概率论与数理统计--第一章 概率论的基本概念(2)
- 格式:ppt
- 大小:1.27 MB
- 文档页数:65
概率论与数理统计第二版课后答案第一章:概率论的基本概念与性质1.1 概率的定义及其性质1.概率的定义:概率是对随机事件发生的可能性大小的度量。
在概率论中,我们将事件A的概率记为P(A),其中P(A)的值介于0和1之间。
2.概率的基本性质:–非负性:对于任何事件A,其概率满足P(A) ≥ 0。
–规范性:对于样本空间Ω中的全部事件,其概率之和为1,即P(Ω) = 1。
–可列可加性:对于互不相容的事件序列{Ai}(即Ai∩Aj = ∅,i ≠ j),有P(A1∪A2∪…) = P(A1) + P(A2) + …。
1.2 随机事件与随机变量1.随机事件:随机事件是指在一次试验中所发生的某种结果。
–基本事件:对于只包含一个样本点的事件,称为基本事件。
–复合事件:由一个或多个基本事件组成的事件称为复合事件。
2.随机变量:随机变量是将样本空间Ω上的每个样本点赋予一个实数的函数。
随机变量可以分为两种类型:–离散型随机变量:其取值只可能是有限个或可列无穷个实数。
–连续型随机变量:其取值在某个区间内的任意一个值。
1.3 事件的关系与运算1.事件的关系:事件A包含于事件B(记作A ⊆ B)指的是事件B发生时,事件A一定发生。
如果A ⊆ B且B ⊆ A,则A与B相等(记作A = B)。
–互不相容事件:指的是两个事件不能同时发生,即A∩B = ∅。
2.事件的运算:对于两个事件A和B,有以下几种运算:–并:事件A和事件B至少有一个发生,记作A∪B。
–交:事件A和事件B同时发生,记作A∩B。
–差:事件A发生而事件B不发生,记作A-B。
第二章:条件概率与独立性2.1 条件概率与乘法定理1.条件概率:在事件B发生的条件下,事件A发生的概率称为事件A在事件B发生的条件下的条件概率,记作P(A|B)。
–条件概率的计算公式:P(A|B) = P(A∩B) / P(B)。
2.乘法定理:对于任意两个事件A和B,有P(A∩B) = P(A|B) * P(B) =P(B|A) * P(A)。
第一章概率论的基本概念确定性现象:在一定条件下必然发生的现象随机现象:在个别试验中其结果呈现出不确定性,有统计规律性的现象随机试验:具有下述三个在大量重复试验中其结果又具特点的试验:1. 可以在相同的条件下重复地进行2. 每次试验的可能结果不止一个,且能事先明确试验的所有可能结果3. 进行一次试验之前不能确定哪一个结果会出现样本空间:将随机试验E 的所有可能出现的结果组成的集合称为E 的样本空间,记为S 样本点:样本空间的元素,即E 的每个结果,称为样本点样本空间的元素是由试验的目的所确定的。
随机事件:一般,我们称试验E的样本空间S的子集为E的随机事件,简称事件在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生。
基本事件:由一个样本点组成的单点集,称为基本事件。
必然事件:样本空间S包含所有的样本点,它是S自身的子集,在每次试验中它总是发生的,称为必然事件。
不可能事件:空集不包含任何样本点,它也作为样本空间的子集,在每次试验中,称为不可能事件。
事件间的关系与运算:设试验E的样本空间为S,而A,B, A k(k=1,2,…)是S的子集。
1. 若A B ,则称事件B包含事件A,这指的是事件A发生必然导致事件B发生。
若A B且B A,即A=B则称事件A与事件B相等。
2. 事件A B x | x A或x B称为事件A与事件B的和事件。
当且仅当A,B 中至少有一个发生时,事件A B 发生。
类似地,称U A k为事件几小2,…,A n的和事件;称U A k为可列个事件A,A,… k 1 k 1的和事件。
3. 事件A B={x | x A且x B}称为事件A与事件B的积事件。
当且仅当A,B同时发生时,事件A B 发生。
A B 记作AB。
类似地,称| A k为n个事件AiA,…,A n的积事件;称| A k为可列个事件k 1 k 1AA,…的积事件。
4. 事件A B {x I x A且x B}称为事件A与事件B的差事件。
《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 A B 则称事件 B 包含事件 A ,指事件 A 发生必然导致事件 B 发生A B {x x A或x B} 称为事件 A 与事件 B 的和事件,指当且仅当 A ,B 中至少有一个发生时,事件 A B 发生A B {x x A且x B} 称为事件 A 与事件 B 的积事件,指当A,B 同时发生时,事件A B 发生A—B {x x A且x B} 称为事件A 与事件 B 的差事件,指当且仅当 A 发生、B 不发生时,事件 A — B 发生A B ,则称事件 A 与B 是互不相容的,或互斥的,指事件 A 与事件 B 不能同时发生,基本事件是两两互不相容的A B S A B ,则称事件 A 与事件 B 互为逆事件,又称事件 A 与事件 B 互为且对立事件2.