浅谈直线电机的应用
- 格式:doc
- 大小:26.00 KB
- 文档页数:3
国内外直线电机技术的发展与应用综述一、直线电机技术的发展直线电机是一种能够直接产生直线运动的电机,它是融合了电磁学、力学和控制理论的高新技术产品。
随着工业自动化和智能制造的发展,直线电机技术在国内外得到了广泛的应用和推广。
在这样的背景下,直线电机技术的发展也迅速走向成熟,实现了快速、精密、高效的直线运动控制。
1. 直线电机技术的起源直线电机技术的起源可以追溯到20世纪初,当时的工业生产需要更高效的动力传动设备,传统的旋转电机在直线运动控制方面存在较大的局限性。
由此,人们开始研究和开发能够直接产生直线运动的电机,而直线电机应运而生。
2. 直线电机技术的发展历程20世纪50年代,磁悬浮直线电机技术开始初露头角,但由于材料、加工工艺等方面的限制,当时的直线电机技术仍处于萌芽阶段。
随着硬磁材料和控制技术的不断改进,直线电机技术逐渐成熟,应用领域也不断拓展。
3. 直线电机技术在国际上的发展状况在国际上,直线电机技术已经得到了广泛的应用和研究。
欧美国家在直线电机技术方面具有较强的研发实力和生产能力,其在航空航天、高铁、机器人等领域的应用取得了显著的成绩。
而在亚洲地区,日本和韩国也在直线电机技术领域拥有一定的技术积累和市场份额。
二、直线电机技术的应用直线电机技术作为一种先进的动力传动技术,其在工业生产和科学研究领域得到了广泛的应用,并且在特定领域具有独特的优势。
1. 工业自动化领域在工业生产中,直线电机技术可以实现高速、高精度的直线运动控制,广泛应用于数控机床、激光切割设备、半导体生产设备等领域。
直线电机可以实现电磁直接驱动,避免了传统传动系统中的机械传动链路和间隙,提高了系统的动态响应性能和定位精度。
2. 航空航天领域直线电机技术在航空航天领域的应用也日益广泛。
在卫星姿态控制系统中,直线电机可以实现对姿态控制器的精确调整,提高了卫星的姿态控制精度和灵活性。
在航空器的起落架和飞行控制系统中,直线电机也可以实现更加稳定和精密的动力传递。
直线电机在医学上的应用直线电机是现代电机化技术中的一种新型电机,和其他电机不同的是,它的转动是由电机本身所形成的电磁场和磁场之间的相互作用而达成的,其运行原理紧密依赖于对于线圈中的电流的控制。
在医学领域应用的直线电机,是一种先进的医学设备的核心,还被用于医学教学、研究等领域。
一、直线电机的应用1. 磁共振成像(MRI)系统磁共振成像(MRI)是现代医学诊断的一种先进方式,其成像原理利用磁场和射频波相互作用,对人体内器官和组织进行成像。
其中,磁共振成像仪的核心器件之一就是直线电机。
直线电机在磁共振成像仪中的应用,是控制受试者从磁场中滑动的式样及其位置;同时,也可以用来控制磁铁与永久磁体的距离,精准地调节磁铁产生的磁场。
2. 手术机器人手术机器人是由直线电机控制的一种先进医疗设备。
它通过自动化系统来控制负责病人肃清的手术器械,使手术医生能够通过操纵手术机器人上的控制面板,误伤毒蛇精准地完成手术。
其中,直线电机可以控制机器人的运动和位置,可以使手术医生实现更加出色的手术效果。
3. 神经刺激直线电机还可以应用于神经刺激中,其技术原理在于电流从电极中传进患者的神经中,产生刺激作用,对人体神经产生影响,从而能够改善某些神经性疾病的治疗效果。
4. 医学教学和研究直线电机还被广泛应用于医学教学和研究领域。
