1.3 证明(2)
- 格式:ppt
- 大小:935.00 KB
- 文档页数:14
八年级数学上1.3《证明》同步练习题含答案一选择题1.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E的度数是(A)A.30°B.40°C.60°D.70°2.若三角形的三个外角的度数之比为2∶3∶4,则与之对应的三个内角的度数之比为(C) A.4∶3∶2B.3∶2∶4C.5∶3∶1D.3∶1∶53.直角三角形中的两锐角平分线相交而成的角的度数是(C)A.45°B.135°C.45°或135°D.145°(第4题)4.如图,将一个等边三角形剪去一个角后,∠1+∠2等于(B)A.120°B.240°C.300°D.360°5.如图,AE平分∠BAC,CE平分∠ACD,不能判定AB∥CD的条件是(A)A.∠1=∠2B.∠1+∠2=90°C.∠3+∠4=90°D.∠2+∠3=90°(第5题)(第6题)6.如图,有一条直的宽纸带按图示的方式折叠,则∠α的度数是(C)A.50°B.60°C.75°D.85°7.已知△ABC的三个内角的度数之比为3∶4∶5,则这个三角形是(A)A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形二填空题1.如图,在△ABC中,∠B=∠C,E是AC上一点,ED⊥BC,DF⊥AB,垂足分别为D,F,若∠AED =140°,则∠C=__50°__,∠A=__80°__,∠BDF=__40°__,∠ED F=__50°__.,(第1题)(第2题)2.如图,平面镜A与B之间的夹角为120°,光线经平面镜A反射后射在平面镜B上,再反射出去,若∠1=∠2,则∠1=__30°__.(第3题)3.如图,已知AD∥BC,∠EAD=50°,∠ACB=40°,则∠BAC=__90°__.(第4题)4.(1)如图,已知∠ABD=20°,∠ACD=35°,∠BDC=110°,则∠A的度数为55°;(2)在△ABC中,∠A+∠B=110°,∠C=2∠A,则∠A=35°,∠B=75°.5.(1)如图①,在△ABC中,D,E分别是BC,AC边上的点,AD,BE交于点F,则∠1+∠2+∠3+∠C=180°.①②(第5题)(2)如图②,D是△ABC的边AC上一点,E为BD上一点,则∠A,∠1,∠2之间的关系是∠2>∠1>∠A.6.如图,将等腰直角三角形AB C绕点A沿逆时针方向旋转15°后得到△AB′C′,B′C′与AB交于点P,则∠C′PB=__120°__.(第6题)(第7题)7.如图,在△ABC 中,D ,E 分别是AC ,BD 上的点,∠A =65°,∠ABD =∠DCE =30°,则∠BEC 的度数是125°.三解答题1.如图,已知EF 与AB ,CD 分别交于点E ,F ,∠1=∠2.求证:AB ∥CD.【解】∵∠1=∠2(已知),∠2=∠AEF(对顶角相等),∴∠1=∠AEF(等量代换),∴AB ∥CD(同位角相等,两直线平行)2.如图,已知AB ∥CD ,CM 平分∠BCD ,CM ⊥CN.求证:∠NCB =12∠B.【解】∵AB ∥CD(已知),∴∠DCB +∠B =180°(两直线平行,同旁内角互补),∴∠DCB =180°-∠B .又∵CM 平分∠BCD (已知),∴∠MCB =12∠DCB =12(180°-∠B )=90°-12∠B (角平分线的定义).∵CM ⊥CN ,∴∠MCN =90°,∴∠NCB =90°-∠MCB =90°-(90°-12∠B )=12∠B .3.如图,点E ,F 分别在AB ,AD 的延长线上,∠1=∠2,∠3=∠4.求证:(1)∠A =∠4;(2)AF ∥BC .(第9题)【解】(1)∵∠1=∠2(已知),∴DC∥AB(内错角相等,两直线平行),∴∠A=∠3(两直线平行,同位角相等).∵∠3=∠4(已知),∴∠A=∠4.(2)∵∠A=∠4(已证),∴AF∥BC(同位角相等,两直线平行).(第4题)4.如图,已知AB∥CD,求证:∠α+∠β-∠γ=180°.【解】过点E作EF∥AB,则∠A+∠AEF=180°,∠FED=∠D,∴∠α+∠β-∠γ=180°.(第5题)5.如图,P为△ABC内任意一点,∠1=∠2,求证:∠ACB与∠BPC互补.