超声波电机的原理与应用
- 格式:pdf
- 大小:169.58 KB
- 文档页数:2
微特电机课程论文超声波电动机学院:专业班级:学号:姓名:指导教师:日期:摘要超声波电机是一个机电耦合系统,涉及到振动学、摩擦学、材料学、电力电子技术、自动控制技术和实验技术等。
超声波电动机利用压电材料的逆压电特性,激发电机定子的机械振动,通过定转子之间的摩擦力,将电能转换为机械能输出,驱动转子的定向运动。
与传统电机相比,它具有体积小、低速大转矩、反应速度快、不受磁场影响、保持力矩大等优点,是一项跨学科的高新技术。
近几年来超声波电动机已成为国内外在微型电机方面的研究热点。
关键字:超声波电机、逆压电效应、机械振动、高新技术。
一、超声波电动机简介超声波电动机(Ultrasonic Motor缩写USM)是以超声频域的机械振动为驱动源的驱动器。
由于激振元件为压电陶瓷,所以也称为压电马达。
80年代中期发展起来的超声波电机(Ultrasonic motor,USM)是基于功能陶瓷的超声波频率的振动实现驱动的新型驱动器。
超声电机是一个典型的机电一体化产品,由电机本体和控制驱动电路两部分组成。
产品涉及到振动学、波动学、材料学、摩擦学、电子科学、计算技术和实验技术等多个领域。
超声波电动机打破了由电磁效应获得转速和转矩的传统电机的概念,它利用压电材料的逆压电效应,使振动体在超声频段内产生振动,通过定子与动子间的摩擦输出能量。
二、超声波电动机的分类1. 环状或盘式行波型超声波电动机由底部粘接着压电陶瓷元件的环状定子和环状转子构成。
对极化后的压电陶瓷元件施加—定的高频交变电压,在定子弹性体中形成沿圆周方向的弯曲行波。
对定、转子施加一定的预压力,转子受到与行波传播方向相反的摩擦力作用而连续转动,定子上的齿槽用于改善电机的工作性能。
2. 直线式行波型超声波电动机(1)双Langevin振子型:利用两个Langevin压电换能器,分别作为激振器和吸振器,当吸振器能很好地吸收激振器端传来的振动波时,有限长直梁似乎变成了—根半无限长梁,这时,在直梁中形成单向行波,驱动滑块作直线运动。
超声电机原理
超声电机是一种利用超声波产生的机械振动来实现运动的电机。
它具有体积小、效率高、响应速度快、噪音小等优点,因此在各种
领域得到了广泛的应用。
超声电机的工作原理主要包括超声波的产生、传播和转换成机械振动三个方面。
首先,超声电机的工作原理涉及到超声波的产生。
超声波是指
频率高于20kHz的声波,它可以通过压电效应或磁致伸缩效应来产生。
在超声电机中,常用的是压电效应。
当施加电压到压电陶瓷上时,会产生压电效应,使其产生机械振动,从而产生超声波。
这种
超声波具有高频率、短波长的特点,可以实现精细的机械控制。
其次,超声电机的工作原理还涉及到超声波的传播。
超声波在
传播过程中会受到介质的影响,不同介质对超声波的传播速度和衰
减程度都有影响。
因此,在超声电机中需要考虑介质的选择以及超
声波的传播路径,以确保超声波能够准确地传播到需要的位置。
最后,超声电机的工作原理还包括超声波的转换成机械振动。
当超声波传播到需要的位置时,可以通过压电陶瓷或磁致伸缩材料
将超声波转换成机械振动。
这种机械振动可以驱动机械装置实现运
动,如旋转、线性运动等。
由于超声波具有高频率和短波长的特点,因此可以实现微小的机械振动,从而实现精密的位置控制。
总的来说,超声电机的工作原理是通过产生、传播和转换超声
波来实现机械振动,从而实现运动控制。
它具有许多优点,如体积小、效率高、响应速度快、噪音小等,因此在精密仪器、医疗设备、光学设备等领域得到了广泛的应用。
随着科技的不断发展,相信超
声电机在未来会有更广阔的应用前景。
超声波机的工作原理