运算规则交换律 A B B A A B B A结合律(A B) C A (B C) ( A B)C A(B C)分配律 A (B C)(A B) ( A C)A (B C)(A B)( A C)—徳摩根律 A B A B A B A B§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件 A 发生的次数n称为事件AA 发生的频数,比值n nA 称为事件 A 发生的频率概率:设E是随机试验,S 是它的样本空间,对于E 的每一事件A赋予一个实数,记为P(A),称为事件的概率1.概率P( A)满足下列条件:(1)非负性:对于每一个事件 A 0 P( A) 1(2)规范性:对于必然事件S P (S) 11(3)可列可加性:设A1, A2 , ,A是两两互不相容的事件,有nn nP A k ) P( A) ( (n可kk 1 k 1以取)2.概率的一些重要性质:(i )P( ) 0(ii )若A1, A2 , ,A是两两互不相容的事件,则有n Pn n( (n可以取)A k ) P( A )kk 1 k 1(iii )设A,B 是两个事件若 A B ,则P(B A) P( B) P( A) ,P( B) P(A) (iv)对于任意事件A,P(A) 1(v)P( A) 1 P(A) (逆事件的概率)(vi)对于任意事件A,B 有P(A B) P( A) P( B) P( A B)§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件 A 包含k 个基本事件,即{e i } {e } {e }A ,里1 i i k] 2,k是,中某个不同的数,则有i1 i 2, ,i k 1,2 nP( A)j k1P { eij}knA包含的基本事件数S中基本事件的总数§5.条件概率(1)定义:设A,B 是两个事件,且P( A) 0 ,称P( A B)P(B | A) 为事件 A 发生的条P(A)件下事件 B 发生的条件概率(2)条件概率符合概率定义中的三个条件。
第一章 概率论的基本概念1 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)解 }100 , ,1 ,0|{n i ni S ⋅⋅⋅==, 其中n 为小班人数(2)同时掷三颗骰子 记录三颗骰子点数之和 解 S ={3 4, ⋅⋅⋅ 18}.(3)生产产品直到得到10件正品为止, 记录生产产品的总件数解 S ={10, 11, 12, ⋅⋅⋅ , n , ⋅⋅⋅ }(4)对某工厂出厂的产品进行检查, 合格的记上“正品”, 不合格的记上“次品”, 如连续查出2个次品就停止检查, 或检查4个产品 停止检查, 记录检查的结果.解 S ={00, 100, 0100, 0101, 1010, 0110,1100, 0111, 1011, 1101, 1110, 1111}其中0表示次品 1表示正品.(5)在单位圆内任意取一点 记录它的坐标解 S ={(x y )|x 2+y 2<1}.(6)将一尺之棰成三段 观察各段的长度解 S ={(x y z )|x >0 y >0 z >0 x +y +z =1} 其中x y z 分别表示第一、二、三段的长度2. 设A , B , C 为三事件, 用A , B , C 的运算关系表示下列各事件.(1)A 发生, B 与C 不发生解 表示为: A B C 或A -(AB +AC )或A -(B C )(2)A , B 都发生, 而C 不发生解 表示为: AB C 或AB -ABC 或AB -C(3)A , B , C 中至少有一个发生解 表示为: A +B +C(4)A , B , C 都发生解 表示为: ABC(5)A , B , C 都不发生解 表示为: ⎺A B C 或S - (A +B +C)或C B A ⋃⋃(6)A , B , C 中不多于一个发生解 即A , B , C 中至少有两个同时不发生相当于⎺A B B C ⎺A C 中至少有一个发生. 故表示为: ⎺A B B C ⎺A C .(7)A , B , C 中不多于二个发生解 相当于: A B C 中至少有一个发生.故表示为: A B C 或ABC(8)A , B , C 中至少有二个发生.解 相当于: AB , BC , AC 中至少有一个发生.故表示为: AB +BC +AC3 设A , B 是两事件且P (A )=0.6, P (B )=0.7. 问 (1)在什么条件下P (AB )取得最大值, 最大值是多少?(2)在什么条件下P (AB )取得最小值, 最小值是多少?