【解】在△BCP中,∠BPC+∠2+∠BCP=180°,∴∠BPC=180°-(∠2+∠BCP).又∵∠1=∠2,∴∠BPC=180°-(∠1+∠BCP),∴∠BPC=180°-∠ACB,∴∠ACB+∠BPC=180°,即∠ACB与∠BPC互补.(第6题)6.如图,∠xOy=90°,点A,B分别在射线Ox,Oy上移动,BC平分∠DBO,BC与∠OAB的平分线交于点C,试问:∠ACB的大小是否随A,B的移动而发生变化?如果保持不变,请说明理由;如果随A,B的移动而发生变化,请给出变化的范围.【解】∠ACB不随A,B的移动发生变化.理由如下:∵BC,AC分别平分∠DBO,∠BAO,∴∠DBC=12∠DBO,∠BAC=12∠BAO.∵∠DBO+∠OBA=180°,∠OBA+∠BAO+∠AOB=180°,∴∠DBO=∠BAO+∠AOB,∴∠DBO-∠BAO=∠AOB=90°.∵∠DBC+∠ABC=180°,∠ABC+∠ACB+∠BAC=180°,∴∠DBC=∠BAC+∠ACB,∴12∠DBO=12∠BAO+∠ACB,∴∠ACB=12(∠DBO-∠BAO)=12∠AOB=45°.(第7题)7.如图,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求:(1)∠MON的度数;(2)如果已知中∠AOB=α,其他条件不变,求∠MON的度数;(3)如果已知中∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;(4)从(1)(2)(3)的结果中能得出什么规律?(5)线段的计算与角的计算存在着紧密联系,它们之间可以进行类比,请你模仿(1)~(4),设计一道以线段为背景的计算题,写出其中的规律,并给出解答.【解】(1)∵OM 平分∠AOC (已知),∴∠MOC =12∠AOC (角平分线的定义).又∵ON 平分∠BOC (已知),∴∠NOC =12∠BOC (角平分线的定义),∴∠MON =∠MOC -∠NOC=12∠AOC -12∠BOC =12(∠AOC -∠BOC )=12∠AOB =45°.(2)当∠AOB =α,其他条件不变时,∠MON =α2.(3)当∠BOC =β,其他条件不变时,∠MON =45°.(4)分析(1)(2)(3)的结果和(1)的解答过程可以看出:∠MON 的大小总等于∠AOB 的一半,而与锐角∠BOC 的大小变化没有关系.(第7题解)(5)设计的问题为:如解图所示,已知线段AB =a ,延长AB 至点C ,使BC =b ,M ,N 分别为AC ,BC 的中点,求MN 的长.本题的规律是“MN 的长度总等于AB 的一半,而与BC 的长度变化无关”.理由如下:∵M 是AC 的中点(已知),∴AM =MC =12AC(中点的定义).∵N 是BC 的中点(已知),∴BN =NC =12BC(中点的定义).∴MN =MC -NC =12AC -12BC =12AB =12a.。
浙教版数学八年级上册1.3《证明》说课稿(2)一. 教材分析《证明》是浙教版数学八年级上册1.3节的内容,本节内容是在学生已经掌握了四则运算、方程求解等基础知识的基础上进行讲解的。
证明是数学中非常重要的一部分,它不仅可以帮助学生更好地理解数学概念,还可以培养学生的逻辑思维能力。
本节内容主要介绍了证明的概念、分类和基本方法。
二. 学情分析八年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算规则已经有所了解。
但是,学生在证明方面还比较薄弱,对于证明的概念、分类和基本方法还不够熟悉。
因此,在教学过程中,需要注重引导学生理解和掌握证明的基本概念和方法,培养学生的逻辑思维能力。
三. 说教学目标1.知识与技能:让学生理解证明的概念,掌握证明的分类和基本方法。
2.过程与方法:通过学生的自主学习、合作交流,培养学生的逻辑思维能力。
3.情感态度与价值观:让学生体验数学证明的乐趣,培养学生的探索精神和创新意识。
四. 说教学重难点1.教学重点:证明的概念、分类和基本方法。
2.教学难点:证明的逻辑结构和证明方法的运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法。
2.教学手段:利用多媒体课件、教学卡片等辅助教学。
