高等数学 重修A(II)19春
- 格式:pdf
- 大小:119.04 KB
- 文档页数:4
东 华 大 学 试 卷2020—2021 学年第 1 学期 课号课程名称 高等数学AII (重修A 卷; 闭卷) 适用班级(或年级、专业)一.填空题(每小题3分,共12分)1. 设{}{}3,,1,1,2,y b x a -=-=,当y x ,满足 时,两向量平行。
2. xe y x z -=sin ,则=dz3.∑∞=+-131n n n n的敛散性是4. 函数()⎩⎨⎧<≤<≤--=ππx x x x x f 0,0,展开为傅里叶级数时,系数=n b二.单选题(每题3分,共12分)1. 向量场xzk xyj i y A ++=2的散度是A .0B .2y+zC .x+yD .2x2. (){}10,11,1<<<<-=y x y x D ,(){}10,10,2<<<<=y x y x D ,()⎰⎰+=121cos sin D d x y x I σ,()⎰⎰=222D d x I σ,则21,I I 的关系为A 21I I =B 212I I =C 214I I =D 215.0I I = 3. 设L 为3x y =上点()0,0到点()1,1的一段弧,则=⎰Lds yA()⎰+0122331dx xx B ⎰13dx x C ()⎰+122331dx xxD ⎰13dx x4. 已知两点()()2,0,3,1,2,421p p = A 2 B 4 C 0.5 D 1 三.计算题(每小题6分,共18分) 1. 0sin 2=-yz x z ,求xz ∂∂2. 求过点()1,1,1-M ,且与直线⎩⎨⎧=++-=-+-093240632z y x z y x L 平行的直线方程3. 计算⎰Ldx y 2,L 为点()0,a A 沿x 轴到点()0,a B -的直线段四.解答下列各题(每小题8分,共32分) 1. 求点()1,1,2到平面01==-+z y x 的距离 2.⎰⎰Ddxdy y ,1:2222≤+by a x D3. 将函数()xex f -=展开为x 的幂级数,并且求收敛域4. 求曲面02222=-+z y x 在点()1,1,1-处的切平面和法线方程 五.解答题(每小题10分,共20分)1 计算向量k z j y i x A 333++=穿过曲面2222:a z y x =++∑流向外侧的流量2 过点()()0,,0,0πA O 的曲线族()0,sin >=a x a y 中,求一条曲线,使得沿该曲线从O 到A 的积分()()⎰+++Ldy y x dx y 213最小六.(本题6分):求22y x z +=,4=z 围成立体的体积。
2010~2011学年春季高等数学A (二)期中考试答案及评分标准一、填空题(每小题2分,共20分)1. 设向量2=-+a i j k ,42b i j k λ=-+,则当=λ -10时,a 与b 垂直。
2. 方程222231x y z ++=所表示的曲面是 椭球面 。
3. 函数y x y z -+-=41)ln(2的定义域是}4|),{(2<<y x y x 。
4. 函数),(y x f 在点),(00y x 的两个偏导数),(00y x f x 与),(00y x f y 存在是函数),(y x f 在点),(00y x 可微的 必要 条件。
(在“充分、必要或充要”中选一个填在横线上)5. 曲线32t z t y t x ===,,在点),,(111的法平面为632=++z y x 。
6.函数22y y x z +=在点(2,1)处的全微分=dz dy dx 64+ 。
7.函数22f x y z x y x y z (,,)sin()=+++在点000(,,)处的梯度为 (1,2,0)或i+2j 。
8. 直线223:273x y z L -+-==--与平面:4223x y z π--=的位置关系是 平行 。
9. 二重极限=++→2201y x e x y y x )ln(lim ),(),( ln2 。
10. 过点0(1,2,1)M -且平行于向量(2,1,1)=-s 的直线的对称式方程是 111221+=--=-z y x 。
二、按要求解答下列各题(每小题8分,共16分)1.已知平行四边形ABCD 的两条邻边(1,3,1)AB =-,(2,1,3)AD =-,求此平行四边形的面积S。
解:根据叉积的几何意义||→⨯=AD AB S =|312131--k j i | (5)分=||k j i 58+-- =103 …………8分2. 求过直线1223x z y +=+=与平面150x y z +++=的交点,且与平面23450x y z -++=垂直的直线方程。