解 (1)因为P (AB )=P (A )+P (B )-P (A B ) 且P (A )<P (B )≤P (A B ) 所以当A B 时 P (A B )=P (B ) P (AB )取到最大值, 最大值为P (AB )=P (A )=0.6(2)当A B =S 时, P (AB )取到最小值, 最小值为P (AB )=0.6+0.7-1=0.3.4 设A , B , C 是三事件, 且P (A )P (B )P (C )1/4 P (AB )P (BC )0, P (AC )1/8. 求A , B , C 至少有一个发生的概率.解 P (A , B , C 至少有一个发生)=P (A +B +C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ) (3/4)(1/8)05/85 在一标准英语字典中有55个由两个不同的字母所组成的单词, 若从26个英文字母中任取两个字母予以排列, 问能排成上述单词的概率是多少?解 记A 表“能排成上述单词” 因为从26个任选两个来排列, 排法有226A 种. 每种排法等可能. 字典中的二个不同字母组成的单词: 55个 所以1301155)(226==A AP6 在房间里有10人. 分别佩戴从1号到10号的纪念章, 任选3人记录其纪念章的号码.(1)求最小的号码为5的概率解 记“三人纪念章的最小号码为5”为事件A . 因为10人中任选3人为一组: 选法有310C 种, 且每种选法等可能. 又事件A相当于: 有一人号码为5, 其余2人号码大于5. 这种组合的种数有251C ⨯ 所以1211)(31025=⨯=C C AP (2)求最大的号码为5的概率.解 记“三人中最大的号码为5”为事件B , 同上 10人中任选3人, 选法有310C 种, 且每种选法等可能, 又事件B 相当于:有一人号码为5, 其余2人号码小于5, 选法有241C ⨯种 所以2011)(31024=⨯=C C BP 7 某油漆公司发出17桶油漆, 其中白漆10桶、黑漆4桶, 红漆3桶. 在搬运中所有标签脱落, 交货人随意将这些标签发给顾客, 问一个定货4桶白漆, 3桶黑漆和2桶红漆顾客, 能按所订颜色如数得到定货的概率是多少?解 记所求事件为A .在17桶中任取9桶的取法有310C 种, 且每种取法等可能. 取得4白3黑2红的取法有2334410C C C ⨯⨯ 故2431252)(6172334410=⨯⨯=C C C C A P8 在1500个产品中有400个次品, 1100个正品, 任意取200个.(1)求恰有90个次品的概率解 用A 表示取出的产品恰有90个次品 在1500个产品中任取200个, 取法有2001500C 种, 每种取法等可能. 200个产品恰有90个次品, 取法有110110090400C C 种 因此2001500110110090400)(C C C A P= (2)至少有2个次品的概率.解 用B 表示至少有2个次品 B 0表示不含有次品, B 1表示只含有一个次品 同上, 200个产品不含次品, 取法有2001100C 种, 200个产品含一个次品, 取法有19911001400C C种 因为B B 0B 1且B 0, B 1互不相容 所以P (B )1P (B )1[P (B 0)P (B 1)]20015002001100199110014001C C C C +-=9 从5双不同鞋子中任取4只, 这4只鞋子中至少有2只配成一双的概率是多少?解 样本空间所含的样本点数为410C 用A 表示4只全中至少有2支配成一对 则A 表示4只全不配对 A 所包含的样本点数为4452⨯C (先从5双鞋中任取4双 再从每双中任取一只) 因此2182)(410445=⋅=C C AP 21132181)(1)(=-=-=A P AP10 在11张卡片上分别写上Probabitity 这11个字母 从中任意连抽7张 求其排列结果为Abitity的概率解 所有可能的排列构成样本空间 其中包含的样本点数为711P 用A 表示正确的排列 则A 包含的样本点数为411111*********=C C C C C C C 则0000024.04)(711==P A P11 将3个球随机地放入4个杯子中去, 求杯子中球的最大个数分别为1, 2, 3解 记A i 表示杯中球的最大个数为i 个( i =1, 2, 3)三只球放入四只杯中, 放法有43种, 每种放法等可能 对A 1: 必须三球放入三杯中, 每杯只放一球. 放法4×3×2种. 故1664234)(31=⨯⨯=A P 对A 2: 必须三球放入两杯, 一杯装一球, 一杯装两球. 放法有3423⨯⨯C 种. 故169434)(3232=⨯⨯=C A P 对A 3: 必须三球都放入一杯中. 放法有4种.16144)(33==A P 12 将50只铆钉随机地取来用在10个部件, 其中有3个铆钉强度太弱, 每个部件用3只铆钉, 若将三个强度太弱的铆钉都装在一个部件上, 则这个部件强度就太弱, 问发生一个部件强度太弱的概率是多少?解 记A 表示10个部件中有一个部件强度太弱.