六. 说教学过程1.导入:通过一个具体的数学问题,引导学生思考证明的概念。
2.讲解:讲解证明的分类和基本方法,结合具体的案例进行分析。
3.实践:让学生进行证明练习,巩固所学的证明方法。
4.总结:对本节内容进行总结,强调证明的重要性和基本方法。
5.作业:布置一些有关证明的练习题,巩固所学知识。
七. 说板书设计板书设计要简洁明了,突出证明的概念、分类和基本方法。
可以设计如下:八. 说教学评价教学评价主要通过学生的课堂表现、作业完成情况和证明练习的成绩来进行。
对于学生在证明方面的进步,要给予及时的肯定和鼓励,提高学生的学习积极性。
九. 说教学反思在教学过程中,要时刻关注学生的学习情况,对于学生在证明方面出现的问题,要进行及时的指导和纠正。
1.3 矩形的性质九年级数学备课组 学习目标:1、能用“基本事实”和“已经证明的定理”为依据,证明矩形的性质以及直角三角形斜边上的中线等于斜边的一半.2、进一步培养学生的分析、综合的思考方法,及表达书写能力.发展学生演绎推理能力.学习重点: 矩形的性质及其证明.学习难点: 分析、综合思考的方法.学习过程一、知识回顾:1、__________________________________________________叫矩形,由此可见矩形是特殊的____________________________,因而它具有平行四边形的所有性质.2、矩形有哪些平行四边形不具有的特殊性质?______________________________________________;______________________________________________.3、证明:矩形的四个角都是直角已知:如图 图形:画在下面求证:__________________________________证明:4、 证明:矩形对角线相等已知:如图图形:画在下面求证: 证明:二、新课:(一)观察如图 矩形ABCD ,对角线相交于O 将目光锁定在Rt △ABC 中,你能看到并想到它有什么特殊的性质吗? 证明:“直角三角形斜边上的中线等于斜边的一半.”已知: 求证: 图形:画在下面 证明:B C(二)例题教学如图: 矩形ABCD 的两条对角线相交于点O ,且AC =2AB ,求证: △AOB 为正三角形.(注意表达格式完整性与逻辑性)证明:(三)巩固练习: 1、如图 BD ,CE 是△ABC 的两条高,M 是BC 的中点,求证: ME =MDB CA B。
1.3 证明一、单选题1.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于()A.50 o B.60 o C.75 o D.85 o2.三角形中∠B的平分线和外角的平分线的夹角是().A.60°B.90°C.45°D.135°3.小王、小陈、小张当中有一人做了一件好事,另两人也都知道是谁做了这件事.老师在了解情况时,他们三人分别说了下面几句话:小陈:“我没做这件事.”“小张也没做这件事.”小王:“我没做这件事.”“小陈也没做这件事.”小张:“我没做这件事.”“我也不知道谁做了这件事.”已知他们每人都说了一句假话,一句真话,做好事的人是()A.小王B.小陈C.小张D.不能确定4.下列问题你不能肯定的是()A.一支铅笔和一瓶矿泉水的体积大小问题 B.三角形与矩形的面积关系C.三角形的内角和D.n边形的外角和5.某超市(商场)失窃,大量的商品在夜间被罪犯用汽车运走.三个嫌疑犯被警察局传讯,警察局已经掌握了以下事实:(1)罪犯不在甲、乙、丙三人之外;(2)丙作案时总得有甲作从犯;(3)乙不会开车.在此案中,能肯定的作案对象是()A.嫌疑犯乙B.嫌疑犯丙C.嫌疑犯甲D.嫌疑犯甲和丙6.如图,CE是ABC∆的外角ACD∠的平分线,若35∠=( ).∠=,则A∠=,60BACEA.95 B.85 C.75 D.7.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()A.60°B.50°C.40°D.30°8.如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=A.60°B.120°C.150°D.180°9.如图,下列推理不正确的是( )A.∵AB∥CD,∴∠ABC+∠C=180°B.∵∠1=∠2,∴AD∥BCC.