超声波机的工作原理是利用超声波的传播特性来实现测量、成像、清洗、焊接、切割等功能。
其基本原理如下:
1. 产生超声波:超声波机内部包含一个发声部件,通常是由一块压电陶瓷晶体组成。
当电流通过晶体时,晶体会振动产生高频机械波,即超声波。
2. 传输超声波:超声波通过振动的晶体传播到波导器或换能器上,然后通过波导器或换能器输出到工作介质中。
3. 接收超声波:波导器或换能器不仅能够将电能转换为机械能产生超声波,还可以将机械能转换为电能接收到返回的超声波信号。
4. 处理超声波信号:超声波机内部的电子元件会对接收到的超声波信号进行放大、滤波、控制等处理,以确保信号的质量和可靠性。
5. 分析处理结果:处理后的超声波信号可以用来测量物体的距离、检测缺陷、成像内部结构等。
通过比较发送的超声波和接收到的超声波之间的差异,可以得出所需的测量结果。
总结起来,超声波机主要通过发声、传声、接声、处理和分析这几个步骤来实现超声波的产生、传播和利用。
根据不同的应用需求,超声波机可以在工业、医疗、环境监测等领域发挥作用。
超声波电机在医疗领域的应用摘要:本文主要介绍了一种利用逆压电效应获得驱动力的的新型电机——超声波电机。
通过说明超声波电机的特定优点及工作原理,分析并展望了超声波电机在医疗领域等方面的应用。
关键词:超声波电机;医疗领域;注射器;内窥镜探头;多自由度关节1 引言超声波电动机是一种借助摩擦传递弹性超声波振动来获得驱动力的新型电机,和传统的电磁式电机的工作机理不同,超声波电机内部没有线圈和磁体,不需要通过电磁作用产生驱动力,这使其它具有低速大转矩、体积小、重量轻、无电磁干扰、响应速度快、运行时无噪声、断电自锁等特定优点。
上个世纪八十年代,日本的指田年生首次提出并制造出了一种可应用的驻波型超声波电机。
继而,国内外开始投入了很多力量对超声波电机进行应用研究。
在过去的几十年里,医疗领域是微电机技术应用最具代表性的领域之一,超声波电机在医疗领域的应用研究也一直都是焦点。
人们利用微型超声波电机攻克了一些医疗领域的技术难题。
2 超声波电机的原理2.1压电效应一般在电场作用下,某些电介质在沿一定方向上受到外力作用而变形,带电粒子发生极化,某些介质也可以在纯机械应力作用下发生极化,并同时在两端表面内出现正负相反的电荷,这种现象称为正压电效应;反之,将电介质置于外电场中,在电场的作用下,这些介质会发生位移,随之电介质发生形变,当电场去掉后变形也消失,这种现象称为逆压电效应,也叫电致伸缩效应。
正压电效应和逆压电效应统称为压电效应。
2.2超声波电机的工作原理超声波电机是基于压电材料的逆压电效应或电致伸缩效应使其电机定子产生微观机械振动,从而使用定子表面质点形成椭圆运动,然后通过定子和转子之间的摩檫力,将电能转换为机械能输出,从而驱动转子的运动。
超声波电机内部结构一般由振动体(定子)和移动体(转子)组成,振动体由压电陶瓷和金属弹性材料组成,移动体有弹性体和摩擦材料等组成。
3 医疗领域的发展随着我国经济的发展和人民生活的改善,医疗服务的需求逐步增加,我国的医疗领域技术也面临着新的挑战。
超声波电机工作原理
超声波电机是一种利用超声波振动产生机械运动的电机,其工作原理基于超声波的压电效应和谐振效应。
以下是超声波电机的基本工作原理:
1. 压电效应:超声波电机的关键部件是由压电陶瓷构成的振动片。
压电陶瓷具有压电效应,即当施加电场时,陶瓷发生机械变形,而当施加机械应力时,陶瓷产生电场。
2. 超声波振动产生:通过在压电陶瓷上施加高频交变电压,可以使陶瓷片振动,产生超声波。
这种超声波通常在20 kHz以上,远远超出人耳可听范围。
3. 谐振效应:超声波电机采用谐振效应,即在特定的频率下,振动片的振动幅度达到最大值。