把随机试验E 看作是用三个钉一组, 三个钉一组去铆完10个部件(在三个钉的一组中不分先后次序. 但10组钉铆完10个部件要分先后次序)对E : 铆法有323344347350C C C C ⨯⨯⨯ 种, 每种装法等可能对A : 三个次钉必须铆在一个部件上. 这种铆法数为10)(32334434733⨯⨯⨯C C C C故 00051.01960110][)(32334735032334434733==⨯⨯⨯⨯⨯⨯⨯=C C C C C C C A P13 已知3.0)(=A P P (B )=0.4 5.0)(=B A P 求)|(B A B P ⋃.解 7.0)(1)(=-=A P A P 6.0)(1)(=-=B P BPB A AB B B A AS A ⋃=⋃==)( 注意Φ=))((B A AB . 故有 2.05.07.)()()(=-=-=B A P A P AB P .再由加法定理8.05.06.07.0)()()()(=-+=-+=⋃B A P B P A P B AP 于是 25.08.02.0)()()()]([)|(==⋃=⋃⋃=⋃B A P AB P B A P B A B P B A BP14 已知41)(=A P 31)|(=A B P 21)|(=B A P求P (A ⋃B ).解 根据条件概率)()|()()()()|(B P A B P A P B P AB P B A P ==61213141)|()|()()(=⨯==B A P A B P A P BP根据乘法公式1214131)()|()(=⨯==A P A B P ABP根据加法公式311216141)()()()(=-+=-+=⋃AB P B P A P B AP15 掷两颗骰子, 已知两颗骰子点数之和为7, 求其中有一颗为1点的概率(用两种方法).解法一 (在缩小的样本空间SB 中求P (A |B ), 即将事件B 作为样本空间, 求事件A 发生的概率).掷两颗骰子的试验结果为一有序数组(x , y )(x , y =1, 2, 3, 4, 5,6)并且满足x +y =7, 则样本空间为S ={(x , y )| (1, 6 ), (6, 1), (2, 5), (5, 2), (3, 4), (4, 3)}每种结果(x , y )等可能.A ={掷二骰子, 点数和为7时, 其中有一颗为1点}故 3162)(==A P解法二 用公式)()()|(B P AB P B A P = S ={(x , y )| x =1, 2, 3, 4, 5, 6; y =1, 2, 3, 4, 5, 6} 每种结果均可能A =“掷两颗骰子, x , y 中有一个为1点”,B =“掷两颗骰子, x +y =7”.则 6166)(2==B P 262)(=AB P , 故31626162)()()|(2====B P AB P B A P 16 据以往资料表明, 某3口之家, 患某种传染病的概率有以下规律:P {孩子得病}=0.6,P {母亲得病|孩子得病}=0.5,P {父亲得病|母亲及孩子得病}=0.4.求母亲及孩子得病但父亲未得病的概率.解 令A ={孩子得病}, B ={母亲得病}, C ={父亲得病} 则P (A )=0.6, P (B |A )=0.5, P (C |AB )=0.4所以 P (⎺C|AB )=1-P (C |AB )=1-0.4=0.6.P (AB )=P (A )P (B |A )=0.6×0.5=0.3,所求概率为P (AB ⎺C )=P (AB )·P (⎺C|AB )=0.3×0.6=0.18.17 已知在10只晶体管中有2只次品, 在其中取两次, 每次任取一只, 作不放回抽样, 求下列事件的概率(1)两只都是正品(2)二只都是次品(记为事件B )(3)一只是正品, 一只是次品(记为事件C )(4)第二次取出的是次品(记为事件D )解 设A i ={第i 次取出的是正品)(i =1 2).(1)452897108)|()()(12121=⨯==A A P A P A A P . (2)45191102)|()()(12121=⨯==A A P A P A A P . (3))()()(21212121A A P A A P A A A A P +=⋃)|()()|()(121121A A P A P A A P A P +=45169810292108=⨯+⨯=. (4))()(21212A A A A P A P +=519110292108)|()()|()(121121=⨯+⨯=+=A A P A P A A P A P18 某人忘记了电话号码的最后一个数字, 因而他随机地拨号, (1)求他拨号不超过三次而接通所需的电话的概率 (2)若已知最后一个数字是奇数, 那么此概率是多少?