∵AD∥BC,∴∠3=∠4D.∵∠A+∠ADC=180°,∴AB∥CD10.下列推理中,错误的是( )A.因为AB⊥EF,EF⊥CD,所以AB⊥CDB.因为∠α=∠β,∠β=∠γ,所以∠α=∠γC.因为a∥b,b∥c,所以a∥cD.因为AB=CD,CD=EF,所以AB=EF11.下列推理正确的是( )A.∵∠1+∠2=90°,∠2+∠3=90°,∴∠1+∠3=90°B.∵∠1+∠3=90°,∠3+∠2=90°,∴∠1=∠2C.∵∠1与∠2是对顶角,又∠2=∠3,∴∠1与∠3是对顶角D.∵∠1与∠2是同位角,又∠2与∠3是同位角,∴∠1与∠3是同位角12.如果一个三角形的三个外角之比为2:3:4,则与之对应的三个内角度数之比为( )A.4:3:2 B.3:2:4 C.5:3:1 D.3:1:5二、填空题13.如图,直线a b∥,Rt△ABC的顶点B在直线a上,∠C=90°,∠β=55°,则∠α的度数为______.14.现有一个三位数密码锁,已知以下3个条件,可以推断正确的密码是__________.①只有一个号码正确且位置正确②只有两个号码正确且位置都不正确③三个号码都不正确15.如图,一个弯形管道ABCD的拐角∠ABC=120°,∠BCD=60°,这时说管道AB∥CD,是根据___________________________.16.如图,在△ABC中,∠C=90°,∠ABC的平分线与外角∠BAD的平分线的反向延长线交于点F,则∠F=____.17.如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G=_____.18.在△ABC中,AB≠AC,若用反证法证明∠B≠∠C,应先假设 _____19.为了从500只外形相同的鸡蛋中找到唯一的一只双黄蛋,检查员将这些鸡蛋按1﹣500的顺序排成一列,第一次先从中取出序号为单数的蛋,发现其中没有双黄蛋,他将剩下的蛋的原来位置上又按1﹣250编号(即原来的2号变为1号,原来的4号变成2号,…,原来的500号变成250号).又从中取出新序号为单数的蛋进行检查,任没有发现双黄蛋,…,如此下去,检查到最后的一个是双黄蛋,问这只双黄蛋最初的序号是_____.20.盒子里有甲、乙、丙三种粒子,若相同种类的两颗粒子发生碰撞,则变成一颗乙粒子;不同种类的两颗粒子发生碰撞,会变成第三种粒子,例如一颗甲粒子和一颗乙粒子发生碰撞则变成一颗丙粒子,现有甲粒子6颗,乙粒子4颗,丙粒子5颗,如果经过各种两两碰撞后,只剩下1颗粒子,给出下列结论:①最后一颗粒子可能是甲粒子;②最后一颗粒子一定不是乙粒子;③最后一颗粒子可能是丙粒子.其中正确结论的序号是:_______.21.完成下面的证明过程.已知:如图,∠1和∠D互余,∠C和∠D互余.求证:AB∥CD.证明:∵∠1和∠D互余(已知),∴∠1+∠D=90°(_____________).∵∠C和∠D互余(已知),∴∠C+∠D=90°(_____________),∴∠1=∠C(__________________),∴AB∥CD(________________________).22.如图,点 A,C,F,B 在同一直线上,CD 平分∠ECB,FG∥CD.若∠ECA 为α度,则∠GFB为________度(用关于α的代数式表示).23.如图,是一副三角板叠放的示意图,则∠α=______.24.如图,现给出下列条件:①1B ∠∠=,②25∠∠=,③34∠∠=,④1D ∠∠=,⑤B BCD 180∠∠+=︒.其中能够得到AB//CD 的条件是_______.(只填序号)三、解答题25.观察下列等式:第个等式为:2113323-=⨯第1个等式为:3223323-=⨯第2个等式为:4333323-=⨯第3个等式为:5443323-=⨯....根据上述等式含有的规律,解答下列问题:(1)第5个等式为:是(2)第n 个等式为:是 (用含n 的代数式表示),并证明26.已知△ABC 中,∠ACB=90°,CD 为AB 边上的高,BE 平分∠ABC ,分别交CD 、AC 于点F 、E ,求证:∠CFE=∠CEF .27.当光线经过镜面反射时,入射光线、反射光线与镜面所夹的角对应相等.例如:在图①、图②中都有12,34∠=∠∠=∠.设镜子AB 与BC 的夹角ABC α∠=.