2019全国2卷数学19 -回复1. 概述2019年全国普通高中学业水平考试数学试题中的第19题,是考试中的一道典型题目,引起了广大考生的关注和讨论。
本文旨在对这道题目进行深入解析和回复,帮助考生更好地理解和掌握该题的解题方法。
2. 题目内容与要求该题目要求考生计算一个正整数$N$的立方根(即找到一个正整数$M$,使得$M^3 = N$),并要求用定积分的定义计算$\int_0^{10} \left| x^3 - N \right| \, dx$的值。
3. 题目分析与解法针对第一部分,计算正整数$N$的立方根,考生可选择通过暴力搜索、二分查找等方法进行计算。
需要注意的是,由于$N$的范围很大,所以在选择解法时需要考虑到算法的时间复杂度和执行效率。
针对第二部分,计算定积分$\int_0^{10} \left| x^3 - N \right| \,dx$的值,考生应首先分别计算出$x^3 - N$在$x \in [0, N^{1/3}]$和$x \in (N^{1/3}, 10]$上的取值,并考虑到绝对值函数的特性进行积分计算。
在实际计算过程中,可分情况讨论,将被积函数拆分成不同区间内的函数表达式,进而进行积分计算。
4. 解题思路与技巧在解题过程中,考生需要注意以下几点:a) 对于计算立方根,可利用数学软件或编程语言进行辅助计算,能够提高计算的准确性和效率。
b) 对于计算定积分,需要灵活运用绝对值函数的性质,合理拆分被积函数表达式,准确确定积分区间。
5. 注意事项与实例分析为了帮助考生更好地理解和掌握解题方法,本文给出了一个具体的实例分析,以便考生在解题过程中能够更清晰地把握解题思路和技巧。
以$N=27$为例,首先计算$N$的立方根为$3$。
接下来计算定积分$\int_0^{10} \left| x^3 - 27 \right| \, dx$的值。
在$x \in [0, 3]$时,被积函数$x^3 - 27$的绝对值表达式为$27 - x^3$;在$x \in (3, 10]$时,被积函数的绝对值表达式为$x^3 - 27$。
0910高等数学A(二)答案第一篇:0910高等数学A(二)答案济南大学2009~2010学年第二学期课程考试试卷评分标准(含参考答案)A卷课程名称:高等数学A(二)任课教师:张苏梅等一、填空题(每小题3分,共18分)1.yzez-xy;2.y=2x3-x2;3.2xdx+2ydy;π∞(-1)n(2x)2n4.0;5.2;6..12(1-n∑=0(2n)!),(-∞,+∞)二、选择题(每小题3分,共18分)C;D;C;B;A;B.三、计算题(每小题8分,共32分)1.解:∂z∂x=1ycosxy;.....4分∂2z1xxx∂x∂y=-y2cosy+y3siny.....8分2.解:⎰⎰xydσ=⎰2dx⎰xxydy.....4分D0=12⎰20x3dx=2.....8分 3.解:dS=+x2x2+y+y2x2+ydxdy=2dxdy.....2分⎰⎰zdS=⎰⎰x2+y22dxdy.....5分∑Dxy=⎰2πdθ⎰2r2dr=π.....8分 4.解:⎰⎰(x2+y2+z2)dxdy=dxdy=πa4...........8分∑D⎰⎰axy四、应用题(每小题8分,共16分)1.解:由椭球的对称性,不妨设(x,y,z)是该椭球面上位于第Ⅰ卦限的任一点,内接长方体的相邻边长为2x,2y,2z(x,y,z>0),其体积为:V=8xyz构造拉格朗日函数F(x,y,z,λ)=8xyz-λ(x2y2a+b+z2c-1)......4分∂F∂x=8yz-λ2xa2=0令∂F2y∂y=8xz-λb2=0........6分∂F∂z=8xy-λ2zc2=0求得(x,y,z)=⎛a,b,c⎫⎪,V=8xyz=8abc......8分⎝33⎪⎭332.