解 设A i ={第i 次拨号拨对}(i =1 2 3) A ={拨号不超过3次而拨通} 则321211A A A A A A A ++= 且三种情况互斥 所以)|()|()()|()()()(2131211211A A A P A A P A P A A P A P A P A P ++= 于是(1)103819810991109101)(=⨯⨯+⨯+=A P(2)53314354415451)(=⨯⨯+⨯+=A P19 (1)设甲袋中装有n 只白球 m 只红球, 乙袋中装有N 只白球 M 只红球, 今从甲袋中任取一只球放入乙袋中, 再从乙袋中任意取一只球, 问取到白球的概率是多少? 解 用A 1表示“从甲袋中取得白球放入乙袋”, A 2表示“从甲袋中取得红球放入乙袋” 再记B 表“再从乙袋中取得白球”. 因为 B =A1B +A 2B 且A 1, A 2互斥所以 P (B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)111++⨯+++++⨯+=M N N m n m M N N m n n)1)(()(+++++=N M n m n N m n19 (2)第一只盒子装有5只红球, 4只白球 第二只盒子装有4只红球, 5只白球. 先从第一盒子中任取2只球放入第二盒中去, 然后从第二盒子中任取一只球, 求取到白球的概率. 解 记C 1为“从第一盒子中取得2只红球”. C 2为“从第一盒子中取得2只白球”. C 3为“从第一盒子中取得1只红球, 1只白球”, D 为“从第二盒子中取得白球”, 显然C 1, C 2, C 3两两互斥, C 1C 2C 3=S , 由全概率公式, 有P (D )=P (C 1)P (D|C 1)+P (C 2)P (D|C 2)+P (C 3)P (D|C 3)995311611711529141529242925=⋅⋅+⋅+⋅=C C C C C CC20 某种产品的高标为“MAXAM” 其中有2个字母已经脱落 有人捡起随意放回 求放回后仍为“MAXAM”的概率解 设A 1 A 2 ⋅⋅⋅ A 10分别表示字母MAMX MA MM AX AA AM XA XM AM 脱落的事件 则101)(=i A P (i =1 2, ⋅⋅⋅ 10) 用B 表示放回后仍为“MAXAM”的事件 则21)|(=i A B P (i =1 2, ⋅⋅⋅10) 1)|()|(64==A B P A B P 所以由全概公式得5311011101821101)|()()(101=⨯+⨯+⨯⨯==∑=i i i A B P A P BP21 已知男子有5%是色盲患者, 女子有0.25%是色盲患者. 今从男女人数相等的人群中随机地挑选一人, 恰好是色盲患者, 问此人是男性的概率是多少?解 A 1={男人}, A 2={女人}, B ={色盲}, 显然A 1A 2=S , A 1 A 2= 由已知条件知21)()(21==A P A P %5)|(1=A B P ,%25.0)|(2=A BP 由贝叶斯公式, 有)|()()|()()|()()()()|(22111111A B P A P A B P A P A B P A P B P B A P B A P +==2120100002521100521100521=⋅+⋅⋅=22 一学生接连参加同一课程的两次考试. 第一次及格的概率为p , 若第一次及格则第二次及格的概率也为p 若第一次不及格则第二次及格的概率为2p (1)若至少一次及格则他能取得某种资格, 求他取得该资格的概率. (2)若已知他第二次已经及格, 求他第一次及格的概率.解 A i ={他第i 次及格}(i =1, 2)已知P (A 1)=P (A 2|A 1)=p , 2/)|(12p A A P= (1)B ={至少有一次及格} 则21}{A A B ==两次均不及格 所以 )|()(1)(1)(1)(12121A A P A P A A P B P B P -=-=-=)]|(1)][(1[1121A A P A P ---=22123)21)(1(1p p p p -=---= (2)由乘法公式, 有P (A 1A 2)=P (A 1)P (A 2| A 1)=p2 由全概率公式, 有)|()()|()()(1211212A A P A P A A P A P A P +=222)1(2p p p p p p +=⋅-+⋅= 于是 1222)|(2221+=+=p p p p p A AP23 将两信息分别编码为A 和B 传递出去 接收站收敛到时 A 被误收作B 的概率为002 而B 被误收作A 的概率为0.01 信息A 与信息B 传送的频繁程度为21 若收站收到的信息是A 问原发信息是A 的概率是多少? 解 设B 1 B 2分别表示发报台发出信号“A ”及“B ” 又以A 1有A 2分别表示收报台收到信号“A ”及“B ”. 