硝化反硝化biostyr工艺
- 格式:pdf
- 大小:780.99 KB
- 文档页数:6
SBR工艺中短程硝化反硝化的过程控制简介:实验室中通过DO、pH值、进水CODcr /NH3-N(C/N)等参数的控制实现了SBR工艺中的短程硝化反硝化。
在以人工玉米水为外加碳源、进水氨氮浓度100mg/L、CODcr=800mg/L的条件下,保持pH 8.0~8.2、DO 0.5 mg/L~1.0mg/L,通过对反应周期10小时内氨氮(NH3-N),亚硝基氮(NO2--N),硝基氮(NO3--N)的跟踪以及对反应周期内每小时间隔们内这些氮的不同形态的变化量的数据的分析,证实在整个系统内短程硝化反硝化是占主导地位的脱氮途径。
关键字:SBR 短程硝化反硝化工艺参数Process control of Shortcut nitrification—denitrifiction in SBR processPandeng, Liujun, Wangbin, Wangping (School of Chemical and Environmental Engineering, Beijing Technology and Business University,Beijing 100037)Abstrate: Shortcut nitrification—denitrifiction was achieved in SBR through the control of technologies’ operation parameters such as DO、pH、C/N and so on.The experiment result show that When burthen of ammonia nitrogen is 100mg/L, C/N=8, pH 8.0~8.2、DO 0.5 mg/L~1.0mg/L, we can conform that Shortcut nitrification—denitrifyction is dominating approach of theremoval of ammonia nitrogen by tracing ammonia nitrogen,nitrite and nitrate.Key words: SBR, Shortcut nitrification—denitrifyction, technology parameters与传统的生物脱氮相比,亚硝酸型生物脱氮具有节约能耗,减少外加碳源,提高反应速率,节省基建投资,减少污泥量等特点[1]。
反硝化硝化工艺反硝化硝化工艺是一种常用的废水处理技术,通过细菌的作用将废水中的氨氮转化为无害的氮气释放到大气中。
本文将从工艺原理、应用案例和优缺点三个方面介绍反硝化硝化工艺。
一、工艺原理反硝化硝化工艺是一种生物处理技术,利用硝化细菌和反硝化细菌对废水中的氨氮进行转化。
首先,废水中的氨氮经过硝化细菌的作用被氧化为亚硝酸盐,然后亚硝酸盐再被反硝化细菌还原为氮气。
整个过程可以用以下化学反应式表示:NH4+ → NO2- → NO3- → N2↑二、应用案例反硝化硝化工艺被广泛应用于城市污水处理厂、工业废水处理厂和农村生活污水处理等领域。
以城市污水处理厂为例,该工艺可以有效去除废水中的氨氮,达到排放标准。
例如,某市某污水处理厂采用反硝化硝化工艺处理废水,经过处理后的水质达到了国家二级A 标准,达到了可回用水的要求。
这不仅节约了水资源,还减轻了环境污染。
三、优缺点反硝化硝化工艺具有以下优点:1. 处理效果好:反硝化硝化工艺可以高效去除废水中的氨氮,使废水达到排放标准。
2. 节能环保:该工艺利用细菌的作用进行废水处理,不需要添加化学药剂,节约能源并减少化学物质对环境的污染。
3. 适应性强:反硝化硝化工艺适用于不同类型的废水处理,适用于不同规模的污水处理厂。