(1)如图①,若90α=︒,判断入射光线EF 与反射光线GH 的位置关系,并说明理由.(2)如图②,若90180a ︒<<︒,入射光线EF 与反射光线GH 的夹角FMH β∠=.探索α与β的数量关系,并说明理由.(3)如图③,若130α=︒,设镜子CD 与BC 的夹角BCD ∠为钝角,入射光线EF 与镜面AB 的夹角109()0x x ∠=︒<<︒.已知入射光线EF 从镜面AB 开始反射,经过(n n 为正整数,且3n ≤)次反射,当第n 次反射光线与入射光线EF 平行时,请直接写出BCD ∠的度数(可用含x 的代数式表示).答案一、单选题1.C 2.B 3.B 4.B 5.C 6.B7.D8.A 9.C10.A 11.B 12.C二、填空题13.35°14.52015.同旁内角互补,两直线平行16.45°17.540°18.∠B=∠C19.25620.①②③.21.互余的定义;互余的定义;同角的余角相等;内错角相等,两直线平行. 22.90°﹣2α 23.75°24.①②⑤三、解答题25.解:(1)观察等式可知:第5个等式为:6553323-=⨯;故答案为:6553323-=⨯;(2)第n 个等式为:13323n n n +-=⨯,证明:左边1333333(31)23n n n n n n +=-=⨯-=-=⨯=右边∴等式成立. 26.解:根据互余、角平分线及对顶角等相关知识即可得出答案.证明:如图,∵∠ACB =90°,∴∠1+∠3=90°,∵CD ⊥AB ,∴∠2+∠4=90°,又∵BE 平分∠ABC ,∴∠1=∠2,∴∠3=∠4,∵∠4=∠5,∴∠3=∠5,即∠CFE =∠CEF .27.解:()1,EF GH理由如下:在BEG 中,23180,α∠+∠+=︒90,α=︒2390,∴∠+∠=︒12180,34180,12,34FEG EGH ∠+∠+∠=︒∠+∠+∠=︒∠=∠∠=∠, 1234360FEG EGH ∴∠+∠+∠+∠+∠+∠=︒,180FEG EGH ∴∠+∠=,//EF GH ∴;()22180βα=-︒.理由如下:在BEG 中,23180α∠+∠+=23180,α∴∠+∠=︒-12,1MEB ∠=∠∠=∠2,MEB ∴∠=∠22,MEG ∴∠=∠34,4MGB ∠=∠∠=∠3,MGB ∴∠=∠23,MGE ∴∠=∠在MEG 中,180MEG MGE β∠+∠+=︒(0)18MEG MGE β∴=︒-∠+∠180(2223)=-∠+∠(802)123=∠+∠-1802(180)2180αα=︒︒=--- ;()390x ︒+或140︒如图,当夹角为钝角时,根据(2)中的结论,得 ∠FEG=2∠BCD-180°,根据平行线性质,得:∠FEG=∠PAH=2∠NAH=2x ,∴∠BCD=1802902x x ︒+=︒+;如图,当夹角为直角时,根据(1)中的结论,得∠EBC=50°,根据三角形外角性质,得:∴∠BCD=∠EBC+∠BEC=50°+90°=140°.∴∠BCD的度数为90x︒+或140°.。
2019年课时同步练习(浙教版)八年级上1.3证明2【含答案及解析】姓名___________ 班级____________ 分数__________一、填空题1. 从甲、乙、丙三人中选取2人去参加运动会有甲和乙、甲和丙、乙和丙3种不同的选法.抽象成数学模型,即:从3个元素中选取2个元素的组合,记作;一般地,从m个元素中选取n个元素(n≤m)的组合,记作.根据以上分析从8人中选取5人去参加运动会的不同选法有种.2. 有红、黄、蓝三个箱子,一个苹果放人其中某个箱子内,并且(1)红箱子写着:“苹果在这个箱子里”;(2)黄箱子上写着:“苹果不在这个箱子里”;(3)蓝箱子上写着:“苹果不在红箱子里”,已知(1),(2),(3)中只有一句是真的,则是真话(填序号),苹果在箱子里.3. 仓库员小李管理着10个库房,有一次,他把10个库房的10把钥匙搞乱了,这10把钥匙所开的锁的外形一样,无法把钥匙对上号,他只好逐个试开.如按最巧的情况,每把钥匙只试一次,就能对上号.现在要问,在最坏的情况下,在试开次后,才能把10把钥匙和10把锁对上号.4. 如图的算式中字母ABC分别表示各不相同的一个数字,则B= .5. 元旦联欢会上,林老师跟同学们玩猜匣游戏,礼物放在一只匣子中,谁猜中谁就可以得到这个礼物.三只匣子上都各有一句话.