则有 32)(1=B P 31)(2=B P P (A 1|B 1)=0.98 P (A 2|B 1)=0.08 P (A 1|B 2)=0.01 P (A 2|B 2)=0.91 从而由Beyes 公式得)|()()|()()|()()|(2121111111B A P B P B A P B P B A P B P A B P i += 19719601.03198.03298.032=⨯+⨯⨯=24 有两箱同种类的零件 第一箱装50只 其中10只一等品 第二箱装30只 其中18只一等品 今从两箱中任挑出一箱 然后从该箱中取零件两次每次任取一只 作不放回抽样 试求(1)第一次取到的零件是一等品的概率(2)第一次取到的零件是一等品的条件下 第二次取到的也是一等品的概率解 (1)记A i ={在第i 次中取到一等品}(i =1 2) B ={挑到第i 箱} 则有4.03018215121)|()()|()()(2121111=⨯+⨯=+=B A P B P B A P B P A P . (2))|()()|()()(2212121121B A A P B P B A A P B P A A P +=19423.030182129175121499=⨯⨯+⨯⨯= 4856.04.019423.0)()()|(12112===A P A A P A A P .25 某人下午5:00下班, 他所积累的资料表明:的, 试求他是乘地铁回家的概率.解 设A={乘地铁}, B ={乘汽车}, C ={在5:47到家}, 由题意 AB =∅, A B =S已知P (A )=0.5, P (C|A )=0.45, P (C|B )=0.2, P (B )=0.5 由贝叶斯公式有)()|()()|()()|()()()|()|(B P B C P AP A C P A P A C P C P A P A C P C A P +== 6923.05.02.05.045.05.045.0=⨯+⨯⨯=26 (1)设有4个独立工作的元件1, 2, 3, 4. 它们的可靠性分别为p 1, p 2, p 3, p 4, 将它们按图1-3的方式联接, 求系统的可靠性.解 记A i 表示第i 个元件正常工作(i =1, 2, 3, 4), A 表示系统正常.因为A =A 1A 2A 3+A 1A 4两种情况不互斥 所以P (A )=P (A 1A 2A 3)+P (A 1A 4)-P (A 1A 2A 3 A 4) (加法公式) =P (A 1)P (A 2)P (A 3)+P (A 1)P (A 4)-P (A 1)P (A 2)P (A 3)P (A 4)=p 1p 2p 3+p 1p 4-p 1p 2p 3p 4 (A 1, A 2, A 3, A 4独立)26. (2)设有5独立工作的元件1 2 3 4 5 它们的可靠性均为p 将它们按图1-4的方式联接 求系统的可靠性.解 记A i 表示第i 个元件正常工作(i =1, 2, 3, 4 5), B 表示系统正常 则)()(2345453121A A A A A A A A A A P B P ⋃⋃⋃=)()()()(2345453121A A A P A A P A A A P A A P +++= )()()(432154215321A A A A P A A A A P A A A A P ---)()()(5432543215431A A A A P A A A A A P A A A A P --- )()(45432154321A A A A A P A A A A A P -+24222522p p p p +-+=27 如果一危险情况C 发生时 一电路闭合并发出警报 我们可以借用两个或多个开关并联以改善可靠性 在C 发生时这些开关每一个都应闭合 且至少一个开关闭合了 警报就发出 如果两个这样开关并联接 它们每个具有0.95的可靠性(即在情况C 发生时闭合的概率) (1)这时系统的可靠性(即电路闭合的概率)是多少?(2)如果需要有一个可靠性至少为0.9999的系统 则至少需要用多少只开关并联?这里各开关闭合与否都是相互独立的解 (1)设A i 表示第i 个开关闭合 A 表示电路闭合 于是A =A1⋃A 2. 由题意当两个开关并联时P (A )=0. 96. 再由A 1 A 2的独立性得P (A )=P (A 1⋃A 2)=P (A 1)+P (A 2)-P (A 1A 2)=P (A 1)+P (A 2)-P (A 1)P (A 2)=2⨯0.96-(0.96)2=0.9984.(2)设至少需要n 个开关闭合 则∏==≥-=--=⋃=n i i i n i A P A P A P 1419999.004.01)](1[1)()(即 0.04n≤0.00001所以 58.304.0lg 00001.0lg =≥n 故至少需要4只开关联28 三个独立地去破译份密码 已知各人能译出的概率分别为1/5 1/3 1/4 问三个中至少有一个能将此密码译出的概率是多少?