4. 运行成本低:与其他废水处理工艺相比,反硝化硝化工艺的运行成本较低。
然而,反硝化硝化工艺也存在一些缺点:1. 对操作要求高:该工艺需要精确控制废水中的氧气含量和温度等参数,对操作人员的要求较高。
2. 需要一定的运行时间:反硝化硝化工艺需要一定的时间来完成氨氮的转化,处理效率相对较低。
3. 对初始废水质量要求高:反硝化硝化工艺对废水的初始质量要求较高,若废水中含有较高浓度的重金属离子或有毒物质,可能会对细菌的生长产生不利影响。
反硝化硝化工艺是一种有效的废水处理技术,具有处理效果好、节能环保等优点。
然而,对操作要求高和需要一定的运行时间等缺点也需要我们在实际应用中加以注意。
污水处理新技术——曝气生物滤池BIOSTYR(r)几十年来,在污水处理领域,活性污泥法无疑是一种被广泛使用并有良好效果的污水生物处理技术。
但是随着社会的不断进步,城市规模扩大以及人类对居住环境的日益重视,活性污泥法的不足越来越突出地显现在人们的眼前。
占地巨大人口的不断膨胀使城市变得拥挤,许多城市土地稀缺,而采用活性污泥法的污水处理厂动辄几公顷,甚至几十公顷的占地无疑成为一种制约。
环境恶劣巨大的污水处理构筑物大面积暴露在大气之中,极易产生臭气污染,周围居民无法忍受。
因此,越来越多的居民拒绝与污水处理厂为邻。
性能不稳定由于是一种悬浮状态的微生物胶团,活性污泥的浓度通常在6000毫克/升以下,外界环境(温度,污染物浓度等)极易对处理效果产生影响,甚至造成污泥膨胀,使处理水质恶化。
上世纪八十年代,一种针对以上问题研发出来的新的污水处理技术首先在法国得以运用,这就是“淹没式固定生物膜曝气滤池”。
法国OTV公司在淹没式固定生物膜曝气滤池领域拥有近20年的工程设计、建设和运行经验,并且在世界各地建设了100多座类似工艺的污水处理厂,其中一种工艺便是BIOSTYR(r)生物滤池。
BIOSTYR(r) 则是一种经过改良的新一代上向流曝气生物滤池。
它既可以用于污水的二级处理,也可以用于处理出水需要回用等其它要求的污水深度处理,并且能够达到很高的排放水质标准。
基本结构BIOSTYR(r)工艺是一种淹没式上向流生物滤池,其滤料为比重小1的球形颗粒并漂浮在水中,我们称之为BIOSTYRENETM。
每个生物滤池单元包括:*进水管和位于滤池底部的配水渠(同时可用于反冲洗水的排除);*两条空气第(管孔管),一条用于工艺曝气,一条用于气反冲洗;在硝化/反硝化反应时用两条管道,在单一硝化反应时曝气和反冲洗为同一条管道;*3~3.5米的滤料层,滤料表面附着大量的微生物;*滤池顶部有混凝土滤板,防止滤料的流失;*滤板上安装有滤头,用于滤池出水。
aao mbbr工艺流程AAO MBBR 工艺(Anammox MBBR Process)是一种基于A/O MBBR(Mechanical Biological and Biofiltration)工艺的改进工艺,通过在MABR(Membrane Aerated Biofilm Reactor)中引入Anammox菌株,实现了高效的氨氧化脱氮,能够显著减少工艺运行成本和投资成本。
下面将对AAO MBBR 工艺的流程进行介绍。
AAO MBBR 工艺流程主要包括氨氧化阶段和硝化-反硝化阶段两个部分。
氨氧化阶段:首先,将含有大量氨氮废水进入AAO MBBR 反应器中,在MABR中滞后的流动床填料上依附着生长的Anammox菌株将氨氮氧化为氮气(N2)和水(H2O),反应产生的N2和H2O会自由扩散到空气中。
同时,废水中的部分有机物质也通过附着菌群的合成利用被分解,并进一步减少了COD(化学需氧量)。
硝化-反硝化阶段:AAO MBBR 反应器中的水经过氨氧化阶段之后,进入硝化-反硝化阶段。
在此阶段,硝化菌和反硝化菌共同作用,完成废水中亚硝酸盐氮(NO2-N)和硝酸盐氮(NO3-N)的产生与消耗过程。
首先,氨氧化阶段产生的亚硝酸盐氮经过硝化菌的作用被氧化为硝酸盐氮。
