文献
- 格式:pdf
- 大小:155.46 KB
- 文档页数:7
文献名词解释
文献是指已经出版的书籍、期刊、报纸、杂志、学位论文、研究报告、会议论文等印刷品或电子文本,是研究学术问题时参考的重要素材。
文献不仅记录了已经取得的研究成果,更可以为新的研究提供理论和方法的参考,为科学研究的交流与发展提供基础。
文献名词解释如下:
1. 书籍:是同一作者编写或由同一单位指导的具有完整体系的学术性作品,包括教科书、研究专著等。
2. 期刊:是定期出版,以文章为载体,面向特定学术领域进行学术交流的出版物。
包括学术期刊、科技期刊、文学刊物等。
3. 报纸:是定期出版,以新闻报道为主要内容的出版物,主要用于传播时事新闻、社会信息等。
4. 杂志:是以图文并茂,多样化主题为特点的周期性刊物,面向广大读者群体的文化娱乐产品。
5. 学位论文:是为了获得学位而进行科学研究并撰写的长篇论文,一般包括博士论文、硕士论文等。
6. 研究报告:是研究项目或计划完成后所做的总结和总结报告,主要用于研究成果的交流和推广。
7. 会议论文:是学术会议上发表或讨论的学术论文,主要用于学术研究领域的知识传播和学术交流。
8. 文献综述:是对某一学术领域或某一个问题进行综合性的文献调研和总结,旨在对该领域进行梳理和把握。
9. 引用文献:是在论文、报告或其他学术作品中对其他已经发表的文献内容进行引证,以支持自身研究发现的合法性和可靠
性。
10. 参考文献:是在论文、报告或其他学术作品中列举出曾经阅读或参考过的文献,以供读者查阅和参考。
简述文献的种类及其各自的用途。
●文献的种类一般概括起来有两大类:
⑴普通文献,包括图书、报纸、期刊。
⑵特种文献,包括专利文献、标准文献、政府和国际组织出版物、
科技报告文献、会议文献、学位论文、产品资料、科技档案。
●各文献的用途(从内容上说):
1.图书中包括成熟的、经典的公式定理及基础理论。
2.报纸是很重要的信息源,具有大量的科普知识。
3.期刊反映的是最新的科技成果。
4.专利文献主要包括技术信息、法律信息和经济信息。
5.标准文献可以了解各国的经济政策、技术政策、生产水平、资源情况和标准化水平。
6.政府和国际组织出版物概括起来分为行政性文件和科技文献两大类,内容包括国会记录、司法资料、方针政策、规章制度、决议、指示以及调查统计资料、各部门的研究报告等。
7.科技报告文献有基础理论研究和工程技术两大内容。
8.会议文献是传递和获取科技信息的一种极为有效的重要渠道,反应的新技术成果快,专业性强。
9.学位论文是高等学校学生为获得某种学位而撰写的科学论文。
10.产品资料是国内外各厂商为推销产品而印发的商业宣传品,包括产品样本、产品目录、产品说明书、厂商介绍、技术座谈资料等。
11.科技档案是在生产建设中和科技部门的技术活动中形成的有一定具体工程对象的技术文献的总称,包括任务书、协议书、技术经济指标和审批文件、研究计划、方案、大纲和技术措施等。
查文献方法一、了解文献需求在进行学术研究或撰写文章时,正确选择和利用文献资源是至关重要的。
首先,要明确文献需求,这就需要对研究主题有深入的了解,明确研究的目的、研究范围以及研究方法。
只有清晰地了解这些信息,才能有针对性地查找和选择合适的文献。
二、查找文献途径1.网络数据库:如今,许多学术资源都可以在网上找到。
国内外著名的学术数据库如CNKI(中国知网)、Web of Science、PubMed等,都收录了大量的学术期刊、学位论文、会议论文等。
利用这些数据库,可以快速找到与您研究领域相关的文献。
2.图书馆藏书:图书馆是学术资源的宝库,包含了各个学科领域的经典著作和最新研究成果。
在图书馆,可以根据自己的需求查找纸质书籍、期刊、报纸等文献。
此外,许多图书馆还提供文献传递服务,可以帮助您获取馆外文献。
3.学术会议和研究机构:参加学术会议和访问研究机构,可以了解学界的最新动态和研究进展。
在这里,您可以接触到一流的学术专家和前沿研究成果,为您的研究提供有益的启示。
4.互联网搜索:除了以上途径,互联网也是一个查找文献的重要平台。
谷歌学术、百度学术等搜索引擎可以帮助您快速找到相关文献。
此外,还可以关注领域内的专家学者、研究机构或学术论坛,以获取更多有用信息。
三、筛选和评价文献在查找到的文献中,并非所有文献都具有参考价值。
因此,筛选和评价文献是文献利用的重要环节。
评价文献的质量,可以从以下几个方面进行:1.发表载体:查看文献发表的学术期刊、书籍出版社是否具有较高的学术声誉。
2.作者:了解作者的背景、学术地位和研究成果,判断其撰写的文献是否具有权威性。
3.引用情况:查看文献的被引用次数,反映其在学术界的影响力。
4.内容质量:通读文献,评价其理论水平、实证研究和结论是否具有说服力。
四、文献管理工具与应用在查找和利用文献的过程中,文献管理工具显得尤为重要。
EndNote、Mendeley、Zotero等文献管理软件可以帮助您整理、存储和管理文献。
文献方法文献方法是指通过查阅、整理、分析、比较文献资料,归纳总结各方面的信息与数据,为了研究特定问题提供客观、真实、可靠、有效的证据和参考。
以下将从文献搜集、筛选、阅读、整理和引用等方面介绍文献方法。
一、文献搜集文献搜集是指通过网络、文献数据库、图书馆、世界公共图书馆等途径进行检索。
在进行文献搜集时,需要考虑以下几个方面:1.目的明确:明确自己要找的文献类型,如论文、学位论文、专著、期刊等,以及文献的主题、时间等信息。
2.关键词选择:选择关键词时要能够准确描述自己的问题,主题词、作者、题目、摘要等都是选择关键词的关注点。
3.检索工具选择:网络提供的检索引擎,如百度学术、Google Scholar、CNKI、Wanfang等都是能够支持关键词检索的工具。
二、文献筛选文献筛选是指对搜集到的文献进行评估,以确定是否有用于自己的研究。
在进行文献筛选时,需要考虑以下几个方面:1.内容优劣:主要是要看文献的相关性、准确性、完整性等方面进行评估。
2.文献来源:对于文献来源可靠的文献,如期刊、学位论文等都具有比较高的资信度。
3.文献类别:特别是学术论文,其学术性不同,在筛选时需要进行区分。
三、文献阅读文献阅读是指对选定的文献进行阅读,只有读懂、掌握过程中的理论、方法等知识,才能进行后续的分析、描述和总结工作。