通过将直线电机运用于医学实验中,科研人员可以进行人体组织和器官的模拟,将一些手术操作和治疗方法在实际情况中进行测试和研究,为医生提供更加丰富的学术素材,提高诊断和治疗过程的精准度。
二、直线电机的优点:相较于传统的旋转电机和气动设备,直线电机具有很多优点。
1. 最小设计空间:直线电机可以被设计成相对较小的尺寸,对于只有非常有限空间的医疗设备来说,这是非常有价值的。
2. 低噪音:与气动设备和旋转电机相比,直线电机运行时噪音更低,因为其转动部分相对非常紧凑。
3. 精度较高:在操作和控制方面,直线电机比较方便,精度更高。
直线电机在电力驱动系统中的应用研究直线电机是一种利用磁场作用力来实现直线运动的电动机,相比传统的转子电机,它有着更广泛的应用前景。
在电力驱动系统中,直线电机的应用研究已经成为一个热点领域。
本文将从不同角度探讨直线电机在电力驱动系统中的应用研究。
一、直线电机的概述直线电机是一种杰出的电动机械设备,它是一种线性装置,它能够将电能转化为机械能,将直流电能或者交流输入。
它有三个主要部分组成,包含定子、铁芯、滑块和推进块组成。
直线电机的工作原理是基于洛伦兹力和磁场之间的相互作用,通过改变磁场和电流的强弱来改变直线电机的行程和速度。
直线电机在医疗、航空、汽车、工业等领域有着广泛的应用。
二、直线电机在电力驱动系统中的优势与传统的转子电机相比,直线电机在电力驱动系统中具有一些独特的优势。
首先,直线电机具有高效率和高加速度的特点。
由于直线电机不需要通过转子来实现转换,它能够提供更高的加速度和更高的转速,从而提高了整个电力驱动系统的效率。
其次,直线电机具有更好的控制性能。
直线电机能够实现精确的位置控制和速度控制,可以适应多种工况,提高了电力驱动系统的可控性和稳定性。
此外,直线电机还具有更大的功率密度和更小的体积,使其更适合电力驱动系统的集成化和紧凑化设计。
三、直线电机在电力驱动系统中的应用案例1. 电动汽车电动汽车是直线电机在电力驱动系统中的一个重要应用领域。
由于直线电机具有高效率和高控制性能,可以有效提高电动汽车的性能和续航里程。
直线电机的快速响应和无级变速特性,能够实现更好的加速和刹车效果,提高整车的操控性能。
此外,直线电机的紧凑设计和高功率密度特点,也使得电动汽车能够减少整车的体积和重量,增加电池的容量和续航里程。
2. 工业自动化工业自动化是直线电机在电力驱动系统中的另一个重要应用领域。
直线电机具有高精度和高重复定位精度的特点,可以实现工业机器人和自动生产线的精确控制。
直线电机可配备位置反馈传感器,实现闭环控制,以满足不同工况下的自适应和快速响应要求。
直线电机的应用直线电机凭借高速度、高加速、高精度及行程不受限制等特性在物流系统、工业加工与装配、信息及自动化系统、交通与民用以及军事等领域发挥着十分重要的作用。
直线电机主要应用场合:一是应用于自动控制系统,这类应用场合比较多;其次是作为长期连续运行的驱动电机;三是应用在需要短时间、短距离内提供巨大的直线运动能的装置中。
直线电机可以在几秒钟内把一架几千公斤重的直升飞机拉到每小时几百公里的速度,它在真空中运行时,其时速可达几千上万公里。
在军事上,人们利用它制成各种电磁炮,并试图将它用于导弹、火箭的发射;在工业领域,直线电机被用于生产输送线,以及各种横向或垂直运动的一些机械设备中;直线电机除具有高速、大推力的特点以外还具有低速、精细的另一特点,例如,步进直线电机,它可以做到步距为1μm的精度,因此,直线电机又被应用到许多精密的仪器设备中,例如计算机的磁头驱动装置、照相机的快门、自动绘图仪、医疗仪器、航天航空仪器、各种自动化仪器设备等。