通过调整施加在压电陶瓷上的电压频率,使其与振动片的谐振频率匹配,可以提高振动效率。
4. 工作部件:超声波电机中通常包含振动片、导向块和负载。
振动片振动时,通过导向块将振动传递到负载上,从而实现机械运动。
5. 无刷结构:由于超声波电机是通过振动产生机械运动,通常不需要传统电机中的刷子和换向器。
因此,超声波电机具有无刷结构,减少了摩擦和磨损。
超声波电机的优点包括高效率、精密控制、低噪音、无电磁干扰等特点。
它在一些需要高精度、低噪音、快速响应的应用领域得到广泛应用,如光学设备、精密仪器、医疗器械等。
超声波电机介绍及其应用一、超声波电机的工作原理超声学科结合的新技术。
超声电机不像传统的电机那样,利用电磁的交叉力来获得其运动和力矩。
超声电机则是利用压电陶瓷的逆压电效应和超声振动来获得其运动和力矩的,将材料的微观变形通过机械共振放大和摩擦耦合转换成转子的宏观运动。
二、超声波电机的产生20 世纪90 年代日本佳能公司研制出一种压电电动机,这种电动机的工作原理是利用逆压电效应把电能转换成机械能。
常见的压电电机也是由定子和转子组成,但定子是由压电材料和金属材料组合制成,转子是由金属材料制成;压电材料把电能转换成机械振动能,激励定子金属体振动;转子与定子相接触,通过摩擦力,定子的振动驱动转子运动。
由于定子的振动频率一般在大于20kHz 的超声频段,因此人们也将压电电机称为超声电机。
三、超声波电机的特点(1)超声电机可以得到较低转速,因此输出力矩较大,可以省去减速机构直接带动负载。
(2)因为超声电机不使用电磁场作为驱动力,因此电磁辐射小。
许多情况下,不希望有电机产生强电磁干扰,或者在强磁场环境中,电磁电机的正常工作会受到影响,而超声电机不需要做太多的电磁屏蔽处理就可以在这些条件下工作。
(3)超声电机依靠定、转子之间的接触摩擦作为驱动方式,关闭电源后转子就会马上停止,并在摩擦力的作用下固定不动(4)超声电机的响应时间较短,一般在十几毫秒以内。
(5)超声电机没有电磁线圈,可以不用铜材,节省原料造价。
(6)超声电机的转速可以通过改变驱动频率进行调节,比较灵活。
(7)超声电机在很小尺寸上都可以有效工作。
四、超声电机的分类(1)环形行波超声波电机。
在弹性体内产生单向的行波,利用行波表面质点的振动来传递能量,属连续驱动方式,其基础理论和应用技术均较成熟。
(2)小型柱体摇摆型超声波电机目前行波型超声波电机已有较成熟的设计方法,但该型电机在小直径(小于20mm)条件下,输出性能逐渐失去低速大扭矩的特点,而且由于其结构的限制,效率也很难提高。
超声波电机的工作原理
1 超声波电机
超声波电机是一种新型的无极变速电机,它的概念来源于无极步
进电机的原理。
它的基本原理是利用来自多个超声波发射器的超高频
信号来改变电机的转速。
这对传统的步进电机的控制有着巨大的改变。
构成
超声波电机的主要组件由多个超声波发射器、接收器和控制电路
组成。
每个超声波发射器负责将一定频率的超声波脉冲发送出去。
接
收器将接收电机发出的超声波脉冲转变为电信号,然后经由控制电路
对电机进行控制。
原理
超声波电机是一种发射和接收超声波信号来控制电机转速的无极
变速器。
当多个超声波发射器发送超声波信号时,电机体内的接收器
将接收到超声波信号,并将之转化为电信号。
控制电路则接收到转变
后的电信号,根据其不同频率来控制电机的转速或者是发出停止命令。
优势
超声波电机拥有无极变速电机的许多优点,其输出功率强、切换
灵活,不受电源造成的噪声干扰,稳定且高效。
此外,超声波电机的
信号可以传播任何距离,不受任何电磁干扰。
最后,超声波电机还可
以通过调整频率来改变电机的转速,从而满足用户对变速的要求。
结论
超声波电机的技术并不难,但它的应用非常广泛。