然后,在缺氧情况下,反硝化菌将硝酸盐氮还原为N2和N2O(亚硝酸盐氮在此过程中也可转化为N2O)进一步消除了氮源。
整个AAO MBBR 工艺流程主要依靠MABR中的滞后流动床填料提供充足的菌群附着表面,为Anammox菌株和硝化-反硝化菌提供了良好的生长环境。
同时,通过加氧装置不断向反应器供气,并通过滞后流动床填料的气液分离功能将产生的氮气和水分离出来,减少了废水中的氮负荷。
AAO MBBR 工艺相比传统的氨氧化-硝化-反硝化工艺具有以下优势:首先,该工艺简化了传统工艺中的硝化-反硝化步骤,减少了投资成本和运行成本。
其次,该工艺采用了Anammox菌株,显著提高了废水处理效果,能够更好地适应高氨氮废水的处理。
sbr 硝化和反硝化反应原理下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
此文下载后可定制随意修改,请根据实际需要进行相应的调整和使用。
并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Downloaded tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The documentscan be customized and modified after downloading, please adjust and use it accordingto actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!硝化和反硝化反应原理。
硝化反硝化,非常实用硝化反应在好氧条件下,通过自养型微生物亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。
硝化反应包括亚硝化和硝化两个步骤:反硝化反应在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO2--N 和NO3--N还原成N2的过程,称为反硝化。
反硝化菌为异养型微生物,在缺氧状态时,反硝化菌利用硝酸盐中的氧作为电子受体,以有机物作为电子供体提供能量并被氧化稳定。
反硝化反应方程式为:NO2-+3H(电子供给体-有机物) → 0.5 N2+H2O+OH-NO3-+5H(电子供给体-有机物) → 0.5 N2+2H2O+OH-短程硝化反硝化短程硝化是指NH3生成亚硝酸根,不再生产硝酸根;而由亚硝酸根直接生成N2,称为短程反硝化。
短程硝化反硝化是指NH3---NO2----N2,即可以从水中氨氮去除的一种工艺。
影响因素:1、 pH硝化反应的适宜的pH值为7.0~8.0之间,其中亚硝化菌7.0~7.8时,活性最好;硝化菌在7.7~8.1时活性最好。
当pH降到5.5以下,硝化反应几乎停止。
反硝化细菌最适宜的pH值为7.0~7.5之间。
考虑到硝化和反硝化两过程中碱度消耗与产生的相互性,同步硝化与反硝化的最适的pH值应为7.5左右。
2、溶解氧(DO)硝化过程的DO应保持在2~3mg/L,反硝化过程的DO应保持0.2~0.5mg/L。
反应池内溶解氧的高低,必将影响硝化反应的进程,溶解氧质量浓度一般维持在2~3mg/L,不得低于1mg/L,当溶解氧质量浓度低于0.5~0.7mg/L时,氨的硝态反应将受到抑制。
反硝化通常需在缺氧条件下进行,溶解氧对反硝化有抑制作用,主要是由于氧会与硝酸盐竞争电子供体,同时分子态氧也会抑制硝酸盐还原酶的合成及其活性。
3、温度生物硝化反应适宜的温度在20~30℃,反硝化适宜温度在30℃左右。
亚硝酸菌最佳生长温度为35℃,硝酸菌的适宜温度为20~40℃。
硝化与反硝化原理
基本原理
生化处理段采用缺氧/好氧(A/O)工艺,A/O工艺通常是在常规的好氧活性污泥法处理系统前,增加一段缺氧生物处理过程。
