几何体的外接球和内切球问题20180108
- 格式:docx
- 大小:239.37 KB
- 文档页数:4
如何求解立体几何形的内切球和外接球立体几何形的内切球和外接球是数学和几何学中常见的概念。
内切球是指一个球体正好与该立体几何形相切于内部的球,而外接球则是指一个球体正好与该几何形相切于外部的球。
解决这个问题需要一些几何知识和计算技巧。
一、立方体首先,让我们以立方体为例,来讨论如何求解其内切球和外接球。
立方体是一个六个面都是正方形的立体,所有的边长相等。
立方体的内切球和外接球的半径可以通过简单的计算得到。
1. 内切球内切球的半径等于立方体的半边长。
设立方体的边长为a,则内切球的半径r等于a/2。
这是因为内切球的半径与立方体的棱长之比为1:2。
2. 外接球外接球是一个球体,它与立方体的八个顶点相切。
设立方体的边长为a,则外接球的半径R等于立方体对角线的一半。
根据勾股定理,立方体的对角线的长度d等于a√3。
因此,外接球的半径R等于d/2,即R等于a√3/2。
二、圆柱体对于圆柱体来说,内切球和外接球的求解稍微复杂一些。
1. 内切球内切球的半径等于圆柱体的半径。
设圆柱的半径为r,高度为h,则内切球的半径r'等于r。
2. 外接球外接球是一个球体,它与圆柱体的底面相切。
设圆柱的半径为r,高度为h,则外接球的半径R等于圆柱体的斜高。
根据勾股定理,圆柱体的斜高等于√(h^2 + r^2)。
因此,外接球的半径R等于√(h^2 + r^2)。
三、球体球体的内切球和外接球的求解相对简单。
1. 内切球球体的内切球的半径等于球体的半径。
设球体的半径为R,内切球的半径r等于R。
2. 外接球外接球是一个球体,它与球体的表面相切。
设球体的半径为R,则外接球的半径R'等于2R。
结论:通过以上讨论,我们可以得出以下结论:1. 对于立方体来说,内切球的半径等于边长的一半,外接球的半径等于对角线长的一半。
2. 对于圆柱体来说,内切球的半径等于半径,外接球的半径等于斜高。
3. 对于球体来说,内切球的半径等于半径,外接球的半径等于半径的两倍。
2018届高三数学第一轮复习教学案18:难点突破:立体图形的外接球与内切球问题一、基础知识与概念:1.球的截面:用一个平面去截球,截面是圆面;用一个平面去截球面,截面是圆.大圆:截面过球心,半径等于球半径(截面圆中最大);小圆:截面不过球心.2.球心和截面圆心的连线垂直于截面.3.球心到截面的距离d与球半径R及截面圆半径r的关系:222R d r=+.4.几何体的外接球:几何体的顶点都在球面上;几何体的内切球:球与几何体的各个面都相切.二、多面体的外接球(球包体)模型1:球包直柱(直锥):有垂直于底面的侧棱(有垂底侧边棱)球包直柱球径公式:222hR r⎛⎫=+⎪⎝⎭,(r为底面外接圆半径)球包正方体球包长方体球包四棱柱球包三棱柱球包直锥三棱锥四棱锥r速算模型2:“顶点连心”锥:锥体的顶点及球心在底面的投影都是底面多边形外接圆的圆心(两心一顶连成线)实例:正棱锥球径计算方程:()222h R r R -+=2222202h r h hR r R h+⇒-+=⇒=,(h 为棱锥的高,r 为底面外接圆半径) 特别地,(1)边长为a 正四面体的外接球半径:R =______________.(2)底面边长为a ,高为h 的正三棱锥的外接球半径:R =__________. (3)底面边长为a ,高为h 的正四棱锥的外接球半径:R =__________.例:1.(2017年全国卷III 第8题)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A .πB .34πC .2π D .4π 【解析】模式辨识:“球包体”中的“垂底侧边棱(母线)”类型,1h =,1R =,底面半径为r ,则由222h R r⎛⎫=+ ⎪⎝⎭得:222213124r r ⎛⎫=+⇒= ⎪⎝⎭,234V r h ππ==.2.(2010年全国新课标卷第10题)设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为A .2a πB .273a πC .2113a πD .25a π【解析】“球包体”中的“垂底侧边棱”类型,h a =,3r =,222222724312h a a a R r ⎛⎫=+=+= ⎪⎝⎭, 所以该球的表面积2227744123a a S R ππ==⨯=.答案B . 3.