它能解决很多变速性能低、受电源影响大等方面的问题,同时满足大多数应用情况下的控制要求,而且具有很好的稳定性、高效率。
超声波电机的原理与应用
周传运
超声波电机(Ultrasonic Motor ,USM )是国外近20年发展起来的一种新型电机。
事实上,在超声波电机问世之前,已有以压电效应驱动的电机,但其频率并不局限于超声波范围。
早在1948年,威廉和布朗就申请了“压电马达”的美国专利;1964年,前苏联基辅理工学院设计了第一个压电旋转电机;1970~1972年,西门子公司和松下公司发明了压电步进电机,不过因无法达到较大的输出转矩而没能实际应用。
1980年,日本的指田年生研制成超声波压电电动机(即现代意义上的超声波电动机),克服了传统压电电动机转换效率低和变位微小的缺陷,使压电电动机进入工业实用阶段。
一、超声波电机的原理和结构超声波电机的原理 超声波电机利用压电材料的逆压电效应①产生超声波振动,把电能转换为弹性体的超声波振动,并把这种振动通过摩擦传动的方式驱使运动体回转或直线运动。
磁极和绕组,它一般由振动体②和移动体③组成,为了减少振动体和移动体之间相对运动产生的磨损,通常在二者间加一层摩擦材料。
当在振动体的压电陶瓷(PZT )上施加20KHz 以上超声波频率的交流电压时,赫的超声波振动,使振动体表面起驱动作用的质点形成一定运动轨迹的超声波频率的微观振动(振幅一般为数微米),如椭圆、李萨如轨迹等,该微观振动通过振动体和移动体之间的摩擦作用使移动体沿某一方向做连续宏观运动。
因此,超声波电机是将弹性材料的微观形变通过共振放大和摩擦耦合转换成转子或滑块的宏观运动。
根据这一思想,日、德等国近几年相继研发出多种超声波电机,如环形行波USM 、步进USM 、多自由度USM 等,且行波型USM 已有较成熟的设计。
下面以行波型USM 的
旋转说明其工作原理。
行波型USM 要旋转,需具备两个条件:与转子相接触的定子表面质点须做椭圆运动,定子、转子之间的接触面须有摩擦力。
图1中的弹性体为定子,其上部为转子,定子、转子间夹一层摩擦材料。
摩擦材料一般粘接在转子表面上。
利用电能激励压电陶
瓷复合振子,使之产生超声振动,并在弹性体内产生
行波。
当电信号频率调整到与定子(弹性体)的机械共振频率一致时,定子的振动幅度最大,并形成行波。
在行波的弯曲传播过程中,定子表面的质点就会形成椭圆振动轨迹。
当无数个这样的粒子都以同相位振动时,就会在定子表面形成力矩,力矩方向与行波传播方向相反。
该力矩依靠定子、转子间的摩擦力驱动转子运动。
转子的运动速度由定子表面质点的振幅和频率决定,振幅大则速度快;另外,加大定子、转子间压力,增加其间的摩擦力,也会增大转子受到的力矩。
图1 定子表面质点的椭圆运动轨迹
环形行波型超声波电机的结构 图2为环形行波型USM 的结构示意图。
主要部件为定子和转子。
定子由弹性环、压电陶瓷环和粘接在其上的带有凸齿的弹性金属环组成,弹性环由不锈钢、硬铝或铜等金属制成。
凸齿的作用是放大定子表面振动的振幅,使转子获得较大的输出能量。
压电陶瓷环采用的是施加交变电压后能够产生机械谐振位移的“硬性”压电陶瓷材料,其质量好坏直接影响电机性能。
粘接剂多用高温固化的环氧树脂胶。
图2 环形行波型USM 的结构示意图
转子由转动环和摩擦材料构成。
转动环一般用
不锈钢、硬铝或塑料等制成。
摩擦材料必须牢固地粘接在转子的接触表面,从而增加定子、转子间的摩
・
63・现代物理知识
擦系数,一般为高聚物,多采用聚酰胺或某些树脂通过胶合芳香族聚酰胺纤维制成的片状合成塑料板。
二、超声波电机的技术特点
不受磁场干扰的影响 从其原理和结构可以看出,USM没有线圈与磁路,因而在运转时不受外界磁场影响,而且本身也不会产生磁场。