在好氧段,好氧微生物氧化分解污水中的BOD5,同时进行硝化反应,有机氮和氨氮在好氧段转化为硝化氮并回流到缺氧段,其中的反硝化细菌利用氧化态氮和污水中的有机碳进行反硝化反应,使化合态氮变成分子态氮,获得同时去碳和脱氮的效果。
这里着重介绍生物脱氮原理。
1)生物脱氮的基本原理
传统的生物脱氮机理认为:脱氮过程一般包括氨化、硝化和反硝化三个过程。
①氨化(Ammonification):废水中的含氮有机物,在生物处理过程中被好氧或厌氧异养型微生物氧化分解为氨氮的过程;
②硝化(Nitrification):废水中的氨氮在硝化菌(好氧自养型微生物)的作用下被转化为NO2和NO3的过程;
③反硝化(Denitrification):废水中的NO2和NO3在缺氧条件下以及反硝化菌(兼性异养型细菌)的作用下被还原为N2的过程。
其中硝化反应分为两步进行:亚硝化和硝化。
硝化反应过程方程式如下所示:
①亚硝化反应:NH4++1.5O2→NO2-+H2O+2H+
②硝化反应:NO2-+0.5O2→NO3-
③总的硝化反应:NH4++2O2→NO3-+H2O+2H+
反硝化反应过程分三步进行,反应方程式如下所示(以甲醇为电子供体为例):
第一步:3NO3-+CH3OH→3NO2-+2H2O+CO2
第二步:2H++2NO2-+CH3OH→N2+3H2O+CO2
第三步:6H++6NO3-+5CH3OH→3N2+13H2O+5CO2
2)优化的脱氮原理。
SBR工艺同步硝化反硝化脱氮摘要:文中采用内径为300mm,高为650mm 的圆柱形SBR 反应器进行试验,探讨SBR 工艺同步硝化反硝化现象及其脱氮效果。
SBR 系统采用鼓风曝气,用温控仪控制水温在所要求的范围内,由时间程序控制器控制进水、闲置、曝气、沉淀和排水全过程,用DO 仪和pH计分别在线判断SBR 反应器的运行状况,进行研究SBR 系统对有机物和氮的去除过程及其脱氮效果。
结果表明:溶解氧浓度控制在 3-5mg/L 时,其同步硝化反硝化现象明显,脱氮效果最佳,总氮去除率可达80%,CODCr 的去除率达 90%。
采用同步硝化反硝化脱氮还可以克服污水中碱度不足的现象,由于反硝化不断产生碱度,补充了微生物对有机物和含氮化合物的降解引起水中pH 值下降的过程。
当温度在18~25℃的变化区间内,SBR 系统氨氮的去除比较稳定,说明SBR 工艺可实现常温同步硝化反硝化。
关键字:SBR系统硝化反硝化脱氮在反应初期1. 引言脱氮是当今水污染控制领域研究的热点和难点之一,为了高效而经济地去除氮,研究人员开发了许多工艺和方法。
根据传统的脱氮理论,同一工艺中不可能同时进行硝化反硝化,然而,最近几年国外有文献报道了同步硝化反硝化现象,尤其是有氧条件下的反硝化现象确实存在于各种不同的生物处理系统中[1],本文针对序批式活性污泥(SBR)工艺中的同步硝化反硝化现象及其脱氮效果进行了研究。
2. 试验材料与方法2.1 试验装置试验所用SBR反应器为圆柱形,内径为300mm,高为650mm,有效容积为32L。
采用鼓风曝气,以转子流量计调节曝气量,用温控仪将反应器内的水温控制在所要求的范围内,由时间程序控制器控制进水、闲置、曝气、沉淀和排水全过程,并根据需要,选定各段的启动、关闭时间。
用DO 仪和pH 计分别在线测定各反应阶段的DO 和pH 值,并根据反应阶段DO 和pH 值的变化判断SBR 反应器的运行状况,及时加以调整。
Biostyr工艺的应用实例作者:张海洋来源:《科技创新导报》 2012年第5期张海洋(龙江环保集团股份有限公司哈尔滨 150090)摘要:本文详细的介绍了Biostyr曝气生物滤池新技术的工艺流程、构造;评价了Biostyr 曝气生物滤池在秋、冬、春三个季节对COD、SS、NH3-N、TP四项水质指标的去除效果,为今后该工艺在寒带地区的推广使用提供了实际运行依据。