除此之外,直线电机还被用于各种各样的民用装置中,如电动门、电动窗、电动桌、椅的移动,门锁、电动窗帘的开、闭等等,尤其在交通运输业中,人们利用直线电机制成了时速达500km以上的磁浮列车。
直线电机可以认为是旋转电机在结构方面的一种变形,它可以看作是一台旋转电机沿其径向剖开,然后拉平演变而成。
近年来,随着自动控制技术和微型计算机的高速发展,对各类自动控制系统的定位精度提出了更高的要求,在这种情况下,传统的旋转电机再加上一套变换机构组成的直线运动驱动装置,已经远不能满足现代控制系统的要求,为此,近年来世界许多国家都在研究、发展和应用直线电机,使得直线电机技术发展速度加快,应用领域越来越广。
直线电机的优点是:结构简单、反应速度快、灵敏度高、随动性好、密封性好、不怕污染、适应性强(由于直线电机本身结构简单,又可做到无接触运行,因此容易密封,各部件用尼龙浸渍后,采用环氧树脂加以涂封,这样它就不怕风吹雨打,或有毒气体和化学药品的侵蚀,在核辐射和液体物质中也能应用)、工作稳定可靠、寿命长(直线电机是一种直接传动的特种电机,可实现无接触传递,故障少,几乎不需要维修,又不怕振动和冲击)、额定值高(直线电机冷却条件好,特别是长次级接近常温状态,因此线负荷和电流密度可以取得很高)、有精密定位和自锁的能力(和控制系统相配合,可做到0.001mm的位移精度和自锁能力)。
直线电机应用场景直线电机是一种将电能转换为机械能的装置,其特点是具有高速度、高精度和高效率。
直线电机的运动方式是直线运动,与传统的旋转电机相比,直线电机具有更大的功率密度和更快的响应速度,因此在许多应用场景中得到了广泛的应用。
一、工业自动化领域在工业自动化领域,直线电机具有快速、准确的特点,可以广泛应用于自动化生产线的装配、搬运、分拣等工作。
例如,在汽车生产线上,直线电机可以用于汽车零部件的装配,可以实现高速、高精度的定位,提高生产效率和产品质量;在电子产品生产线上,直线电机可以用于电子元器件的分拣,可以实现快速、准确的分选,提高生产效率和降低成本。
二、医疗设备领域在医疗设备领域,直线电机可以应用于医疗器械的定位、搬运、注射等工作。
例如,直线电机可以用于医疗机器人的关节驱动,实现精确的运动控制,可以用于手术机器人的操作,实现高精度的手术;直线电机还可以用于医疗设备的搬运,可以实现轻松、快速地搬运医疗设备,提高医疗服务效率。
三、航空航天领域在航空航天领域,直线电机可以应用于飞机、卫星等航空器的姿态控制、推进系统等工作。
例如,直线电机可以用于飞机的飞行控制系统,实现飞行器的稳定性和精确控制;直线电机还可以用于卫星的姿态控制系统,实现卫星的定位和姿态调整。
四、智能家居领域在智能家居领域,直线电机可以应用于智能家居设备的控制和调节。
例如,直线电机可以用于智能窗帘的控制,实现窗帘的开合和调节;直线电机还可以用于智能家居设备的定位和调节,例如智能家居设备的升降、伸缩等功能。
五、交通运输领域在交通运输领域,直线电机可以应用于高速列车、磁悬浮列车等交通工具的推进系统。
例如,直线电机可以用于高速列车的推进系统,实现高速列车的高速、平稳运行;直线电机还可以用于磁悬浮列车的推进系统,实现磁悬浮列车的高速、低噪音运行。
总的来说,直线电机具有快速、准确、高效的特点,可以广泛应用于工业自动化、医疗设备、航空航天、智能家居、交通运输等各个领域,为人类生活带来便利和效益。