(2014年全国大纲卷第8题)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为A .814πB .16πC .9πD .274π【解析】模式辨识:“球包体”中的“顶点连心锥”,4h =,222r ==221629284h r R h ++===, 所以2818144164S R πππ==⨯=,答案:A . 4.(2013年全国卷I 第6题)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为A .35003cm πB .38663cm πC .313723cm πD .320483cm π【解析】设水面与球的接触点(切点)为P ,球心为O ,则PO 垂直于正方体的上表面,依题意P 到正方体上表面的距离为2h =,球与正方体上表面相交圆的半径4r =,有:()2222R r R -+=,2454r R +⇒==,所以球的体积3450033V R ππ==. 三、定心大法:球心在过截面圆的圆心且垂直于截面圆所在平面的直线上.两圆定心法:如下图,过两个截面圆的圆心分别作相应截面圆的垂线,由两垂线的交点确定圆心.例2:1.已知边长为23的棱形ABCD 中,60∠=︒,现沿对角线BD 折起,使得二面角A BD C --为120︒,此时点A ,B ,C ,D 在同一个球面上,则该球的表面积为( )A .20πB .24πC .28πD .32π2.在矩形ABCD 中,4AB =,3BC =,沿AC 将矩形折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积为___________.3.在边长为1的菱形ABCD 中,60BAD ∠=︒,沿对角线将菱形折成直二面角A BD C --,则三棱锥A BCD -的外接球的表面积为_____________. 四、正多面体的内切球(体中球)锥体的内切球:R =____________.圆锥的内切球:R =边长为a 的正方体: 2aR =等边圆柱(母线a ):R =2a . 边长a 的正八面体:R =五、正多面体的“切边球”(与所有的棱都相切的球)正四面体边长为a ,球半径R =正方体边长为a ,球半径R =正四面体边长为a ,球半径R =例3:1.一个球的外切正方体的全面积为6,则球的体积为_________.2.某圆锥的截面为边长为2的正三角形,则该圆锥的内切球的表面积为_______.3.(2016年全国卷III 第10题)在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是A .4πB .92πC .6πD .323π【解析】考查直三棱柱中截面的内切圆为球的大圆的情景,有()13681068222AA R R ++=⨯⇒=>=,故当球半径为32时球的体积最大为344273382V R πππ9==⨯=.答案B . 练习:1.(2015年全国卷II 第9题)已知A ,B 是球O 的球面上两点,90AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为36,则球O 的表面积为A .36πB .64πC .144πD .256π2.(2016年福建漳州市5月质检)三棱锥S ABC -中,SB ⊥平面ABC ,5SB =ABC ∆3的正三角形,则三棱锥S ABC -的外接球的表面积为()A .3πB .5πC .9πD .12π3.(2014年湖南卷)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .44.(2013年辽宁卷理10)已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若3AB =,4AC =,AB AC ⊥,112AA =,则球O 的半径为()A 317B .10C .132D .3105.(2012年全国新课标卷第11题)已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为A .26B .36C .23D .226.在正三棱锥P ABC -中,3PA PB PC ===,侧棱PA 与底面ABC 所成的角为60︒,则该三棱锥外接球的体积为( )A .πB .3πC .4πD .43π 7.已知底面边长为12的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A .323πB .4πC .2πD .43π 8.