解:Iz=⎰⎰⎰(x2+y2)dv.........3分Ω=⎰2π2430dθ⎰0dr⎰r2rdz.........6分=2π⎰2r3(4-r2)dr=03π.........8分五、(8分)解:因为limana=limn=1,所以收敛半径为1.n→∞n+1n→∞n+1又x=±1时,级数均发散,故级数的收敛域为(-1,1).....3分n=1∑nx∞n=x∑nxn=1∞n-1=x(∑xn)'......6分 n=1∞xx=x()'=,x∈(-1,1).........8分 21-x(1-x)六、(8分)解:① 设u=x2+y2,则∂zx=f'(u);∂xu∂2zx21x2=()f''(u)+f'(u)-3f'(u)........2分 2uu∂xuy21y2同理,2=()f''(u)+f'(u)-3f'(u)uu∂yu由∂2z∂2z∂x2+∂2z∂y2=0⇒f''(u)+1f'(u)=0.....4分 u② 设f'(u)=p,f''(u)=dp,du则原方程化为:dp1dpdu+p=0⇒=-duupu积分得:p=CC,即f'(u)=,........6分 uu由f'(1)=1,得C=1.于是f(u)=ln|u|+C1代入f(1)=0得:C1=0.函数f(u)的表达式为:f(u)=ln|u|.......8分第二篇:1112高等数学B(二)答案济南大学2011~2012学年第二学期课程考试试卷评分标准(含参考答案)A卷课程名称:高等数学B(二)任课教师:一、填空题(每小题2分,共10分)1、2dx+dy,2、-5,3、1,4、⎰10dy⎰1yf(x,y)dx5、1二、选择题(每小题2分,共10分)1、A2、B3、C4、C5、D三、计算题(每小题8分,共40分)1、解:令F=x2+y2+z2-2z,则Fx=2x,Fz=2z-2.....2分∴∂zFx∂x=-xF=z.....4分z1-∂2z∂x(1-z)2+x2∴∂x2=∂x(1-z)=(1-z)3.....8分2、解:⎰⎰(x+6y)dxdy=⎰1dx5x76D0⎰x(x+6y)dy=3.....8分π3、解:⎰⎰+x2+y2dxdy=D⎰2dθ⎰1+r2rdr=π(22-1).....8分4、解:ux(2,1,3)=4,uy(2,1,3)=5,uz(2,1,3)=3 方向lϖ=(3,4,12)cosα=313,cosβ=413,cosγ=12 .....6分∂z∂l=uu68xcosα+ycosβ+uzcosγ=13.....8分5、解:收敛域为(0,2).....2分∞∞令S(x)=∑(n+1)(x-1)n=(1)n+1)'.....6分n=0∑(x-n=0S(x)=(x-12-x)'=1(2-x)2x∈(0,2).....8分四、解答题(每小11分,共33分)ϖ1、解:交线的方向向量为nϖiϖjkϖ=1-4=(-4,-3,-1).....8分2-1-5所求直线方程为x+3y-2z-54=3=1.....11分2、解:令f(x)=xx-1,则f'(x)=-1-x2x(x-1)<0x>1 所以un单调递减且limn→∞un=0∞所以级数∑(-1)nnn=2n-1.....6分n∞由于limn→∞=1,且∑1发散n=2nn∑∞(-1)n所以级数n.....11分n=2n-13、解:旋转曲面方程为z=x2+y2.....3分投影区域D:x2+y2≤1.....5分V=⎰⎰(1-x2-y2)dxdy=⎰2πdθ⎰1π(1-r)rdr=D.....11分五、证明题(每小题7分,共7分)ff(x,0)-f(0,0)x(0,0)=lim证:x→0x=0f(0,0)=limf(x,0)-f(0,0)xx→0x=0所以函数f(x,y)在(0,0)处可导.....3分lim∆z-fx(0,0)∆x-fy(0,0)∆yρ→0ρ=limf(∆x,∆y)∆x∆yρ→0∆x2+∆y2=limρ→0∆x2+∆y2取∆y=k∆x,得极限为k1+k,说明极限不存在所以函数f(x,y),在(0,0)点不可微.....7分第三篇:专升本高等数学(二)成人高考(专升本)高等数学二第一章极限和连续第一节极限[复习考试要求]1.了解极限的概念(对极限定义等形式的描述不作要求)。
关于在校生重新学习(重修)的通知(本通知适用于2017-2018级学生)根据《苏州市职业大学课程重新学习管理的规定》,学生凡补考不及格的必修和专业限修课程需经重修,考试合格后方可取得该课程的学分。
根据江苏省物价局、江苏省财政厅(苏价费[2014]136号)一、重修报名1、报名时间:2019年3月7日14:00~3月13日14:00(由班主任负责组织学生重修报名。
)2、报名对象及缴费:①全日制在校学生(2017-2018级)。
②未注册(欠费)学生请先行注册(交费),否则不能参加本次重修。
若自行参加者,本次重修报名作废且成绩无效!!!③缴费时间:2019年3月16日至3月20日缴费方式:(1)微信缴费,具体步骤参见微信缴费操作说明。
(2)登录用户名为学号,初始密码为身份证后6位。
缴费如有疑问请致电66507911咨询。
④凡是以考证代替课程成绩的,则不参加本次重修。