解 设A B C 分别表示{第一、二、三人独立译出密码} D 表示{密码被译出} 则)(1)()(C B A P C B A P D P ⋃⋃-=⋃⋃=)()()(1)(1C P B P A P C B A P -=⋂⋂-=534332541=⨯⨯-=29 设第一个盒子装有3只蓝球, 2只绿球, 2只白球;第二个盒子装有2只蓝球, 3只绿球, 4只白球. 独立地分别在两只盒子中各取一只球.(1)求至少有一只蓝球的概率(2)求有一只蓝球一只白球的概率(3)已知至少有一只蓝球, 求有一只蓝球一只白球的概率. 解 记A 1 A 2 A 3分别表示是从第一只盒子中取到一只蓝球 一只绿球 一只白球, B 1 B 2 B 3分别表示是从第二只盒子中取到一只蓝球 一只绿球 一只白球. 则A i 与B i 独立(i =1 2 3).(1)所求概率为9592739273)()()()(111111=⨯-+=-+=⋃B A P B P A P B A P . (2)所求概率为)()()()()(13311331B P A P B P A P B A B A P +=⋃631692729473=⨯+⨯= (3)所求概率为P (A 1B 3⋃A 3B 1| A 1⋃B 1)=P (A 1B 3| A 1⋃B 1)+P (A 3B 1| A 1⋃B 1))())(()())((111113111131B A P B A B A P B A P B A B A P ⋃⋃+⋃⋃= )())()())(11131311131131B A P B A B A A P B A P B B A B A P ⋃⋃+⋃⋃= 35169/563/16)()()(111331==⋃+=B A P B A P B A P .30 A , B , C 三人在同一办公室工作, 房间有三部电话, 据统计知, 打给A , B , C 的电话的概率分别为2/5 2/5 1/5. 他们三人常因工作外出, A , B , C 三人外出的概率分别为1/2 1/4 1/4, 设三人的行动相互独立, 求(1)无人接电话的概率(2)被呼叫人在办公室的概率若某一时间段打进3个电话, 求(3)这3个电话打给同一人的概率(4)这3个电话打给不同人的概率(5)这3个电话都打给B , 而B 却都不在的概率. 解 设A 1 B 1 C 1分别表示A B C 三个人外出的事件 A B C 分别表示打给三个人的电话的事件(1)P (无人接电话)=P (A 1B 1C 1)=P (A 1)P (B 1)P (C 1)321414121=⨯⨯= (2)用D 表示被呼叫人在办公室的事件, 则CC B B A AD 111++= )()(111C C B B A A P D P ++=)()(()()()(111C P C P BP P B P A P A P ++=2013514352435221=⨯+⨯+⨯=(3)用E 表示3个电话打给同一个人的事件 E 1 E 2 E 3分别表示3个电话是打给A B C 则E =E 1+E 2+E 3)()()()(321E P E P E P E P ++=12517)51()52()52(333=++=(4)用F 表示3个电话打给不同的人的事件 则F 由六种互斥情况组成, 每种情况为打给A , B , C 的三个电话, 每种情况的概率为1254515252=⨯⨯于是1252412546)(=⨯=F P (5)由于是知道每次打电话都给B , 其概率是1, 所以每一次打给B 电话而B 不在的概率为41, 且各次情况相互独立 于是P (3个电话都打给B , B 都不在的概率)641)41(3==31 袋中装有m 只正品硬币, n 只次品硬币(次品硬币的两面均印有国徽). 在袋中任取一只, 将它投掷r 次, 已知每次都得到国徽. 问这只硬币是正品的概率为多少?解 用A 表示出现r 次国徽的事件 B 表示任取一只是正品的事件 则r r nm n n m m B A P B P B A P B P A P 1)21()|()()|()()(⨯+++=+=)()|()()|(A P B A P B P A B P =r n m m2⋅+=32 设一枚深炸弹击沉一潜水艇的概率为1/3 击伤的概率为1/2 击不中的概率为1/6 并设击伤两次也会导致潜水艇下沉 求施放4枚深炸能击沉潜水艇的概率解 用A 表示施放4枚深炸击沉潜水艇的事件 则433446131]21)61()61[(1)(1)(-=⨯+-=-=C A P A P33 设根据以往记录的数据分析 某船只运输某种物品损坏的情况共有三种 损坏2%(这一事件记为A 1), 损坏10%(事件A 2), 损坏90%(事件A 3) 且知P (A 1)=0.8, P (A 2)=0.15, P (A 3)=0.05, 现在从已被运输的物品中随机地取3件, 发现这3件都是好的(这一事件记为B ), 试分别求P (A 1|B ) P (A 2|B ), P (A 3|B )(这里设物品件数很多, 取出一件后不影响后一件是否是好品的概率)解 因为B 表取得三件好物品.B =A 1B +A 2B +A 3B 且三种情况互斥由全概率公式, 