直线电机主要应用于三个方面:一是应用于自动控制系统,这类应用场合比较多;二是作为长期连续运行的驱动电机;三是应用在需要短时间、短距离内提供巨大的直线运动能的装置中。
在实际工业应用中的稳定增长,证明直线电机可以放心的使用。
本期讨论直线电机的运用Linear motor:直线伺服电机应用昆山佳德锐自动化系统销售中心 交流论坛: www.hilife.me工业之美什么是直线电机特点1.什么是直线电机 直线电动机(或称线性马达)(Linear motor)是电动机的一种,其原理与传统的电动机不同,直线电机是直接把输入电力转化为线性动能,与传统的扭力及旋转动能不同。
直线电机又分为低加速及高加速两大类,当中低加速直线电机适用于磁悬浮列车及其他地面交通工具,而高加速直线电机能把物件在短时间内加至极高速度,适用于粒子加速器、制造武器等。
2.直线电机是如何工作的下面简单介绍直线电机类型和他们与旋转电机的不同,最常用的直线电机类型是平板式,U型槽式和管式。
线圈的典型组成是三相,有霍尔元件实现无刷换相,直线电机用HALL换相的相序和相电流。
直线电机经常简单描述为旋转电机被展平,而工作原理相同。
动子(forcer,rotor)是用环氧材料把线圈压缩在一起制成的,而且磁轨是把磁铁(通常是高能量的稀土磁铁)固定在钢上.电机的动子包括线圈绕组,霍尔元件电路板,电热调节器(温度传感器监控温度)和电子接口。
在旋转电机中,动子和定子需要旋转轴承支撑动子以保证相对运动部分的气隙(airgap)。
同样的,直线电机需要直线导轨来保持动子在磁轨产生的磁场中的位置。
和旋转伺服电机的编码器安装在轴上反馈位置一样,直线电机需要反馈直线位置的反馈装置--直线编码器,它可以直接测量负载的位置从而提高负载的位置精度。
3.直线电机分类管状直线电机圆柱形动磁体直线电机的磁路与动磁执行器相似。
区别在于线圈可以复制以增加行程。
典型的线圈绕组是三相组成的,使用霍尔装置实现无刷换相。
直线电机的原理与应用1. 简介直线电机是一种将直线运动转换为电动力的电机。
与传统的旋转电机相比,直线电机具有更高的运动精度和效率,广泛应用于工业自动化、机器人技术和交通运输等领域。
2. 原理直线电机的工作原理基于洛伦兹力和磁力线相互作用的原理。
通常由线圈和磁场组成。
当电流通过线圈时,会产生一个磁场,与磁场相互作用,产生力使得直线电机运动。
3. 结构与组成直线电机主要由定子、滑块和导轨组成。
•定子:定子是由线圈和磁铁组成的部分。
线圈中通电流后会产生一个磁场,磁铁则产生静态磁场。
•滑块:滑块是直线电机的运动部分,滑块上有线圈,当线圈通电后与定子产生相互作用,使滑块运动。
•导轨:导轨是直线电机固定部分,滑块沿导轨直线运动。
4. 工作原理直线电机的工作原理是利用洛伦兹力的作用。
当通过线圈的电流与磁场相互作用时,会产生电动力,使直线电机产生运动。
具体工作原理可分为以下几个步骤:1.电流通入线圈:通过控制线圈的电流,来控制直线电机的运动。
2.产生磁场:线圈通电后产生一个磁场,在直线电机中与静态磁场相互作用。
3.产生洛伦兹力:当线圈中的电流与磁场相互作用时,会产生一个电动力,使得直线电机运动。
4.运动控制:通过控制线圈中的电流,可以调节电动力的大小和方向,从而实现对直线电机运动的控制。
5. 应用领域直线电机由于其特殊的结构和工作原理,具有广泛的应用领域。
•工业自动化:直线电机广泛应用于自动化生产线上,可以实现对工件的精确定位和高速运动。
•机器人技术:直线电机在机器人技术中被用于机械臂、线性推进等部件的驱动,实现精确的运动控制。