(2017年福建省质检).空间四边形ABCD 的四个顶点都在同一球面上,E 、F 分别是AB 、CD 的中点,且,EF AB EF CD ⊥⊥,若8,4AB CD EF ===,则该球的半径等于A .65216B .28C .652D 659.若三棱锥P ABC -的最长的棱2PA =,且各面均为直角三角形,则此三棱锥的外接球的体积是__________. 10.(2008年高考浙江卷理14)已知球O 的面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB BC ⊥,3DA AB BC ===,则球O 的体积为____________.11.(2016年东北三省三校联考)三棱柱111ABC A B C -各顶点都在一个球面上,侧棱与底面垂直,120ACB ∠=︒,23CA CB ==14AA =,则这个球的表面积为____________.12.在三棱柱111ABC A B C -中,侧棱1AA 垂直底面,90ACB ∠=︒,30BAC ∠=︒,1BC =,且三棱柱111ABC A B C -的体积为3,则三棱柱111ABC A B C -的外接球表面积为_________.13.在正三棱锥S ABC -中,M ,N 分别是棱SC 、BC 的中点,且AM MN ⊥,若侧棱23SA =,则正三棱锥S ABC -外接球的表面积是____________.14.在三棱锥A BCD -中,2AB CD ==,5AD BC ==7AC BD ==,则三棱锥A BCD -外接球的表面积为__________.15.(2017年天津卷)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为______.16.(2017年江苏卷)如图,在圆柱12O O 内有一个球,该球与圆柱的上、下底面及母线均相切,记圆柱12O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是_____________.。
探究秒杀几何体外接球与内切球问题只需 2 招一、外接球的问题简单多面体外接球问题是立体几何中的难点和重要的考点,此类问题实质是解决球的半径尺或确定球心0 的位置问题,其中球心的确定是关键.(一)由球的定义确定球心在空间,如果一个定点与一个简单多面体的所有顶点的距离都相等,那么这个定点就是该简单多面体的外接球的球心.由上述性质,可以得到确定简单多面体外接球的球心的如下结论.结论 1 :正方体或长方体的外接球的球心其体对角线的中点.结论 2 :正棱柱的外接球的球心是上下底面中心的连线的中点.结论 3 :直三棱柱的外接球的球心是上下底面三角形外心的连线的中点.结论 4 :正棱锥的外接球的球心在其高上,具体位置可通过计算找到.结论5:若棱锥的顶点可构成共斜边的直角三角形,则公共斜边的中点就是其外接球的球心.(二)由性质确定球心利用球心O与截面圆圆心O1 的连线垂直于截面圆及球心O与弦中点的连线垂直于弦的性质,确定球心.(三)构造正方体或长方体确定球心长方体或正方体的外接球的球心是在其体对角线的中点处.以下是常见的、基本的几何体补成正方体或长方体的途径与方法.途径 1 :正四面体、三条侧棱两两垂直的正三棱锥、四个面都是是直角三角形的三棱锥都分别可构造正方体.途径2:同一个顶点上的三条棱两两垂直的四面体、相对的棱相等的三棱锥都分别可构造长方体和正方体.途径 3 :若已知棱锥含有线面垂直关系,则可将棱锥补成长方体或正方体.途径4:若三棱锥的三个侧面两两垂直,则可将三棱锥补成长方体或正方体.二、内切球问题若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球。
1、内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等。
2、正多面体的内切球和外接球的球心重合。
3、正棱锥的内切球和外接球球心都在高线上,但不重合4、基本方法:构造三角形利用相似比和勾股定理。
几何体的外接球与内切球1、内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等。
2、正多面体的内切球和外接球的球心重合。
3、正棱锥的内切球和外接球球心都在高线上,但不重合。
4、体积分割是求内切球半径的通用做法。