红匣子:礼物不在黄匣中;黄匣子:礼物不在此匣中;绿匣子:礼物在此匣中.林老师向同学们交了底:这三句话中,至少有一句是真的,而且至少有一句是假的.你猜猜看,礼物放在匣子中.6. 如图,有4座岛屿,A、B、C、D岛屿之间有桥梁相连,在同一座桥不得通过两次的原则下,从A出发到D结束,不同的走法有种.7. 参加会议的成员都互相握过手,其中某人与他的一些老朋友握过第二次手.若这次会议握手的总次数是159,那么参加会议的成员有人,其中,第二次握手有次.8. 小明同学每天早上6:00钟起床,穿衣需要5min,煮早饭需要7min,他洗脸刷牙需要5min,吃早饭需要8min,吃完早饭就去上学,小明同学从开始起床到吃完早饭仅需要min.9. 一幢楼房内住有六家住户,分别姓赵,钱,孙,李,周,吴,这幢楼住户共订有A,B,C,D,E,F六种报纸,每户至少订了一种报纸,已知赵,钱,孙,李,周分别订了其中2,2,4,3,5种报纸,而A,B,C,D,E五种报纸在这幢楼里分别有1,4,2,2,2家订户,则报纸F在这幢楼里有家订户.10. 甲乙两个布袋中各有12个大小一样的小球,且都是红、白、蓝各4个.从甲袋中拿出尽可能少且至少两个颜色一样的球放入乙袋中,再从乙袋中拿出尽可能少的球放入甲袋中,使甲袋中每种颜色的球不少于3个,这时甲袋中有个球,乙袋中有个球(拿出时不能看).11. 老李到办公室后,他总要完成以下事情:烧开水10分钟,洗茶杯1分钟,准备茶叶和冲茶1分钟,打扫办公室9分钟,收听新闻10分钟,问老李做好以上事情至少需要分钟时间.12. 如图,电路中有4个电阻和一个电流表A,若没有电流通过电流表A,问电阻器断路的可能情况共有种.13. A、B、C、D四人参加某一期的体育彩票兑奖活动,现已知:如果A中奖,那么B也中奖;如果B中奖,那么C中奖或A不中奖;如果D不中奖,那么A中奖,C不中奖;如果D中奖,那么A也中奖,则这四个人中,中奖的人数是人.14. 有一地球同步卫星A与地面四个科研机构B、C、D、E,它们两两之间可以互相接发信息,由于功率有限,卫星及每个科研机构都不能同时向两处发送信息(如A不能同时给B、C发信息,它可先发给B,再发给C),它们彼此之间一次接发信息的所需时间如右图所示.则一个信息由卫星发出到四个科研机构都接到该信息时所需的最短时间为.15. 某学生连续观察了n天的天气情况,观察结果是:①共有5个下午是晴天;②共有7个上午是晴天;③共有8个半天是雨天;④下午下雨的那天上午是晴天,则该学生观察的天数n= .16. 某超级市场失窃,大量的商品在夜间被罪犯用汽车运走.三个嫌疑犯被警察局传讯,警察局已经掌握了以下事实:(1)罪犯不在A、B、C三人之外;(2)C作案时总得有A作从犯;(3)B不会开车.在此案中能肯定的作案对象是.17. 我市教研室对2008年嘉兴市中考数学试题的选择题作了错题分析统计,受污损的下表记录了n位同学的错题分布情况:已知这n人中,平均每题有11人答错,同时第6题答错的人数恰好是第5题答错人数的1.5倍,且第2题有80%的同学答对.则第5题有人答对.18. 为了从500只外形相同的鸡蛋中找到唯一的一只双黄蛋,检查员将这些鸡蛋按1﹣500的顺序排成一列,第一次先从中取出序号为单数的蛋,发现其中没有双黄蛋,他将剩下的蛋的原来位置上又按1﹣250编号(即原来的2号变为1号,原来的4号变成2号,…,原来的500号变成250号).又从中取出新序号为单数的蛋进行检查,任没有发现双黄蛋,…,如此下去,检查到最后的一个是双黄蛋,问这只双黄蛋最初的序号是.19. 甲、乙、丙、丁和小强五位同学单循环比赛象棋,到现在为止甲已经赛了四盘,乙赛了三盘,丙赛了二盘,丁赛了一盘,则小强赛了盘.20. 甲、乙、丙、丁四个小朋友在院里玩球,忽听“砰”的一声,球击中了李大爷家的窗户.李大爷跑出来查看,发现一块窗户玻璃被打裂了.李大爷问:“是谁闯的祸?”甲说:“是乙不小心闯的祸.”乙说:“是丙闯的祸.”丙说:“乙说的不是实话.”丁说:“反正不是我闯的祸.”如果这四个小朋友中只有一个人说了实话,请你帮李大爷判断一下,究竟是谁闯的祸答:是.二、解答题21. 有12名游客要赶往离住地40千米的一个火车站去乘火车,离开车时间只有3小时了,他们步行的速度为每小时6千米,靠走路是来不及了,唯一可以利用的交通工具只有一辆小汽车,但这辆小汽车连司机在内最多能乘5人,汽车的速度为每小时60千米.