•交通运输:直线电机被应用于磁悬浮列车和磁浮列车等交通工具上,可以实现高速、平稳的运动。
•医疗设备:直线电机在医疗设备中的应用越来越广泛,如医用CT、核磁共振等设备中的运动部件。
•光学仪器:直线电机可以用于光学仪器的焦平面控制,实现高精度的自动对焦功能。
6. 优势与挑战直线电机相对于传统旋转电机具有以下优势:•高速、高精度:直线电机能够实现较高的运动速度和更高的运动精度,适用于对运动要求较高的场合。
直线电机的特点及应用直线电机是一种将电能转化为机械运动的电机。
与传统的转子电机相比,直线电机具有以下特点:1. 直线运动:直线电机主要产生直线运动,因为其电磁系统与运动部件是沿直线排列的。
这使其在一些特定的应用中具有较大的优势,尤其在需要大范围、高速度的直线运动时。
2. 高速度和加速度:由于直线电机不需要通过转子转动,可以直接转化为运动,因此可以实现较高的速度和加速度。
这在一些需要快速运动的应用,如包装机械、数字打印机等中非常有用。
3. 精确定位和控制:直线电机可以通过电流的调节来实现对运动的精确控制。
结合传感器和控制系统,可以实现高精度的定位和轨迹控制。
这使其在一些需要高精度定位的应用中具有较大的优势,如半导体制造设备、光刻机等。
4. 高效能:由于直线电机将电能转化为线性运动而不需要传递转矩,所以相比传统的转子电机具有更高的能量转换效率。
这使其在一些对能量效率要求较高的应用中得到广泛应用,如电动汽车、太阳能跟踪系统等。
5. 静音运行:直线电机不需要机械传动装置,因此减少了传统电机的噪音来源。
这使其在一些对噪音要求较高的应用中得到广泛应用,如医疗设备、光学设备等。
直线电机的应用非常广泛,包括以下几个方面:1. 自动化生产:直线电机可以应用在自动化生产线上,如流水线机械、机器人等。
其高速度和精确控制的特点使其能够快速完成复杂的生产任务。
2. 交通运输:直线电机可以应用在交通运输领域,如高速列车、磁悬浮列车等。
其高速度和能量效率的特点使其能够提供更快、更高效的交通服务。
3. 医疗器械:直线电机可以应用在医疗器械中,如MRI扫描仪、手术器械等。
其精确定位和静音运行的特点使其能够提供高精度和舒适的医疗服务。
4. 光学设备:直线电机可以应用在光学设备中,如光刻机、平移台等。
其高速度和精确控制的特点使其能够实现高精度的光学加工和定位。
5. 能源设备:直线电机可以应用在能源设备中,如风力发电机、太阳能跟踪系统等。
直线电机原理及应用直线电机(Linear Motor)是一种将电能转化为机械能的装置,利用电磁力产生线性运动。
其工作原理与传统的旋转电机相似,都是基于洛伦兹力(Lorentz force)的作用。
直线电机通常由固定部分和可移动部分组成。
固定部分包括固定磁场和电磁线圈,可移动部分包括电磁激励体和传动机构。
当电流通过电磁线圈时,会产生电磁场,与磁场耦合的电磁激励体受到洛伦兹力的作用,从而产生直线运动。
直线电机的应用非常广泛。
以下是几个常见的应用领域:1.输送系统:直线电机可以用于物料输送、装卸运输线、自动化生产线等,以替代传统的传动机构和传送带。
它可以实现高速、高精度的输送,并且无需维护和保养。
2.交通运输:直线电机可以应用于高速列车、磁悬浮列车和地铁等交通工具的动力系统中,提供高速、平稳的运动。
相较于传统的转子电机,直线电机无需传递动力,减少了传动损耗和噪音。
3.机床:直线电机可用于数控机床、磨床和镗床等工具机的进给系统中。