如《ERP财务软件实训》、《计算技术》或《会计基本技能》、《计算机导论》、《计算机基础/A/B》、ATA课程等(具体课程可向各学院(部)咨询)。
中外合作班的外籍教师授课课程是否进行中方重修,具体请向学生所在学院(部)咨询。
3、限报课程及其性质:每位学生最多可报5门(必修和专业限修课程)。
4、报名方式:本次重修采用网上报名,具体流程见图示。
二、开课形式本次重修开课形式有两类:单开班和跟班。
1、单开班重修:学生首先视个人情况, 在本学期已开设单开班课程(详见附表)中选择相对应课程进行单开班重修报名。
(当报名人数达到开班人数要求后,学校将开出相应课程的独立重修班,一般利用周末或晚上组班上课。
)2、跟班重修:若确实未能在已开设单开班重修课程中选到合适的,则选择跟班重修报名。
三、注意事项1、不管是“跟班重修”,还是“单开班重修”,在选择已开课程重修时,上课时间不能与本学期正常课程时间相冲突。
2、如课程在本学期未开设,或已开设、但课程代码与教学计划中不同,则不能进行选课重修。
2018级第2学期高等数学考试试题一、填空题(本题20分,每小题4分)1、螺旋线⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 在xoy 面上的投影曲线方程为 .2、设)(),(x y g y x xy f z +=,其中g f ,均可微,则=∂∂xz. 3、设)cos sin (21x C x C e y x +=(21,C C 为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为 了 . 4、二次积分=⎰⎰xxdy yydx sin 10 . 5、设L 为逆时针取向的圆周)0(222>=+R R y x ,则=+-⎰Lyx xdyydx 22 . 二、(10分)设平面π是过直线⎩⎨⎧=+--=+-0620223:z y x y x L 的平面,且点)1,2,1(M 到平面π的距离为1,求平面π的方程.三、(10分)设函数⎪⎩⎪⎨⎧=+≠+++++=0 ,00 ,1sin )(),(22222222y x y x y x y x y x y x f ,(1)问),(y x f 在原点)0,0(处是否连续? (2)问),(y x f 在原点)0,0(的偏导数是否存在? (3)问),(y x f 在原点)0,0(处是否可微? 四、(10分)设Ω是由22y x z +=及1=z 所围成的立体,计算⎰⎰⎰Ω++=dv yxzI 221.五、(共16分,每小题8分)(1)求函数z y x u 32+-=在条件632222=++z y x 下的极大值与极小值; (2)求圆锥面222y x z +=被柱面x y x 222=+截下有限限部分的面积. 六、(10分)计算⎰⎰∑++=dxdy r z dzdx r y dydz rx I 333,222z y x r ++=,其中∑取曲面2222a z y x =++的外侧)0(>a .七、(共14分,其中第1小题7分,第2小题7分)(1)计算⎰Γ--dz yz xzdy ydx 23,其中Γ为曲面z y x 222=+与平面2=z 的交线,从z 轴正向看逆时针方向.(2)求方程0)d 3(d )3(2323=-+-y y x y x xy x 的通解. 八、(10分)设)(r f u =,222z y x r ++=,)0(>r ,且函数u 满足方程0222222=∂∂+∂∂+∂∂zuy u x u ,求函数)(r f 的表达式.2018级第2学期高等数学考试试题参考答案一、1. ⎩⎨⎧==+0222z a y x ; 2. g x yf y yf x z '-+=∂∂2211; 3. 022=+'-''y y y ; 4. 1sin 1-;5. π2-.二、利用平面束方程,可得01022=-++z y x 或01634=-+z y . 三、(1))0,0(0),(lim 0f y x f y x ==→→,所以),(y x f 在原点)0,0(处连续;(2)1)1sin 1(lim 1sinlim )0,0()0,(lim)0,0(202200=+=+=-=→→→x x xx x x xf x f f x x x x ,同理,1)0,0(=y f ,所以),(y x f 在原点)0,0(的偏导数存在; (3)ρyf x f f y x y x ∆-∆-∆→∆→∆)0,0()0,0(lim22222200)()()()(1sin ])()[(limy x y x y x y x y x y x ∆+∆∆-∆-∆+∆∆+∆+∆+∆=→∆→∆所以),(y x f 在原点)0,0(处可微.