在进行文献阅读时,需要进行以下几个方面的分析:1.文献背景:知道其产生和发展的背景,能更好的理解和判断文献的重要性、质量等。
2.主要观点:了解文献的创新之处、研究方法等内容。
3.实证结果:文献提供的数据、案例、实例等对研究问题的证明或印证具有很大的帮助。
四、文献整理文献整理是指收集到有效的文献数据后,将其转化为可操作性的信息,将所找到的数据进行分类,并把其存储于电子或纸质的文献资料中。
在进行文献整理时,需要考虑以下几个方面:1.资料存储:将所找到的文献资料进行分类,记录文献名称、作者、出版时间、题目等。
2.信息提取:将所存储的各种文献资料进行提取,为后续研究工作做好准备。
查阅文献的方法
查阅文献的方法
一、综合性文献检索
1、收集信息
在收集信息之前,需要确定主题和搜索领域。
可以通过参考书籍、站点或学术论文、期刊文章等方式收集相关信息。
2、开展检索
进行文献检索时,可以从国内外各类文献数据库中寻找有关文献,一些典型的数据库包括:中国知网、万方数据库、EI(Engineering Index)、CSA(Compendex)等,也可以在学术搜索引擎中搜索,如Google学术、百度学术等。
3、分类整理
对收集到的信息进行分类整理,利用表格的形式把这些信息分门别类的列出来,针对每篇文献进行摘要,体现文献的主要内容,以便于以后查找、进行分析。
二、专题性文献检索
1、了解主题
在进行专题性文献检索之前,需要先了解专题的相关信息,例如,专题的基本原则、研究进展情况、对象等等。
2、确定搜索策略
针对不同的专题,就需要采用不同的搜索策略,例如在采用联想搜索的时候,可以首先搜索专题的一般概念,然后结合其他关键词等
来进行搜索,以找出最相关的文献。
3、查询文献
搜索的结果可以采用从宽到窄的搜索原则,不断扩大关键词搜索范围,从而找出更多有用的文献。
文献的名词解释在我们的日常生活中,我们经常听到或使用文献这个词。
然而,你是否真正了解这个词的含义和它的作用呢?在本篇文章中,我们将对文献这一概念进行深入探讨,探索其在学术界以及社会生活中的重要性和应用。
一、文献的定义文献可以被理解为一种记录人类知识的方式,包括书籍、报纸、期刊、论文、报告、档案、法规、法律文件等。
它是人类文明发展的产物,记录了人们的思想、理论、实践和经验,通过文献,我们可以窥见历史的脉络,深入了解人类的智慧。
二、文献的分类根据内容和形式,文献可以被分为多种不同的类型。
其中,学术文献是研究者在特定领域进行科学研究的成果,包括学术期刊上发表的论文、学位论文等。
除了学术文献,还有政府发布的文件、公司的年度报告、司法文件等业务文献,以及小说、散文、诗歌等文学作品。
不同类型的文献在内容和应用上有所不同,但都是记录和传播知识的重要途径。
三、文献的价值文献的价值体现在多个方面。
首先,文献为人们提供了广泛的信息渠道,无论是学术研究者,还是普通读者,都可以通过接触文献来获取到各个领域的知识。
其次,文献记录了过去的经验和智慧,为人们提供了可以借鉴和学习的资源。
通过学习和研究文献,我们可以不断积累知识,不断发展和进步。
此外,文献也是人类文化传承和交流的一种方式,通过分享文献,不同的人和群体可以相互了解,促进共同发展。
四、文献的利用文献的利用将其价值最大化。
学术研究者可以通过查阅文献来了解特定领域的研究动态,发掘前人的研究成果,并在此基础上展开自己的工作。
此外,政府部门可以利用文献来制定政策,企业可以通过分析市场文献来指导经营,新闻媒体可以通过整理报道文献来传递信息给读者。
在个人生活中,我们也可以通过阅读文献来拓宽视野、丰富知识、提升个人素养。
五、文献的困境然而,尽管文献的重要性被广泛认可,但在实际运用中,我们也面临一些困境。
首先,由于文献的海量和分散性,获取和整理文献成为一项巨大的挑战。
其次,由于信息的广泛传播和快速更新,文献的可靠性和权威性变得更加重要,而评估文献的质量也需要一定的方法和技巧。
Jointly published by React.Kinet.Catal.Lett. Akadémiai Kiadó, Budapest Vol. 89, No. 2, 303−309 and Springer, Dordrecht (2006)RKCL4976DIRECT SYNTHESIS OF DIMETHYL CARBONATE FROM CH3OH AND CO2 BY H3PW12O40/Ce x Ti1-x O2 CATALYSTKyung Won La and In Kyu Song*School of Chemical and Biological Engineering, Seoul National University,Shinlim-dong, Kwanak-ku, Seoul 151-744, South KoreaReceived April 13, 2006, in revised form June 22, 2006, accepted July 3, 2006AbstractCe x Ti1-x O2 and H3PW12O40/Ce x Ti1-x O2 catalysts were prepared using a sol-gelmethod, and applied to the direct synthesis of dimethyl carbonate from methanoland carbon dioxide. H3PW12O40/Ce x Ti1-x O2 showed a better catalytic performancethan the corresponding Ce x Ti1-x O2, due to the bifunctional catalysis of Brönstedacid sites (provided by H3PW12O40) and base sites (provided by Ce x Ti1-x O2).H3PW12O40/Ce0.1Ti0.9O2 showed the highest catalytic performance among theH3PW12O40/Ce x Ti1-x O2 catalysts.Keywords: Dimethyl carbonate, heteropolyacid, methanol, carbon dioxideINTRODUCTIONDimethyl carbonate (DMC) has been used as a green chemical and an alternative to corrosive and toxic reagents such as dimethyl sulfur and phosgene ___________________________*Corresponding author. Tel.: +82-2-880-9227; Fax: +82-2-888-7295E-mail: inksong@snu.ac.kr0133-1736/2006/US$ 20.00.