(1)甲游客说:我们肯定赶不上火车;(2)乙游客说:只要我们肯吃苦,一定能赶上火车;(3)丙游客说:赶上或赶不上火车,关键取决于我们自己.亲爱的同学,当你身处其境,一定也有自己的想法,请你就某位游客的说法,用数学知识以理其人,由于难度不同,请你慎重选择.选择(1)答对只能给3分,选择(2)答对可以给4分,选择(3)答对我们奖赏你满分6分.22. 暑假期间,小丽、小杰决定定期到敬老院打扫卫生,小丽每4天去一次,小杰每6天去一次,如果8月1日他们俩都在敬老院打扫卫生,那么,他们下一次同时在敬老院打扫卫生的时间是几月几日?23. 有人认为数学没有多少使用价值,我们只要能数得清钞票,到菜场算得出价钱这点数学知识就够了.根据你学习数学的体会,谈谈你对数学这门学科的看法.24. 推理能力都很强的甲、乙、丙站成一列,丙可以看见甲、乙,乙可以看见甲但看不见丙,甲看不见乙、丙.现有5顶帽子,3顶白色,2顶黑色.老师分别给每人戴上一顶帽子(在各自不知道的情况下).老师先问丙是否知道头上的帽子颜色,丙回答说不知道;老师再问乙是否知道头上的帽子颜色,乙也回答说不知道;老师最后问甲是否知道头上的帽子颜色,甲回答说知道.请你说出甲戴了什么颜色的帽子,并写出推理过程.25. 10位小运动员,他们着装的运动服号码分别是1﹣10,能否将这10位运动员按某种顺序站成一排,使得每相邻3名运动员号码数之和都不大于15?26. 问:在8×8的国际象棋盘上最多可以放多少个“+”字形(其中每个“+”字形占据棋盘的5个小方格),使得任意两个“+”字形不重叠,且每个“+”字形都不超出棋盘的边界?证明你的结论.27. 10名棋手参加比赛,规定:每两名棋手间都要比赛一次,胜者得2分,下和各得1分,输者得0分.比赛结果表明:棋手们所得分数各不相同,前两名棋手没输过,前两名的总分之和比第三名多20分,第四名得分与后四名得分总和相等,那么前六名得分分别是多少?28. 2007年9月,在中国举行了第五届女足世界杯,受到了世人瞩目.现假设某组有四个球队,分别为A,B,C,D四个足球队,在小组赛中她们进行循环比赛(即任意两队之间都要比赛一场),赛了若干场后,她们之间的比赛情况如下:29. 比赛场数胜的场数负的场数平的场数入球数失球数A队202036B队210143C队320120D队td30. A,B,C,D,E五名学生猜测自己能否进入市中国象棋前三强. A说:“如果我进入,那么B也进入.”B说:“如果我进入,那么C也进入.”C说:“如果我进入,那么D也进入.”D说:“如果我进入,那么E也进入.”大家都没有说错,请问:进入前三强的是哪三个人?31. 我们的数学教材中有一个“抢30的游戏”,现在改为“甲、乙二人抢20”的游戏.游戏规则是:甲先说“1”或“1、2”乙接着甲的数往下说一个或两个数,然后又轮到甲再接着乙的数往下说一个或两个数,甲、乙反复轮流说,每次每人说一个或两个数都可以,但不能连续说三个数,也不能一个数也不说.谁先抢到20,谁就获胜.因为甲先说,你认为谁会获胜?请你分析获胜策略、推理说明获胜的道理.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】第27题【答案】第28题【答案】第29题【答案】第30题【答案】。
1.3证明(一)1.如图所示,a ∥b ,∠1为( )A .90°B .80°C .70°D .60°(第1题) (第2题) (第3题) (第4题) 2.如图,AB ∥CD ,AC ⊥BC ,图中与∠CAB 互余的角有( )A .1个B .2个C .3个D .0个3.如图,下列推理不正确的是( )A .∵AB ∥CD ∴∠ABC+∠C=180° B .∵∠1=∠2 ∴AD ∥BCC .∵AD ∥BC ∴∠3=∠4 D .∵∠A +∠ADC =180° ∴AB ∥CD 4.如图所示,直线a ,b 被直线c 所截,a ∥b ,∠1=110°,∠2=________. 5.写出一个判断角相等的定理 .6.已知∠A=(x -20)°,∠B=(100-3x )°,若∠A 、∠B 的两边分别平行且方向相同,则x =_____. 7.完成下面的证明过程:已知:如图,AB ∥CD ,∠1+∠2=180°. 求证:CD ∥EF . 证明:∵∠1+∠2=180°( )∠1+∠3=180°( ) ∴∠3=∠2( ) 又∵AB ∥CD ( )∴∠3=∠4( ) ∴∠2=∠4∴CD ∥EF ( )8.