它具有响应快、加速度高的特点,能够提高加工效率和加工质量。
4.半导体设备:直线电机可以用于半导体设备中的定位和移动系统。
它具有高精度、高稳定性的特点,适用于要求极高位置控制和清洁环境的应用。
5.医疗设备:直线电机可以用于医疗设备中的定位和推动系统。
例如,它可以用于手术机器人或医疗床的控制,提供精确的定位和平滑的运动。
直线电机相较于传统的机械传动系统具有许多优势。
首先,直线电机工作原理简单,结构紧凑,具有较高的功率密度。
其次,它可以实现高速、高精度的控制,具有良好的动态响应特性。
另外,直线电机无需传递动力,减少了传动损耗和噪音,提高了效率和可靠性。
此外,直线电机具有自整定、自动保护和自动检测等功能,可提高系统的智能化程度。
尽管直线电机有很多优点,但也存在一些局限性。
首先,直线电机的制造和维护成本较高,因为其结构较为复杂。
其次,直线电机在工作过程中会产生较大的磁场和电磁干扰,可能对周围设备和人员产生一定的影响。
浅谈直线电机的应用
简要介绍直线电机在轨道交通运输、机械设备、物料搬运等多领域的实际应用情况,分析各方面应用的优势和成果,指出直线电机的应用前景,将是未来的发展方向。
标签:直线电机;磁悬浮;直接传动
1 概述
直线电机也称线性电机,线性马达,直线马达。
常用的直线电机有平板式、U型槽式和管式等。
直线电机可以认为是旋转电机在结构上沿径向展开,平铺而成。
因为直线电机无需把圆周运动转化成直线运动,所以省去了大量的传动机构,大大简化系统的结构,体积和重量大大降低,同时传动功耗也得到减少,效率也得到提高。
由于自动化控制技术以及微型计算机技术的快速发展,直线电机的应用效果在很多方面得到完善,如定位精度方面、响应速度等等。
为此,近年来许多国家都在积极研究直线电机的应用,这让直线电机的应用推广越来越丰富。
2 直线电机应用
2.1 轨道交通方面
直线电机应用首当其冲的是磁悬浮列车方面,而磁悬浮列车的承载结构主要分为常导吸浮型和超导斥浮型两类。
常导吸浮:是指直线电机导体线圈在常温下工作,磁场极性相异产生吸力为原理使列车悬浮,通常称为常导吸浮型,主要代表为德国的磁悬浮。
超导斥浮:是指直线电机线圈在低温时的超导效果,形成抗磁性磁极斥力作用为原理,通常称为超导斥浮型,主要代表为日本的磁悬浮。
传统轨道交通的造价上涨、运营提速,使得磁悬浮的应用前景一片光明。
加上电力技术和控制技术的不断发展,使其与传统轨道交通有着巨大的竞争力。
2.2 机械设备方面
由于直线电机的线性运动的特点,在机械设备和机电设备上都有广泛的应用。
直线电机驱动的各种数控机床,在机械加工方面多用于往复运动的动力源,替代了传统机械丝杆传动。
在冶金设备中,电磁泵、金属搅拌器;纺织设备中,电梭子、割麻装置;自
动化仪表设备中,电动执行机构。
传统的传动过程中,电动机需要利用皮带、丝杠副、齿轮、蜗轮蜗杆、联轴器、离合器等中间环节。
在这些环节中都具有较大的转动惯量、弹性变形、运动滞后、摩擦、反向间隙、振动、噪声甚至磨损。
直线电机能从根本上解决这些问题,即取消这些中间环节。
这无疑是工业设备的又一次阶段性提升。
国内的直线电机研究从1995年就已经开始,如清华大学的长行程永磁直线伺服系统,国防科技大学的活塞非圆切削刀具等。
还有一些企业也进行直线电机应用如平面磨床、激光切割机、加工中心等,取得了丰富的实际应用效果,积累了大量的应用经验。
2.3 物料搬运方面