一、外接球(一)多面体几何性质法1、 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是 A.16π B.20π C.24π D.32π小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的. 2、一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为 。
(二)补形法1、,则其外接球的表面积是 .2、设,,,P A B C 是球O 面上的四点,且,,PA PB PC 两两互相垂直,若PA PB PC a ===, 则球心O 到截面ABC 的距离是 .小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2R =3、三棱锥O ABC -中,,,OA OB OC 两两垂直,且22OA OB OC a ===,则三棱锥O ABC -外接球的表面积为( )A .26a π B .29a π C .212a π D .224a π4、三棱锥ABC P -的四个顶点均在同一球面上,其中ABC ∆是正三角形 ⊥PA 平面62,==AB PA ABC 则该球的体积为( )A. π316B. π332C. π48D. π364答案及解析:10.B点评: 本题考查球的内接体与球的关系,考查空间想象能力,利用割补法结合球内接多面体的几何特征求出球的半径是解题的关键.5、如图的几何体是长方体 1111ABCD A B C D -的一部分,其中 113,2AB AD DD BB cm ====则该几何体的外接球的表面积为(A 211cm π (B) 222cm π2( D)2cm答案及解析:12.【知识点】几何体的结构. G1B 解析:该几何体的外接球即长方体1111ABCD A BCD -的外接球,而若长方体1111ABCD A B C D -的外接球半径为R ,则长方体1111ABCD A B C D -的体对角线为2R ,所以2222211(2)332222R R =++=⇒=,所以该几何体的外接球的表面积222cm π,故选 B.【思路点拨】分析该几何体的外接球与长方体1111ABCD A B C D -的外接球的关系,进而得结论.6、一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积是( )A . 12πB . 4πC . 3πD . 12π答案及解析:14.考点: 由三视图求面积、体积.分析: 三视图复原几何体是四棱锥,扩展为正方体,它的体对角线,就是球的直径,求出半径,解出球的表面积.解答: 解:由三视图知该几何体为四棱锥,记作S ﹣ABCD ,其中SA⊥面ABCD .面ABCD 为正方形,将此四棱锥还原为正方体,易知正方体的体对角线即为外接球直径,所以2r=.∴S 球=4πr 2=4π×=3π. 答案:C点评: 本题考查三视图求表面积,几何体的外接球问题,是基础题.(三)寻求轴截面圆半径法1、正四棱锥S ABCDS A B C D 、、、、都在同一球面上,则此球的体积为 .CDABSO 1图3小结根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.2、求棱长为a 的正四面体P – ABC 的外接球的表面积3、三棱柱ABC﹣A1B1C1中,AA1=2且AA1⊥平面ABC,△ABC是边长为的正三角形,该三棱柱的六个顶点都在一个球面上,则这个球的体积为()A.8πB.C.D.8π答案及解析:7.C考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:根据题意,正三棱柱的底面中心的连线的中点就是外接球的球心,求出球的半径即可求出球的体积.解答:解:由题意可知:正三棱柱的底面中心的连线的中点就是外接球的球心,因为△ABC是边长为的正三角形,所以底面中心到顶点的距离为:1;因为AA1=2且AA1⊥平面ABC,所以外接球的半径为:r==.所以外接球的体积为:V=πr3=π×()3=.故选:C.点评:本题给出正三棱柱有一个外接球,在已知底面边长的情况下求球的体积.着重考查了正三棱柱的性质、正三角形的计算和球的体积公式等知识,属于中档题.8.4、已知三棱锥A BCD -中,2AB AC BD CD ====,2BC AD =,直线AD 与底面BCD 所成角为3π,则此时三棱锥外接球的体积为A. 8πB.3C. 3D.3答案及解析:11.D(四)球心定位法1、在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积为 A.12512π B.1259π C.1256π D.1253π2、如图所示是一个几何体的三视图,则这个几何体外接球的表面积为A. 