关键词:曝气生物滤池 Biostyr 构造运行中图分类号:X703 文献标识码:A 文章编号:1674-198X(2012)02(b)-0152-01哈尔滨文昌污水处理厂三期工程为建设规模16.5万m3/d的污水二级处理设施,建成后可使该污水处理厂达到32.5万m3/d二级处理能力。
随着众多污水处理项目的开工建设,处理新技术逐渐得以重视,为研究生物膜工艺和活性污泥工艺在纬度较高地区的适用性,推广先进污水处理技术,三期工程采用了法国威立雅公司开发的Biostyr曝气生物滤池为核心生物膜处理工艺,该工艺作为国家新技术推广项目,具有重要的示范意义。
1 工艺流程及构造1.1 工艺流程一期工程出水经提升后首先进入MULTIFLO 300高效斜管沉淀池。
高效沉淀池是一个紧凑型的斜管沉淀池,把混凝池、絮凝池、沉淀池和污泥浓缩集合于一体,并配有相应的加药系统。
经过初沉池处理后的污水在高效沉淀池内经过混合、絮凝、沉淀,实现去除部分悬浮物、碳污染物以及大部分磷的目的。
1.2 Biostyr的构造Biostyr生物滤池由配水系统、滤料层、布气系统、出水系统、反冲洗系统五部分组成。
2 Biostyr生物滤池的运行水质指标Biostyr生物滤池系统自2008年8月挂膜调试成功后,至2009年6月,分别经历了秋季、冬季、春季三个季节,在连续运行的10个月期间,出水水质比较稳定,证明了Biostyr生物滤池的处理效果。
2.1 秋季处理效果08年8月~10月的水温变化趋势是从最高的25℃降至13℃,三个月水温变化幅度为12℃;滤池进水COD在73~240mg/l之间,滤池出水COD最高为89mg/l,COD去除率在40%~85%之间;滤池进水NH3-N在24~50mg/l之间,滤池出水NH3-N最高为13mg/l,NH3-N去除率在60%~95%之间;滤池进水TP在1~5mg/l之间,滤池出水TP最高为3.1mg/l,TP去除率在5%~60%之间;滤池进水SS在27~70mg/l之间,滤池出水SS最高为24mg/l,SS去除率在20%~90%之间。
新型曝气生物滤池--Biostyr0前言现代曝气生物滤池是在生物接触氧化工艺的基础上引入饮用水处理中过滤的思想而产生的一种好氧废水处理工艺,70年代末80年代初出现于欧洲,其突出特点是在一级强化处理的基础上将生物氧化与过滤结合在一起,滤池后部不设沉淀池,通过反冲洗再生实现滤池的周期运行。
由于其良好的性能,应用范围不断扩大,在经历了80年代中后期的较大发展后,到90年代初已基本成熟。
在废水的二级、三级处理中,曝气生物滤池(biological aerated filter,以下简称BAF)体现出处理负荷高、出水水质好,占地面积省等特点。
90年代以后,BAF的发展方兴未艾,工艺形式不断推陈出新,本文要介绍的即是现代BAF的代表工艺之一Biostyr。
1Biostyr的结构和原理Biostyr是法国OTV公司的注册工艺,由于采用了新型轻质悬浮填料- -BIOSTYRENE(主要成分是聚苯乙烯,且比重小于1g/cm3)而得名。
下面以去除BOD、SS并具有硝化脱氮功能的反应器为例说明其工艺结构与基本原理 [1] 。
1.1基本结构如图1所示,滤池底部设有进水和排泥管,中上部是填料层,厚度一般为2.5~3m,填料顶部装有挡板,防止悬浮填料的流失。
挡板上均匀安装有出水滤头。
挡板上部空间用作反冲洗水的储水区,其高度根据反冲洗水头而定,该区内设有回流泵用以将滤池出水泵至配水廊道,继而回流到滤池底部实现反硝化。
填料层底部与滤池底部的空间留作反冲洗再生时填料膨胀之用。
1 配水廊道2 滤池进水和排泥3 反冲洗循环闸门4 填料5 反冲洗气管6 工艺空气管7 好氧区8 缺氧区9 挡板10 出水滤头11 处理后水的储存和排出 12 回流泵13 进水管图1Biostyr滤池结构示意滤池供气系统分两套管路,置于填料层内的工艺空气管用于工艺曝气,并将填料层分为上下两个区:上部为好氧区,下部为缺氧区。
根据不同的原水水质、处理目的和要求,填料层的高度可以变化,好氧区、厌氧区所占比例也可有所不同。