数理方程—横向纵向振动问题、波动方程
- 格式:ppt
- 大小:201.50 KB
- 文档页数:16
数学与物理方程——波动方程的分析波动方程的分析摘要: 波动方程是一个二阶线性偏微分方程。
解二阶偏微分方程的主要方法是分离变量法。
在下面介绍波动方程是怎样导出来的,它的物理意义是什么,在不同的坐标系里波动方程的表达式应该怎么写,有什么边界条件,在给定的边界条件下怎么用分离变量法得到波动方程的解等等问题。
关键词: 波动方程;分离变量法;边界条件;本征方程;本征值;本征函数 1引言波动方程也可叫做波方程。
它是一种重要的偏微分方程,通常表述所有种类的波,例如声波,光波和水波等。
它出现在不同领域,例如声学,电磁学,和流体力学。
波动方程的变种可以在量子力学和广义相对论中见到。
历史上,像乐器那样的振动弦问题曾被很多科学家研究过,其中包括达朗贝尔,欧拉,丹尼尔·伯努利,和拉格朗日。
2波动方程的导出(1)波动方程是从均匀直棒的弹性形变过程中推得的,一般来说,它适用于各向同性的均匀介质。
(2)波动方程等号两边分别是未知量y 对变量t 和对变量x 的二阶偏导数的正比函数,所以该波动方程是线性的。
之所以会得到线性方程,这是因为该波动方程是根据牛顿第二定律和胡克定律推导出来的,而这两个定律的数学表达式都是线性方程。
(3)波动方程是线性方程,则从理论上保证了波动满足叠加原理。
如果1u 和2u 都是波动方程的解,即以下两式成立2122212xu atu ∂∂=∂∂ (1)2222222xu atu ∂∂=∂∂ (2)将以上两式相加,得()()221222212xu u atu u ∂+∂=∂+∂(3)这表示,21u u +也是波动方程的解。
21u u +表示两列波的叠加。
所以说,线性的波动方程从理论上保证了波动满足叠加原理。
(4)胡克定律表示,在比例极限以内,应力与应变满足线性关系。
在比例极限之内的应变必定是幅度很小的形变,这就是说,满足上述波动方程的波,一定是振幅很小的波,当这样的波传来时,所引起的介质各部分的形变也是很小的。
第1篇一、波动方程波动方程是描述波动在连续介质中传播的偏微分方程。
常见的波动方程有弦振动方程、声波方程、光波方程等。
以下列举几种常见的波动方程及其表达式:1. 弦振动方程弦振动方程描述了弦在受到外力作用下的振动规律。
假设弦的线密度为λ,张力为T,弦上某点的位移为y(x,t),则弦振动方程可表示为:∂²y/∂t² = (T/λ)∂²y/∂x²其中,x表示弦的长度,t表示时间,y(x,t)表示弦上某点的位移。
2. 声波方程声波方程描述了声波在介质中的传播规律。
假设介质的密度为ρ,声速为c,声波在介质中的波动函数为p(x,t),则声波方程可表示为:∂²p/∂t² = c²∂²p/∂x²其中,x表示声波传播的距离,t表示时间,p(x,t)表示声波在介质中的波动函数。
3. 光波方程光波方程描述了光波在介质中的传播规律。
假设光波在介质中的波动函数为E(x,t),介质的折射率为n,则光波方程可表示为:∂²E/∂t² = (n²/c²)∂²E/∂x²其中,x表示光波传播的距离,t表示时间,E(x,t)表示光波在介质中的波动函数。
二、振动方程振动方程描述了物体在受到外力作用下的振动规律。
常见的振动方程有单摆运动方程、弹簧振动方程等。
以下列举几种常见的振动方程及其表达式:1. 单摆运动方程单摆运动方程描述了单摆在重力作用下的振动规律。
假设单摆的摆长为L,摆球质量为m,摆球偏离平衡位置的角度为θ,则单摆运动方程可表示为:mL²θ'' = -mgLsinθ其中,θ'表示摆球偏离平衡位置的角度对时间的导数,θ''表示摆球偏离平衡位置的角度对时间的二阶导数。
2. 弹簧振动方程弹簧振动方程描述了弹簧在受到外力作用下的振动规律。
假设弹簧的劲度系数为k,弹簧的位移为x,则弹簧振动方程可表示为:mω²x = -kx其中,ω表示弹簧振动的角频率,m表示弹簧的质量。
第一章. 波动方程§1 方程的导出。
定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程()⎪⎭⎫ ⎝⎛∂∂∂∂=⎪⎭⎫ ⎝⎛∂∂∂∂x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。
证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ∆。
现在计算这段杆在时刻t 的相对伸长。