8πB. 16πC. 32πD. 64π3、三棱锥P ABC -中,底面ABC ∆是边长为2的正三角形, PA ⊥底面ABC ,且2PA =,则此三棱锥外接球的半径为( )A O D图421A.2 B.5C.2 D.34、如图,在三棱锥A﹣BCD中,△ACD与△BCD是全等的等腰三角形,且平面ACD⊥平面BCD,AB=2CD=4,则该三棱锥的外接球的表面积为.B.C.答案及解析:D.27.E.F.考点:球的体积和表面积;球内接多面体.G.专题:空间位置关系与距离.H.分析:取AB,CD中点分别为E,F,连接EF,AF,BF,求出EF,判断三棱锥的外接球球心O在线段EF上,连接OA,OC,求出半径,然后求解表面积.I.解答:解:取AB,CD中点分别为E,F,连接EF,AF,BF,由题意知AF⊥BF,AF=BF,EF=2,易知三棱锥的外接球球心O在线段EF上,连接OA,OC,有R2=AE2+OE2,R2=CF2+OF2,求得,所以其表面积为.J.故答案为:.K .L .点评:本小题主要考查球的内接几何体的相关计算问题,对考生的空间想象能力与运算求解能力以及数形结合思想都提出很高要求,本题是一道综合题,属于较难题. M .28. N .29.5、在三棱锥BCD A -中,底面BCD 为边长为2的正三角形,顶点A 在底面BCD 上的射影为BCD ∆的中心, 若E 为BC 的中点,且直线AE 与底面BCD 所成角的正切值为O ,则三棱锥BCD A -外接球的表面积为__________.P .答案及解析:Q .29.π6R .二、内切球问题 1、一气球(近似看成球体)在不变形的前提下放在由长为2的12根木条搭成的正方体中,该气球球表面积最大是__________.2、正三棱锥的高为 1,底面边长为 。
几何体的外接球和内切球问题大家知道,几何体的外接球和内切球问题是近几年的高考热点内容,尤其是几何体的外接球问题,基本上近几年的高考试题中都有出现。
归结起来这类问题主要包括两种类型:①已知几何体的顶点都在同一球面上,几何体满足一定的条件,求球的体积;②已知几何体的顶点都在同一球面上,几何体满足一定的条件,求球的表面积;解答这类问题的基本思路是根据问题给出的条件,求出球的半径,然后再运用球的体积(或表面积)公式进行计算得出结果。
从题型上看是5分小题,可能是选择题,也可能是填空题;从难易程度上看,属于中、低档难度的问题。
那么如何解答这类问题呢?下面通过例题的解析来回答这个问题。
【典例1】解答下列问题:1、已知三棱锥P —ABC 的三个顶点在球O 的球面上,PA=PB=PC ,∆ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF=.90,则球O 的体积为( )(2019全国高考新课标I (理))π π π π2、《九章算术》中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称之为“阳马”,现有一阳马,其正视图和侧 1视图是如图所示的直角三角形,若该阳马的顶点都在同一个 1 2 球面上,则该球的体积为( )(2018成都市高三二诊)A πB πC πD 24π【解析】1、【考点】①正三棱锥的定义与性质;②正三棱锥外接球的定义与性质;③几何体外接球半径的求法;④球的体积计算公式与方法;【解题思路】运用正三角形的性质和正三棱锥外接球的性质求出外接球的半径,再运用球的体积公式进行计算得出结果; P【详细解答】如图,取BC 的中点D ,连接AD ,PD ,设正三角形ABC 外接圆的圆心为1O ,连接P 1O ,设外接 E O 球的球心为O ,连接AO ,∆ABC 是边长为2的正 C 三角形,D ,F 分别BC ,AB 的中点,∴AD=CF=2⨯ A F 1O B⇒A 1O ,PA=PB=PC ,∆ABC 是正三角形,∴P —ABC 是正三棱锥,⇒PB ⊥AC ,E ,F 分别是PA ,AB 的中点,∴EF//PB ,⇒EF ⊥AC ,∠CEF=.90,AC CE=C ,AC ,EC ⊂平面PAC ,∴EF ⊥平面PAC ,⇒PB ⊥平面PAC ,⇒∠APB=.90,⇒⇒PD =1,⇒P 1O 3R ,在Rt ∆AO 1O 中,AO=R ,O 1O =-R ,A 1O =,2AO =21OO +21AO ,∴2R =2)R -+2(3,⇒R=2,∴O V 球=343R π=43⨯4π=π⇒选D 。