如图所示,AB ∥CD ,CE 平分∠ACD 并交AB 于E ,∠A =118°,求∠AEC 的度数.9.如图,已知直线AB 和直线CD 被直线EF 所截,交点分别为E 、F ,∠AEF =∠EFD . 若EM 是∠AEF 的平分线,FN 是∠EFD 的平分线.证明:EM ∥FN .A BCD E MFN4321FED C B A★10.如图所示,CD⊥AB,垂足为D,点F是BC上任意一点,FE⊥AB,垂足为E,且∠CDG=∠BFE,∠AGD=80°,求∠BCA的度数.11.命题“若a是自然数,则代数式(5a+2)(5a+1)+3的值是5的倍数”是真命题还是假命题?如果认为是假命题,请说明理由;如果认为是真命题,请给出证明.12.如图,把一块三角板的60°角的顶点放在直尺的一边上,若∠1=2∠2,则∠1=.★13.有20位同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14人.”乙说:“两项都参加的人数小于5.”对于甲、乙两人的说法,有下列四个命题,其中真命题的是()A.若甲对,则乙对B.若乙对,则甲对C.若乙错,则甲错D.若甲错,则乙对★14.如图,在△ABC中,∠ACB=90°,CD⊥AB,BE平分∠ABC,分别交AC,CD于点E,F,则∠CEF=∠CFE.请用推理的方法说明它是真命题.★15.已知∠α=50°,且∠α的两边与∠β的两边互相垂直,画出符合条件的图形并求出∠β的度数.1.3证明(二)1.如图,△ABC 中,∠A=50°,点D ,E 分别在AC ,AB 上, 则∠1+∠2的大小为( )A .130°B .230°C .180°D .310°2.如图,在△ABC 中,∠1是△ABC 的一个外角,D 是AC 上一点,连接BD ,下列判断角的大小关系错误的一个是( )A .∠1>∠2B .∠1>∠5C .∠1>∠3D .∠5>∠4(第1题) (第2题) (第6题) (第7题)3.锐角三角形的三个内角是A B C ∠∠∠,,,如果A B α∠=∠+∠,B C β∠=∠+∠,C A γ∠=∠+∠,那么αβγ∠∠∠,,这三个角中( )A .没有锐角B .有1个锐角C .有2个锐角D .有3个锐角4.若三角形的三个外角的度数之比为2:3:4,则与之对应的三个内角的度数之比为( )A .4:3:2B .3:2:4C .5:3:1D .3:1:5 5.满足下列条件的△ABC 中,不是直角三角形的是( )A .∠B+∠A=∠CB .∠A :∠B :∠C =2:3:5C .∠A =2∠B =3∠CD .一个外角等于和它相邻的一个内角6.如图所示,在△ABC 中,∠ABC 与∠ACB 的平分线相交于点O ,若∠BOC=120°,则∠A 为( )A .30°B .60°C .80°D .100°7.如图,已知D 是BC 上一点,∠B=∠1,则图中与∠2相等的角是 . 8.如图所示,BC ⊥ED ,垂足为O ,∠A =27°,∠D =20°,求∠ACB 与∠B 的度数.9.已知:如图,E 是AB 、CD 外一点,∠D =∠B+∠E .求证:AB ∥CD .10.如果三角形的一个外角小于和它相邻的内角,则这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .都有可能11.如图所示,在锐角△ABC 中,CD 和BE 分别是AB 和AC 边上的高,且CD 和BE 交于点P ,若∠A =50°,则∠BPC 的度数是( )A .150°B .130°C .120°D .100°★12.如图所示,四边形ABCD 中.求证:∠BDC =∠B+∠A+∠C .(至少用两种不同的方法证明)方法1: 方法2:★13.如图,在△ABC 中,BD ,CD 是两个外角的平分线,且相交于点D .(1)若∠A =50°,求∠D 的度数; (2)用∠A 表示∠D 的度数.★14.如图,△ABC 中,点D ,E 分别在AB , AC 上,将△ADE 沿直线DE 折叠.(1)如图①,当A ’落在四边形BDEC 内部时,探索∠A 与∠1+∠2之间的数量关系,并说明理由.(2)如图②,当点A ’落在四边形BDEC 外部时,探索∠A 、∠1、∠2之间的数量关系,并说明理由.EF。