© Akadémiai Kiadó, Budapest.All rights reserved.304 KYUNG WON LA, IN KYU SONG: DIMETHYL CARBONATE [1]. Several commercial processes have been developed for the production of DMC, including the methanolysis of phosgene [2], oxidative carbonylation of methanol catalyzed by cuprous chloride [3], and direct synthesis catalyzed by palladium and an alkyl nitrate promoter [4]. However, these processes involve the use of toxic, flammable, and corrosive gases such as phosgene, hydrogen chloride, and carbon monoxide. Therefore, the direct synthesis of DMC from methanol and carbon dioxide is an attractive method in an environmental point of view [5]. A wide variety of catalysts such as organometallic compounds [6], metal tetra-alkoxides [7], potassium carbonate [8], zirconia [9,10], H3PW12O40/ZrO2 [11], and H3PO4-V2O5 [12] have been used for the direct synthesis of DMC from methanol and carbon dioxide. However, the yield of DMC obtained from the one-step synthesis from methanol and carbon dioxide is still too low [13].In this study, H3PW12O40/Ce x Ti1-x O2 catalysts were prepared using a sol-gel method with the aim of providing both acid and base sites, and applied to the direct synthesis of DMC from methanol and carbon dioxide in a batch reactor. ZrO2 and H3PW12O40/ZrO2 were also prepared using a sol-gel method for comparison.EXPERIMENTALCe x Ti1-x O2 was prepared using a sol-gel method with Ce(NO3)3·6H2O (Aldrich) and Ti(OCH(CH3)2)4 (Aldrich) as precursors, with a variation in the cerium content from 0 to 1.0 (x=0, 0.1, 0.2, 0.4, 0.6, 0.8 and 1.0). Ti(OCH(CH3)2)4 was added to the ethanol solution containing Ce(NO3)3·6H2O. Ammonium hydroxide (29 wt.% NH3) was then added to the mixed solution containing cerium and titanium precursors. The mixed solution was stirred for 1 h at room temperature. The precipitate was filtered and dried in an air stream at 80o C for 24 h. The resulting solid was calcined at 300o C for 4 h to yield Ce x Ti1-x O2.The H3PW12O40/Ce x Ti1-x O2 catalyst was also prepared using a sol-gel method. H3PW12O40 was dissolved in ethanol and added to an ethanol solution containing Ce(NO3)3·6H2O. Ti(OCH(CH3)2)4 and ammonium hydroxide were then added to the solution containing H3PW12O40 and the cerium precursor. The mixed solution was stirred for 1 h at room