在时刻t 这段杆两端的坐标分别为:),();,(t x x u x x t x u x ∆++∆++其相对伸长等于 ),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆-+-∆++∆+θ令→∆x ,取极限得在点x 的相对伸长为x u ),(t x 。
由虎克定律,张力),(t x T 等于),()(),(t x u x E t x T x =其中)(x E 是在点x 的杨氏模量。
设杆的横截面面积为),(x S 则作用在杆段),(x x x ∆+两端的力分别为x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程 tt u x x s x ⋅∆⋅)()(ρxESu t x =),(x x x x x ESu x x |)(|)(-∆+∆+利用微分中值定理,消去x ∆,再令0→∆x 得ux s x )()(ρx∂∂=xESu()若=)(x s 常量,则得22)(tu x ∂∂ρ=))((xu x E x∂∂∂∂即得所证。
2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件为 .0),(,0),0(==t l u t u(2)若l x =为自由端,则杆在l x =的张力xu x E t l T ∂∂=)(),(|l x =等于零,因此相应的边界条件为xu ∂∂|l x ==0同理,若0=x 为自由端,则相应的边界条件为xu ∂∂∣00==x(3)若l x =端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移由函数)(t v 给出,则在l x =端支承的伸长为)(),(t v t l u -。
历史上许多科学家,如达朗贝尔、欧拉、丹尼尔·伯努利和拉格朗日等在研究乐器等物体中的弦振动问题时,都对波动方程理论作出过重要贡献。
首先假设,在原点处有振动y=f(t),振动以速度v向x轴正方向传播,则t时刻x处的振动方程是
即x处的振动比原点处慢x/v。
这样我们就得到了沿x轴正方向传播的波函数一般形式
从波函数出发,可以推导出波动方程的一般形式。
令u=t-x/v
对时间的一阶偏导数
二阶偏导数
对坐标的一阶偏导数
二阶偏导数
可以很容易得到波函数时空变化关系,即波动方程
移相后就得到常见的波动方程
满足这方程的波,可以从特征式里面得出传播速度v。
麦克斯韦计算电磁波的传播速度就用到了上面的式子。
弦振动方程是在18世纪由达朗贝尔(d'Alembert)等人首先系统研究的,它是一大类偏微分方程的典型代表。
教学要求了解横波、纵波、波面、波前、平面波、波线、波动方程的推导;了解机械波产生的条件应力、体变模量、扬氏模量、切变模量。
理解波源、机械波、波速、波长、频率、波动方程。
掌握平面简谐波波函数的物理意义。
6.1 机械波的形成和传播6.1.1 机械波产生的条件机械波的产生,一是要有做机械振动的物体,即波源;二是具有弹性介质。
具体说,组成弹性介质的各质点之间都以弹性力相互作用着,一旦某质点(波源)离开其平衡位置,这就发生了形变,于是一方面,邻近质点对它施加弹性回复力,使它回到平衡位置,并在平衡位置附近振动起来;另一方面根据牛顿第三定律,这个质点也将对邻近质点施加弹性力,迫使邻近质点也在自己的平衡位置附近振动起来。
这样,振动就由近及远地传播开去,形成了波动。
6.1.2 横波 纵波根据介质中各点的振动方向与波的传播方向的关系,机械波可以分为横波和纵波两类:介质中质点的振动方向与波的传播方向相垂直称为横波。
如绳波就是横波。
介质中质点的振动方向与波的传播方向相平行称为纵波。
如声波就是纵波。
无论是横波还是纵波,它们都只是振动状态的传播,弹性介质中各质点仅在它们各自的平衡位置附近振动,并没有随波前进。
一般而言,介质中质点的振动情况是很复杂的,由此产生的波也很复杂。
例如水面上传播的水面波,水质点既有上下振动,也有前后运动,因此既不是纯粹的横波,也不是纯粹的纵波。
这种运动的复杂性,是由于液面上液体质点受到重力和表面张力共同作用的结果。
但任何复杂的波都可以分解为横波和纵波来研究。
问题6-1 如图6-1为一纵波在某一时刻的波形图,波的传播方向如图所示。
在图上标注出质点d c b a 、、、的实际位置。
abd图6-1 问题6-1图u6.1.3 波面 波线波线和波面都是为了形象地描述波在空间的传播而引入的概念。
从波源沿各传播方向所画的带箭头的线,称为波线,用以表示波的传播路径和传播方向。
波在传播过程中,所有振动相位相同的点连成的面,称为波面。