2 B.2+C.4 D.4+2【解答】解:作M点关于AC的对称点M′,连接M'N,则与AC的交点即是P点的位置,∵M,N分别是AB,BC的中点,∴MN是△ABC的中位线,∴MN∥AC,∴,∴PM′=PN,即:当PM+PN最小时P在AC的中点,∴MN=AC∴PM=PN=1,MN=∴AC=2,AB=BC=2PM=2PN=2∴△ABC的周长为:2+2+2=4+2.故选:D.二、填空题(本题共5小题,每小题3分,满分15分,把答案写在题中横线上)11.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为 6 .【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.12.(3分)使分式的值为0,这时x= 1 .【解答】解:由题意得:,解得x=1,故答案为1.13.(3分)在Rt△ABC中,锐角∠A=35°,则另一个锐角∠B= 55°.【解答】解:∵在Rt△ABC中,锐角∠A=35°,∴另一个锐角∠B=90°﹣35°=55°,故答案为:55°.14.(3分)若x2+y2=10,xy=﹣3,则(x+y)2= 4 .【解答】解:∵x2+y2=10,xy=﹣3,∴(x+y)2=x2+2xy+y2=10﹣6=4;故答案为:4.15.(3分)平行四边形ABCD中,∠ABC的角平分线BE将边AD分成长度为5cm和6cm的两部分,则平行四边形ABCD的周长为32或34 cm.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE,(1)当AE=5时,AB=5,平行四边形ABCD的周长是2×(5+5+6)=32;(2)当AE=6时,AB=6,平行四边形ABCD的周长是2×(5+6+6)=34;故答案为:32或34.三、解答题(解答题有必要的文字说明,证明过程或计算步骤)16.(10分)因式分解(1)﹣x3+2x2y﹣xy2(2)x2(x﹣2)+4(2﹣x)【解答】解:(1)﹣x3+2x2y﹣xy2=﹣x(x2﹣2xy+y2)=﹣x(x﹣y)2;(2)x2(x﹣2)+4(2﹣x)=(x﹣2)(x2﹣4)=(x+2)(x﹣2)2.(9分)如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,17.求∠ADB的度数.【解答】解:∵AD是△ABC的角平分线,∠BAC=60°,∴∠DAC=∠B AD=30°,∵CE是△ABC的高,∠BCE=40°,∴∠B=50°,∴∠ADB=180°﹣∠B﹣∠BAD=180°﹣30°﹣50°=100°.18.(10分)解方程(1)(2)【解答】解:(1)+1=,去分母得:4x+2(x+3)=7,去括号得:4x+2x+6=7,移项得:4x+2x=7﹣6,合并同类项得:6x=1,把系数化为1得:x=,检验:把x=代入2(x+3)≠0,∴分式方程的解为x=;(2)=﹣1,去分母得:3(5x﹣4)=4x+10﹣3(x﹣2),去括号得:15x﹣12=4x+10﹣3x+6,移项得:15x﹣4x+3x=10+6+12,合并同类项得:14x=28,系数化为1得:x=2,检验:把x=2代入3(x﹣2)=0,∴分式方程无解.19.(8分)如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作AB边上的垂直平分线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);(2)连接BD,求证:BD平分∠CBA.【解答】解:(1)如图所示,DE就是要求作的AB边上的中垂线;(2)证明:∵DE是AB边上的中垂线,∠A=30°,∴AD=BD,∴∠ABD=∠A=30°,∵∠C=90°,∴∠ABC=90°﹣∠A=90°﹣30°=60°,∴∠CBD=∠ABC﹣∠ABD=60°﹣30°=30°,∴∠ABD=∠CBD,∴BD平分∠CBA.20.(8分)如图,已知AB=CD,∠B=∠C,AC和BD相交于点O,E是AD的中点,连接OE.(1)求证:△AOB≌△DOC;(2)求∠AEO的度数.【解答】(1)证明:在△AOB和△DOC中,,∴△AOB≌△DOC;(2)解:∵△AOB≌△DOC,∴OA=OD,又E是AD的中点,∴OE⊥AD,即∠AEO=90°.21.(9分)为顺利通过“国家文明城市”验收,某市政府拟对城区部分路段的人行道地砖、绿化带、排水管等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍.若甲、乙两工程队合作只需要10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又使工程费用最少.【解答】解:(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x 天.根据题意得:,方程两边同乘以2x,得2x=30解得:x=15经检验,x=15是原方程的解.∴当x=15时,2x=30.答:甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天;(2)因为甲乙两工程队均能在规定的40天内单独完成,所以有如下三种方案:方案一:由甲工程队单独完成.所需费用为:4.5×15=67.5(万元);方案二:由乙工程队单独完成.所需费用为:2.5×30=75(万元);方案三:由甲乙两队合作完成.所需费用为:(4.5+2.5)×10=70(万元).∵75>70>67.5∴应该选择甲工程队承包该项工程.22.(9分)如图,方格纸中每个小方格都是边长为1的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)画出△ABC关于y轴成轴对称的△A1B1C1;(其中A1、B1、C1是A、B、C的对应点,不写画法)(2)写出A1、B1、C1的坐标;(3)求出△A1B1C1的面积.【解答】解:(1)如图:△A1B1C1即为所求;(2)A1(1,5),B1(1,0),C1(4,3);(3)△A1B1C1的面积:×5×3=7.5.23.(12分)如图所示,把纸片△A′BC沿DE折叠,点A′落在四边形BCDE内部点A处.(1)写出图中一对全等的三角形,并写出它们的所有对应角.(2)设∠AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少?(用含有x或y的式子表式)(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律,并说明理由.【解答】解:(1)由折叠的性质得出△ADE≌△A′DE,∠ADE=∠A′DE,∠AED=∠A′ED,∠A=∠A′,(2)∵∠1+2∠AED=180°,∠2+2∠ADE=180°,∴∠1=180°﹣2∠AED,∠2=180°﹣2∠ADE,∵∠AED=x,∠ADE=y,∴∠1=180°﹣2∠AED=180°﹣2x,∠2=180°﹣2∠ADE=180°﹣2y,(3)∵∠A′+∠A′DE+∠A′ED=180°,∴∠A′DE+∠A′E D=180°﹣∠A′,∵∠A=∠A′,∴∠A′DE+∠A′ED=180°﹣∠A,∵∠A′DE=∠ADE,∠A′ED=∠AED∴∠ADE+∠AED=180°﹣∠A,∵∠1+2∠AED=180°,∠2+2∠ADE=180°,∴2(∠AED+∠ADE)=360°﹣∠1﹣∠2,∴∠AED+∠ADE=180°﹣(∠1+∠2),∴∠A=(∠1+∠2),∴2∠A=∠1+∠2.。