在一些无法应用传统电磁电机的特殊场合———强磁场干扰和严格限制磁场等(如核磁共振装置、磁悬浮列车、严格消磁的精密仪器等必须采用电机的部位),USM都能一展身手。
能够直接驱动负载 现在我们常用的电磁电机,若要使其产生较大的转矩,必须采用减速机构,因转矩与电机的旋转速度成反比;而USM的转速一般较低,且能直接产生较大的转矩,无须减速机构,就可直接驱动负载,从而减少了减速机构所占用的体积,也使应用更具灵活性。
据报道,浙江大学于2002年7月初步建立了大力矩USM数学模型,其力矩达1310N・m,该数值与1kW/380V四极三相异步电机的最大输出转矩相当。
断电后具有自锁功能 一般的电磁电机在断电后并不会立即停止,而USM在突然断电后会立即停止运转,不会因惯性继续运动。
在需要移动定位的场合,USM的这一特点使其易于实现精确定位,精度可达到纳米级。
除此之外,USM还具有噪音低、重量轻、体积小、响应速度快、结构简单等一系列优点。
然而由于USM依靠摩擦力驱动,导致功耗增加,同时摩擦生热也会造成PZT老化等一系列问题,从而限制了USM的推广应用。
现阶段的USM寿命一般较短,同时也不适合高速旋转。
USM的磨耗一直是研究者关注的焦点,如何减少磨耗、怎样由直接接触驱动改为间接驱动等问题,是国内外研究者的努力方向。
三、超声波电机应用范围及我国的现状
USM有望在各种工业控制装置、机器人、航空航天、家电产品、办公自动化设备、高精密仪器等方面替代现有传统电机所构成的驱动机构和伺服系统。
日本有关专家预言:21世纪将是超声波电机广泛应用的时代。
早在1994年,美国有关研究报告预计:在不远的将来,超声波电机将取代全部小型传统
电机。
据文献报道,日本1994年超声波电机的市场规模已达200亿日元,2005年达1500亿~2500亿日元。
日本佳能(CANON)公司最早将USM用于照相机的透镜驱动,因为USM可以做成中空结构,使对焦系统结构简单,而且直接驱动、自锁省去了减速机构,电机断电后会自动停止,照相机对焦快速、准确。
扫描隧道显微镜(STM)也通过USM调焦,美国航空航天局用于检测宇宙飞船船舱外壁的多功能自动爬行系统中也采用USM。
USM的研究已引起我国的高度重视,一直作为基金重点支持项目。
我国从20世纪90年代开始研究超声波电机,但还没有规模应用的产品。
东南大学超声波电机研究小组从1995年开始研究超声波电机。
在探索超声波电机结构原理、运行机理的基础上,进行了大量电机结构优化和性能提高方面的工作,研制成功了环形行波型、柱体摇摆型、三自由度球型和自校正步进型超声波电机等,其中的三自由度球形USM可用于机器人的关节部位,也可驱动摄像机进行广角度拍摄。
2002年3月在清华大学周铁英教授指导下研发的微型USM获得成功,它仅重36毫克、长4毫米、直径1毫米。
报道说:“装载超声马达的微型机器人,可以轻松地清除血管、心脏的堵塞,探测肠胃疾病,甚至可能做到把药物放到具体的病灶处”。
(山东省济宁职业技术学院 272037)
①材料因加电压而造成体积变化的效应称为逆压电效应。
②振动体相当于传统电机中的定子,由压电陶瓷和金属弹性体制成。
③移动体相当于传统电机中的转子。
封三照片说明
饮食男女,人之大欲存焉。
现代化的飞速发展使生活节奏不断加快,轻松快捷地提高生活质量,已成为人们热切追求的目标。
烹饪机器人的诞生给未来生活带来了变革。
这台名叫“爱可”的烹饪机器人能够模拟厨师工作,以炒、爆、煸的烹饪手法烹制美味的中国菜肴。
顾客只需将“爱可”专用配菜盒装入其进料口,按指示屏简单操作,几分钟后一道美味的菜肴便完成了。
相信在不久的将来,烹饪机器人将会走进您的生活。
(李博文)
・
7
3
・
19卷3期(总111期)。