temperature. The precipitate was filtered and dried in an air stream at 80o C for 24 h. The resulting solid was calcined at 300o C for 4 h to yield the H3PW12O40/Ce x Ti1-x O2. ZrO2 and H3PW12O40/ZrO2 were also prepared by a sol-gel method according to the method reported elsewhere for comparison [14]. The loading of H3PW12O40 on the metal oxides was fixed to 15 wt% in all cases.The direct synthesis of DMC from methanol and carbon dioxide was carried out in a 100 mL stainless steel autoclave. 6.4 g of methanol (200 m-mole,KYUNG WON LA, IN KYU SONG: DIMETHYL CARBONATE 305 Sigma) and 0.5 g of the catalyst were charged into the autoclave, and then the reactor was purged with carbon dioxide. After pressurizing the autoclave to 5 MPa with carbon dioxide, the reactor was heated to the reaction temperature with constant stirring. The catalytic reaction was carried out at 170o C for 12 h. The reaction products were periodically sampled and analyzed using gas chromatography (GC).Fig. 1. XRD patterns of ZrO2 and Ce x Ti1-x O2RESULTS AND DISCUSSIONFigure 1 shows the XRD patterns of ZrO2 and Ce x Ti1-x O2 prepared using the sol-gel method. The peaks at 2θ = 28.0o and 31.4o were assigned to the (11ī) and (111) planes for the monoclinic phase of ZrO2, respectively, and the peaks appearing at 2θ = 30.2o and 60.0o corresponded to the (111) plane of the tetragonal phase, which is in good agreement with a previous report [15]. Cubic cerianite phases of CeO2 oriented along the (111), (200), (220), and (311) planes were identified by the diffraction peaks appearing at 2θ = 28.7, 33.0, 47.4, and 56.3o, respectively [16]. The XRD peak for the tetragonal anatase phase of TiO2 appeared at 2θ = 25.3o, while the XRD peaks for the rutile phase of TiO2appeared at 2θ = 27.4, 36.0, 41.0 and 54.3o [17]. Although the characteristic XRD peaks of Ce x Ti1-x O2 (x=0.2-0.8) were shifted to higher angles with decreasing cerium content, the XRD pattern of Ce x Ti1-x O2 (x = 0.2-306 KYUNG WON LA, IN KYU SONG: DIMETHYL CARBONATE 0.8) was similar to that of CeO2 (x = 1.0). However, Ce0.1Ti0.9O2 showed a mixed XRD pattern of CeO2 and TiO2. This indicates that the addition of a small amount of cerium (x = 0.1) stabilizes the crystalline phase of Ce0.1Ti0.9O2[18].A series of preliminary experiments showed that the H3PW12O40/ZrO2 catalyst always had a better catalytic performance than ZrO2, suggesting that a catalyst should retain both acid and base sites for the efficient synthesis of DMC from methanol and carbon dioxide as previously reported [11]. It was also observed that the H3PW12O40/ZrO2 catalyst prepared using the sol-gel method had a better performance than that prepared using the impregnation method. Furthermore, it was found that the 15 wt.