立体几何中内切球和外接球问题题目:探索立体几何中的内切球和外接球问题在立体几何中,内切球和外接球问题是一个引人深思的话题。
通过对这个主题的深入探讨,我们可以更好地理解立体几何的原理和性质。
本文将围绕内切球和外接球问题展开讨论,从基本概念到数学推导,深入剖析这一有趣而重要的话题。
1. 内切球和外接球的定义在立体几何中,内切球和外接球分别是指一个球体在一个立体图形内部与其接触,以及一个球体在一个立体图形外部与其接触。
这两个概念可以应用在各种几何图形中,如圆柱体、圆锥体甚至更为复杂的多面体。
内切球和外接球不仅在几何形状中具有重要意义,还在工程学、艺术设计等领域有着广泛的应用价值。
2. 内切球和外接球的性质内切球和外接球在几何中具有许多有趣的性质。
内切球和外接球的半径之比有一定的规律,可以通过数学推导得出。
内切球和外接球的位置关系也有一定的特点,可以通过几何推理进行证明。
这些性质的深入理解有助于我们更好地应用立体几何知识解决实际问题。
3. 内切球和外接球的数学推导从数学角度来看,内切球和外接球问题涉及到许多重要的数学定理和方法。
通过数学推导,我们可以得到内切球和外接球的半径之比、位置关系等具体数学表达式。
这些推导过程需要运用到圆、球体的性质,以及立体几何的相关知识,是一个不可或缺的数学推理过程。
4. 个人观点和理解在我看来,内切球和外接球问题是立体几何中的一个精彩而复杂的主题。
通过对这个问题的探讨,我深刻地感受到数学的美妙和奥妙。
数学不仅是一门实用的科学,更是一个充满乐趣和挑战的学科。
通过不断地学习和探索,我们可以更好地理解立体几何的原理和应用,为我们的工程、设计和科学研究提供有力的支持。
内切球和外接球问题是立体几何中的一个重要而有趣的话题。
通过深入探讨这个主题,我们可以更好地理解立体几何的原理和应用,为我们的学习和工作带来更多的乐趣和启发。
希望本文的内容能够对您有所帮助,也希望您能够对立体几何有着更深入的理解和探索。
高中数学立体几何中的外接球与内切球问题
在高中数学的立体几何中,外接球与内切球问题是一个重要的探讨点。
这个问
题涉及到如何在一个给定的立体图形中,找到一个外切于该图形的球和一个内切于该图形的球。
首先,让我们来看外接球问题。
在立体几何中,给定一个多面体,如正方体或
正四面体,我们想找到一个球,使得该球恰好外接于该多面体的每一个面上。
所谓外接,即球与每一个面都有且只有一个公共点,这个点是每个面的外接圆心。
以正方体为例,我们可以观察到正方体的每一个面都是正方形,而正方形的外
接圆心恰好位于该正方形的中心点。
因此,我们可以得出结论:正方体的外接球的圆心与该正方体的每个面的外接圆心重合。
接下来,让我们来看内切球问题。
在立体几何中,给定一个多面体,如正方体
或正四面体,我们想找到一个球,使得该球恰好内切于该多面体的每一个面上。
所谓内切,即球与每一个面都有且只有一个公共点,这个点是每个面的内切圆心。
以正方体为例,我们可以观察到正方体的每一个面都是正方形,而正方形的内
切圆心恰好位于该正方形的中心点。
因此,我们可以得出结论:正方体的内切球的圆心与该正方体的每个面的内切圆心重合。
总结起来,对于任何一个给定的多面体,我们可以找到一个外接球和一个内切球。
外接球的圆心与每个面的外接圆心重合,而内切球的圆心与每个面的内切圆心重合。
这个问题在高中数学的立体几何中十分重要,理解了外接球和内切球的性质,可以帮助我们更好地理解和解决相关的几何问题。
P DS CAO空间几何体的外接球、内切球问题外接球问题一.棱锥的外接球三棱锥都有外接球;底面有外接圆的任意棱锥都有外接球。
1.确定棱锥外接球球心的通法先找到棱锥底面的外接圆的圆心D ,过D 作底面的垂线DP交一侧棱的中垂面于O ,点O 即为外接球的球心。
练习:1.三棱锥S-ABC 的各顶点都在同一球面上,若SB ⊥平面ABC ,SB=6,AB=AC=2120BAC ∠=︒,则此球的表面积等于 。
2. 点A 、B 、C 、D 均在同一球面上,其中△ ABC 是正三角形,AD ⊥平面ABC ,AD=2AB=6则该球的体积为 。
3.四面体ABCD 的四个顶点在同一球面上,AB=BC=CD=DA=3,32=AC ,6=BD ,则该球的表面积为 ( )A . π14 B.π15 C.π16 D.π182.补成长方体或正方体,再利用体对角线是外接球直径这一结论求解。