有P (B )=P (A 1)P (B|A 1)+P (A 2)P (B|A 2)+P (A 3)P (B|A 3)=0.8×(0.98)3+0.15×(0.9)3+0.05×(0.1)3=0.86248731.08624.0)98.0(8.0)()|()()()()|(31111=⨯===B P A B P A P B P B A P B A P 1268.08624.0)9.0(15.0)()|()()()()|(32222=⨯===B P A B P A P B P B A P B A P 0001.08624.0)1.0(05.0)()|()()()()|(33333=⨯===B P A B P A P B P B A P B A P34 将A , B , C 三个字母一一输入信道, 输出为原字母的概率为α, 而输出为其它一字母的概率都是(1α)/2. 今将字母串AAAA , BBBB , CCCC 之一输入信道, 输入AAAA , BBBB , CCCC 的概率分别为p 1, p 2, p 3 (p 1+p 2+p 3=1), 已知输出为ABCA , 问输入的是AAAA 的概率是多少?(设信道传输每个字母的工作是相互独立的. )解 用A B C 分别表示输入信号为AAAA , BBBB , CCCC ,用H 表示输出信号为ABCA 由于每个字母的输出是相互独立的 于是有4)1(]2/)1[()|(2222αααα-=-=A H P8)1(]2/)1[()|(33αααα-=-=B H P8)1(]2/)1[()|(33αααα-=-=C HP又P (A )=p 1 P (B )=p 2 P (C )=p 3 由贝叶斯公式得)()|()()|()()|()()|()|(C P C H P B P B H P A P A H P A P A H P H A P ++= 33231221228)1(8)1(4)1(4)1(p p p p ⋅-+⋅-+⋅-⋅-=αααααααα ))(1(223211p p p p +-+=ααα。
概率论与数理统计复习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念P25 第三题:3.(1)设A ,B ,C 是三事件,且0)()(,41)()()(=====BC P AB P C P B P A P ,81)(=AC P . 求A ,B ,C 至少有一个发生的概率。
解:P (A ,B ,C 至少有一个发生)=P (A +B +C )= P (A )+ P (B )+ P (C )-P (AB )-P (BC )-P (AC )+ P (ABC )=8508143=+- (2)已知P (A )=1/2,P (B )=1/3,P (C )=1/5,P (AB )=1/10,P (AC )=1/15,P (BC )=1/20,P (ABC )=1/30,求C B A C B A C B A C B A B A B A ⋃⋃⋃⋃,,,,,的概率。
(3)已知P (A )=1/2,(i )若A ,B 互不相容,求)(B A P ,(ii )若P (AB )=1/8,求)(B A P 。
例五:某电子设备制造厂所用的元件是由三家元件制造厂提供的.根据以往的记又有以下的数据:设这三家工厂的产品在仓库中是均匀混合的,且无区别的标志. (1)在仓库中随机地取一只元件,求它是次品的概率;(2)在仓库中随机地取一只元件,若已知取到的是次品,为分析此次品出自何厂,需求出此次品由三家工厂生产的概率分别是多少。
试求这些概率。
解:设A 表示“取到的是一只次品”,B i (i= 1,2,3)表示“所取到的产品是由第i 家工厂提供的”.易知,B 1,B 2,B 3:是样本空间S 的一个划分,且有P(B1)=0.15,P(B2)=0.80,P(B3)= 0.05, P(A|B 1)=0.02,P(A|B 2)= 0.01,P(A|B 3)=0.03.(1) 由全概率公式P(A)=P(A|B1)P(B1)+P(A|B2)P(B2)+ P(A|B3)P(B3)=0.0125. (2)由贝叶斯公式.12.0)|(,64.0)|(24.00125.015.002.0)()()|()|(32111===⨯==A B P A B P A P B P B A P A B P .以上结果表明,这只次品来自第2家工厂的可能性最大.P26第六题6.病树的主人 外出.委托邻居浇水,设已知如果不浇水,树死去的概率为0.8.若浇水则树死去的概率为0.15.有0.9的把握确定邻居会记得浇水. (1)求主人回来树还活着的概率.(2)若主人回来树已死去,求邻居忘记浇水的概率.例2一个元件(或系统)能正常工作的概率称为元件(或系统)的可靠性,如图1-8.设有4个独立工作的元件1,2,3,4按先串联再并联的方式连接(称为串并联系统).设第i个元件的可靠性为P i(i=1,2,3,4),试求系统的可靠性。