% H3PW12O40/ZrO2 catalyst showed the best catalytic performance among the H3PW12O40/ZrO2 catalysts with different H3PW12O40 loadings. Therefore, Ce x Ti1-x O2 and H3PW12O40/Ce x Ti1-x O2 catalysts were prepared using a sol-gel method, and the loading of H3PW12O40 on Ce x Ti1-x O2 was fixed to 15 wt.%.Fig. 2. Catalytic performance of ZrO2 and Ce x Ti1-x O2 in the direct synthesis ofDMC from methanol and carbon dioxide performed at 170o C for 12 hFigure 2 shows the catalytic performance of ZrO2 and Ce x Ti1-x O2 on the direct synthesis of DMC from methanol and carbon dioxide performed at 170o C for 12 h. The catalytic performance of pure metal oxides was decreased in the following order of ZrO2>CeO2>TiO2. However, Ce x Ti1-x O2 (x=0.1-0.8) showed a better catalytic performance than ZrO2. Ce0.1Ti0.9O2 showed the best catalyticKYUNG WON LA, IN KYU SONG: DIMETHYL CARBONATE 307 performance of all Ce x Ti1-x O2 catalysts examined. It is believed that the enhanced catalytic performance of Ce0.1Ti0.9O2 is closely related to the stabilized crystalline phase of Ce0.1Ti0.9O2, as shown in Fig. 1.Fig. 3. Catalytic performance of H3PW12O40/ZrO2, Ce x Ti1-x O2, andH3PW12O40/Ce x Ti1-x O2 in the direct synthesis of DMC from methanol and carbondioxide performed at 170o C for 12 hFigure 3 shows the catalytic performance of H3PW12O40/ZrO2, Ce x Ti1-x O2, and H3PW12O40/Ce x Ti1-x O2 in the direct synthesis of DMC from methanol and carbon dioxide at 170o C for 12 h. The catalysts examined in this work were highly selective for the formation of DMC without by-products. The amount of DMC produced increased with increasing reaction time but there was no significant increase after 10 h. Although the amount of DMC produced was quite low even on the most active catalyst, the catalytic performance of H3PW12O40/Ce x Ti1-x O2 was comparable to the reported value [11]. As expected, the H3PW12O40/Ce x Ti1-x O2 catalyst showed a better catalytic performance than the corresponding Ce x Ti1-x O2. This might be due to the bifunctional catalysis of Brönsted acid sites (provided by H3PW12O40) and base sites (provided by Ce x Ti1-x O2) [9,11]. The catalytic performance of H3PW12O40/Ce x Ti1-x O2 showed a volcano curve with respect to the cerium content. It should be noted that H3PW12O40/Ce0.1Ti0.9O2 showed the highest308 KYUNG WON LA, IN KYU SONG: DIMETHYL CARBONATE catalytic performance among the H3PW12O40/Ce x Ti1-x O2 catalysts, and a better catalytic performance than the H3PW12O40/ZrO2 catalyst.Fig. 4. SEM images of H3PW12O40/ZrO2 and H3PW12O40/Ce0.1Ti0.9O2:(a) H3PW12O40/ZrO2 (before reaction), (b) H3PW12O40/ZrO2 (after reaction),(c) H3PW12O40/Ce0.1Ti0.9O2 (before reaction), (d) H3PW12O40/Ce0.1Ti0.9O2 (afterreaction)Figure 4 shows SEM images of H3PW12O40/ZrO2 and H3PW12O40/Ce0.1Ti0.9O2 catalysts obtained before and after the reaction. In both cases, there was no significant difference in the catalyst morphology before and after the reaction. This suggests that these heterogeneous catalysts are stable during the catalytic reaction performed in the liquid phase.CONCLUSIONSIn the direct synthesis of dimethyl carbonate from methanol and carbon dioxide, it was found that the catalytic performance of metal oxides was in the following order: Ce0.1Ti0.9O2>Ce x Ti1-x O2 (x = 0.2-0.8)>ZrO2>CeO2>TiO2.KYUNG WON LA, IN KYU SONG: DIMETHYL CARBONATE 309 H3PW12O40/Ce x Ti1-x O2 showed a better catalytic performance than the corresponding Ce x Ti1-x O2, due to the bifunctional catalysis of Brönsted acid sites (provided by H3PW12O40) and base sites (provided by Ce x Ti1-x O2). The H3PW12O40/Ce0.1Ti0.9O2 showed the highest catalytic performance among the H3PW12O40/Ce x Ti1-x O2 catalysts, and a better catalytic performance than the H3PW12O40/ZrO2 catalyst.Acknowledgements. This work was supported by Small and Medium Business Administration, Seoul City, and Separation Design Tech Co.: 2005-017-7). REREFENCES1. A.A. Shaikh, S. Silvaram: Chem. Rev., 96, 951 (1996).2. H. Babad, A.G. Zeiler: Chem. Rev., 73, 75 (1973).3. D. Molzahn, M.E. Jones, G.E. Hartwell, J. Puga: US Patent, 5,387,708 (1995).4. D. Delledonne, F. Rivetti, U. Ramano: Appl. Catal. A, 221, 241 (2001).5. K. Tomishige, Y. Ikeda, T. Sakaihiro, K. Fujimoto: J. Catal., 192, 355 (2000).6. J. Kizlink: Collect. Czech. Chem. Comm., 58, 1399 (1993).7. J. Kizlink, I. Pastucha: Collect. Czech. Chem. Comm., 60, 687 (1995).8. S. Fang, K. Fujimoto: Appl. Catal. A, 142, L1 (1996).9. K. Tomishige, T. Sakaihiro, Y. Ikeda, K. Fujimoto: Catal. Lett., 58, 225 (1999).10. K.T. Jung, A. Bell: J. Catal., 204, 339 (2001).11. C. Jiang, Y. Guo, C. Wang, C. Hu, Y. Wu, E. Wang: Appl. Catal. A, 256, 203 (2003).12. X.L. Wu, M. Xiao, Y.Z. Meng, Y.X. Lu: J. Mol. Catal. A, 238, 158 (2005).13. T. Zhao, Y. Han, Y. Sun: Fuel Process Technol., 62, 187 (2000).14. M.D. Biju, F. Lefebvre, S.B. Halligudi: J. Catal., 231, 1 (2005).15. K.T. Jung, Y.G. Shul, A.T. Bell: Korean J. Chem. Eng., 18, 992 (2001).16. U.L. Stangar, U. Opara, B. Orel: J. Sol-Gel Sci. Technol., 8, 751 (1997).17. J.H. Kim, B.H. Noh, G. Lee, S. Hong: Korean J. Chem. Eng., 22, 370 (2005).18. T. López, F. Dojas, R. Alexander-Katz, F. Galindo, A. Balankin, A. Buljan: J. Solid StateChem., 177, 1873 (2004).。