练习:1.三棱锥O ABC -中,,,OA OB OC 两两垂直,且22OA OB OC a ===,则三棱锥O ABC -外接球的表面积为( )A .26a πB .29a πC .212a πD .224a π2.已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,1SA AB ==,BC =O 表面积等于(A )4π (B )3π (C )2π (D )π3.,四个顶点在同一个球面上,则此球的表面积为( )A.3πB.4πD.6π4.3.公共边所对的两个角为直角确定球心法 练习1.在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积为 A.12512π B.1259π C.1256π D.1253π2.空间四边形ABCD中,1,AB BC AD DC ====ABCD 的外接球的表面积为4.利用轴截面截球为大圆确定球半径正四、六、八棱锥的外接球的一个轴截面为大圆,该圆的半径等于外接球的半径. 练习:1.正四棱锥S ABCD -S A B C D 、、、、都在同一球面上,则此球的体积为 .2.正六棱锥EF S ABCD -的底面边长为1S A B C D 、、、、、E 、F 都在同一球面上,则此球的表面积为 .3.表面积为的正八面体的各个顶点都在同一个球面上,则此球的体积为_ C_ A_ O_ D _ BA.3B.13π C.23π D.3二.棱柱的外接球底面有外接圆的直棱柱才有外接球。
方法技巧专题03空间几何体外接球和内切球空间几何体的外接球和内切球是几何体与球之间的特殊关系,它们在几何体的研究中具有重要的意义。
本文将对空间几何体的外接球和内切球进行详细的解析。
一、空间几何体的外接球空间几何体的外接球是指能够将该几何体完全包含在内的最小的球,也称为最小外接球。
以三角形为例,说明如何确定三角形的外接球。
【图一】假设三角形ABC的三个顶点坐标分别为A(x1,y1,z1),B(x2,y2,z2),C(x3,y3,z3)。
1.首先,可以计算出三角形的三条边长a,b,c。
a=√((x2-x1)^2+(y2-y1)^2+(z2-z1)^2)b=√((x3-x2)^2+(y3-y2)^2+(z3-z2)^2)c=√((x1-x3)^2+(y1-y3)^2+(z1-z3)^2)2.然后,计算三角形的面积S。
S=1/2*,(x1y2+x2y3+x3y1)-(y1x2+y2x3+y3x1)3.根据三角形的面积,可以计算出外接圆的半径R。
R=a*b*c/(4S)4.最后,确定外接球的圆心坐标O。
O=((x1+x2+x3)/3,(y1+y2+y3)/3,(z1+z2+z3)/3)通过上述步骤,就可以确定三角形的外接球的半径和圆心坐标。
同样的方法也可以应用于其他的几何体,如正方体、正六面体等。
二、空间几何体的内切球空间几何体的内切球是指能够与该几何体的表面相切且位于几何体内部的最大的球,也称为最大内切球。
以正方体为例,说明如何确定正方体的内切球。
【图二】假设正方体的边长为a。
1.首先,可以计算正方体的对角线长度d。
d=√(a^2+a^2+a^2)=√3a2.然后,内切球的半径r等于正方体的边长的一半。
r=a/23.最后,可以确定内切球的圆心坐标O。
O=(a/2,a/2,a/2)通过上述步骤,就可以确定正方体的内切球的半径和圆心坐标。
同样的方法也可以应用于其他的几何体,如正六面体、球体等。
总结:空间几何体的外接球和内切球是几何体与球之间的特殊关系,它们在几何体的研究中具有重要的意义。
αR P d r O O'几何体的外接球和内切球问题20180108
基础知识:
1.常见平面图形:正方形,长方形,正三角形的外接圆和内切圆
长方形(正方形)的外接圆半径为对角线长的一半,正方形的内切圆半径为边长的一半;
正三角形的内切圆半径:36a 外接圆半径:33a 三角形面积:234
a 正三角形三心合一,三线合一,心把高分为2:1两部分。
2.球的概念:
概念1:与定点距离等于或小于定长的点的集合,叫做球体,简称球.,定长叫球的半径;
与定点距离等于定长的点的集合叫做球面.一个球或球面用表示它的球心的字母表示,例如球O 或O . 概念2:半圆以它的直径为旋转轴,旋转所成的曲面叫做球面,球面所围成的几何体叫做球体,简称球。
3.球的截面:
用一平面α去截一个球O ,设OO '是平面α的垂线段,O '为垂足,且
OO d '=,所得的截面是以球心在截面内的射影为圆心,以22r R d =-为半
径的一个圆,截面是一个圆面.
球面被经过球心的平面截得的圆叫做大圆,被不经过球心的平面截得的圆叫做
小圆.