直线电机在各种物料搬运方面具有很多独特的优势,如:直线电机的电梯垂直升降应用;直线电机的快递包裹、行李、原材料等的水平运输分拣;直线电机在各种流水线上的加工、生产、装配、检测工序转换;甚至在立体车库的储藏和调度方面。
这些物料搬运设备采用直线电机作为驱动系统,能适应多批量的灵活安排需求。
与传统的传输设备相比,直线电机驱动的传送带安全性、稳定性、维修效率、耗能方面都具有很高的价值和意义,甚至还有用于核废料的搬运的直线电机设备。
2.4 其他方面
民用行业方面直线电机应用也有很多推广,如:门窗、桌椅等。
还有用直线电机驱动的洗衣机、打磨机、烘干机、切割工具等。
电脑光驱设备,外围接口设备,电子仪器仪表中也有很多直线电机的存在,如扫描仪、打印机。
办公自动化设备中如绘图仪、记录仪等有所应用。
军事上的应用更是不少,电磁炮、航空母舰的电磁弹射装置等等;航空航天方面,卫星和航天飞船上也应用了直线电机。
3 发展方向
高精度方面,通过不断的伺服驱动技术研究,配合磁路电路的制造工艺,提高直线伺服系统的适应性和设备应用的集成度。
选择和研发优良的传感器,一同构建高效闭环伺服系统,让直线电机的应用精度突破传统层次。
大载荷方面,新材料的研究和发现,以及常温超导的技术的突破,能为直线电机的重载应用,奠定坚实的基础。
常温超导的发展也为电机的发展提供了新的可能性。
降低谐波畸变率,能使过载能力得到极大提高。
成本控制方面,不断进行工艺改造,利用先进生产技术,为直线电机的制造拓宽道路。
在寻求高性能直线电机伺服控制策略方面通过大量的研究和实践,提出了新思路,新方案。
随着被控对象的复杂化及控制要求的不断提高,可采用多种控制策略相结合的方法,把不同的控制策略进行汇总形成复合控制方案,这也是为应用发展的一大趋势。
高可靠性方面,为了解决直线电机在数控机床进给系统中的应用存在的问题,利用位置反馈、控制技术的有效应用配合,使各功能部件(电机、编码器、轴承、接线器、电缆、导轨等)集成化、小型化、模块化,以提高稳定性和可靠性。
减小电机尺寸所产生的散热问题,可以从结构设计上进行不断尝试。
隔磁与防护也是直线电机在的发展要求,比如机床很难过切削液、铁屑、灰尘等会对电机污染腐蚀,有的甚至堵塞,必须封闭电机。
永磁对铁磁物质的强吸引力存在,为了可靠隔磁,可采用不銹钢罩进行封闭。
直线电机还需要有缓冲装置和限位开关,防止动子失控碰撞。
电缆线也要加保护,信号线也要加屏蔽措施。
虽然直线电机在某些应用方面无法与旋转电机相比,但是在旋转电机应用瓶颈的那些领域,直线电机有着无限广阔的前景。
4 结束语
直线电机优点很多,如结构简单、无磨差、噪声低、高速度、高精度、大载荷等,但是缺点也仍然存在,由于磁路开断、安装气隙等。
权衡利弊才是选择和应用直线电机的关键,选择能够充分发挥优势的直线电机应用方向,才能够克服直线电机的缺点,完善直线电机的优点,将它的高效和便利发挥出来。
直线电机不仅需要新材料、新工艺,还需要新技术的应用和新标准的建立。
积极开发直线电机的新产品,不仅能促进我国电机行业的发展,而且还可把我国电机行业的科学技术提高到一个新水平。
参考文献
[1]叶云岳.直线电机在现代机床加工业中的应用[R].中国机械工程学会报告,2007,11.
[2]王伟进.直线电机的发展及应用概况[J].微电机,2004,37.
[3]张伯霖.直线电机及其在超高速机床上的应用[J].中国机械工程,1997,8.
[4]张伟.线电机驱动技术在高速机床上的应用[J].机械工程师,2012.
[5]柯红金.数控机床用直线电动机控制技术[J].机械制造与自动化,2012.。