4.空间几何体外接球、内切球的概念: 定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。
定义2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球。
长方体的外接球 正方体的内切球
5.外接球和内切球性质:
(1)内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等。
(2)正多面体的内切球和外接球的球心重合。
(3)正棱锥的内切球和外接球球心都在高线上,但不重合。
(4)基本方法:构造三角形利用相似比和勾股定理。
(5)体积分割是求内切球半径的通用做法。
6.公式:球的表面积公式:24S R π=;球的体积公式:343V R π= 长方体的外接球半径公式:2
2
22c b a R ++=,其中,,a b c 分别为长方体共顶点的3条棱长 正棱锥的外接球半径公式:2
,2a R h
= 2侧棱=2R h ⋅外正棱锥,其中a 为侧棱长,h 为正棱锥的高 正棱柱的外接球球心在两底面中心连线的中点处。
典型例题:
题型一:球的概念
例1. (1)已知球的直径为8cm ,那么它的表面积为__________,体积为___________
(2)已知球的表面积为144π2cm ,那么它的体积为___________
(3)已知球的体积为36π,那么它的表面积为__________
(4)如果两个球的体积之比为8:27,那么两个球的表面积之比为__________
例2.(1)(2012年新课标文科)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( )
A .6π
B .43π
C .46π
D .63π
(2)已知过球面上,,A B C 三点的截面和球心的距离为球半径的一半,且2AB BC CA ===,求球的表面积.
(3)(2013年高考课标Ⅰ卷(文))已知H 是球O 的直径AB 上一点,:1:2AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为_______.
(4)(2013年高考新课标1(理))如图,有一个水平放置的透明无盖的正方体容器,容器高
8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如
果不计容器的厚度,则球的体积为 ( )
A .35003cm π
B .38663cm π
C .313723cm π
D .320483
cm π 题型二:与长方体、正方体(柱体)有关的外接球问题
例3.(1)设正方体的棱长为233
,则它的外接球的表面积为( ) A . B .2π C .4π D . (2)已知正方体外接球的体积是,那么正方体的棱长等于( ) A .22 B . C . D . π38
π3
4π3
323323243
34
例4.(1)(2010年新课标文科)设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( )
A .23a π
B .26a π
C .212a π
D .224a π
(2)一个正四棱柱的各个顶点在一个直径为2 cm 的球面上.如果正四棱柱的底面边长为1 cm ,那么该棱柱的表面积为 cm 2. (3)(2013年辽宁数学(理))已知直三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的半径为( )
A .3172
B .210
C .132
D .310
题型三:与正锥体有关的外接球问题
例5.(1)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( )
A .334
B .33
C .34
D .312
(2)(2012年高考辽宁理)已知正三棱锥ABC ,点P ,A ,B ,C 都在半径为的求面上,若PA ,PB ,PC 两两互相垂直,则球心到截面ABC 的距离为________.
例6.(1)(2013年高考课标Ⅱ卷(文))已知正四棱锥O —ABCD 的体积为322
,底面边长为3,则以O 为球心,OA 为半径的球的表面积为________.
(2)如图,半径为2的半球内有一内接正六棱锥,
则此正六棱锥的侧面积是________.
题型四:其他柱体、锥体的外接球问题
例7.(1)直三棱柱的各顶点都在同一球面上,若,
,则此球的表面积等于 .
(2)四棱锥S ABCD -的五个顶点都在一个球面上,底面是边长为2的正方形,SD ⊥平面ABCD ,且SD AB =,则其外接球的体积为 .
(3)(2015年新课标2文科)已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为( )
A .
B .
C .
D .
题型五:柱体、锥体的内切球问题
例8.(1)正方体的内切球与其外接球的体积之比为( )
A .1:3
B .1:3
C .1:33
D .1:9
(2)正三棱锥的高为1,底面边长为62,正三棱锥内有一个球与其四个面相切.求球的表面积与体积.
P -3P ABCDEF -111ABC A B C -12AB AC AA ===120BAC ∠=︒B A ,O ︒=∠90AOB C ABC
O -O π36π64π144π256
拓展练习:
2,四个顶点在同一个球面上,则此球的表面积为( )
A .3π
B .4π
C .
D .6π
3.一个四棱柱的底面是正方形,侧棱与底面垂直,其长度为4,棱柱的体积为16,棱柱的各顶点在一个球面上,则这个球的表面积是( )
A .16π
B .20π
C .24π
D .32π
7.(2012辽宁文)已知点,,,,P A B C D 是球O 表面上的点,PA ⊥平面ABCD ,四边形ABCD 是边长为若
PA =OAB ∆的面积为__________.
8.球面上有三点A 、B 、C 组成这个球的一个截面的内接三角形三个顶点,其中18=AB ,24=BC 、30=AC ,球心到这个截面的距离为球半径的一半,求球的表面积.。