四、解法1(利用柱坐标)πθ20,10,1:≤≤≤≤≤≤Ωr z r ,⎰⎰⎰Ω+=dz rdrd r z I θ21⎰⎰⎰+=1102201r zdz dr r r d πθ⎰⎰+-=1102211r zdz rdr r r π)12ln 2(2-=π. 解法2(先二后一)222:,10:z y x D z z ≤+≤≤Ω,⎰⎰⎰++=zD dxdy y x zdz I 22111⎰⎰⎰+=zdr r r d zdz 022011πθ⎰+=102)1ln(dz z z π)12ln 2(2-=π. 五、(1)令)632(32),,,(222-++++-=z y x z y x z y x L λλ,令⎪⎪⎩⎪⎪⎨⎧=-++==+==+-==+=0632063042021222z y x L z L y L x L z y xλλλλ,解方程组得驻点)1,1,1(),1,1,1(21---M M ,且6)(1-=M u ,6)(2=M u .由于函数z y x u 32+-=在椭球面632222=++z y x 上连续,故函数z y x u 32+-=在点1M 取得极小值6-,在点2M 取得极大值6.(2)记221:y x z +=∑,222:y x z +-=∑,曲面在xOy 上的投影区域为x y x D xy ≤+22:,22y x x xz +=∂∂,22y x y yz +=∂∂,dxdy dxdy yzx z dS 2)()(122=∂∂+∂∂+=, 由对称性可得,π2222)()(12211122==∂∂+∂∂+==⎰⎰⎰⎰⎰⎰∑∑∑dxdy dxdy y zx z dS S . 六、记曲面∑围成的立体为Ω,由于2222a z y x =++,所以⎰⎰⎰⎰∑∑++=++++=yx z x z y z y x a z y x yx z x z y z y x I d d d d d d 1)(d d d d d d 323222ππ4343d d 3d 1333=⋅⋅==⎰⎰⎰Ωa a z y x a . 七、(1)解法1(利用Stokes 公式)取2:=∑z ,上侧,其法向量为}1,0,0{=n.⎰⎰⎰⎰⎰⎰⎰∑∑∑Γ--=--=--∂∂∂∂∂∂=--dS dS z dS yzxz y z y x dz yz xzdy ydx )32()3(3100322ππ20455-=⋅⋅-=-=⎰⎰∑dS .解法2(利用参数方程直接计算)Γ的参数方程为⎪⎩⎪⎨⎧===2sin 2cos 2z t y t x ,π20→由t ,………………………(2)因为xQxy y P ∂∂=-=∂∂6,所以所给方程为全微分方程. ⎰-+-=),()0,0(2323)d 3(d )3(),(y x y y x y x xy x y x u224402303234141)d 3(d y x y x y y x y x x yx-+=-+=⎰⎰, 故所求通解为C y x y x =-+22446. 八、r x r f x r r f x u ⋅'=∂∂⋅'=∂∂)()(,3222222)()(r x r r f r x r f x u -⋅'+⋅''=∂∂,由对称性得 3222222)()(ry r r f r y r f y u -⋅'+⋅''=∂∂,3222222)()(r z r r f r z r f z u -⋅'+⋅''=∂∂,代入已知条件中得,0)(2)(='+''r f rr f ,02)()(=+'''r r f r f ,22ln ln )(ln c r r f '=+', 22)(r c r f '='∴,从而12)(c r c r f +'-=,令22c c '-=,r c c r f 21)(+=∴.。
高等数学(下)重修练习题1.设a 是从点A (2, 1, 2)到点B (1, 2, 1)的向量, 则与a 同方向的单位向量为a ︒=_______. 2.设向量a ={2, 1, 2}, b ={1, 2, 1}, 则|a +b |=________. 3.设向量a ={2, 1, 2}, b ={1, 2, 1}, 则|a -b |=________. 4.设向量a ={2, 1, 2}, b ={1, 2, 1}, 则a ⨯b =________.5.设向量a ={2, 1, 2}, b ={1, 2, 1}, 则与a 和b 都垂直的向量c =_______ 6.设向量a ={2, 1, 2}, b ={1, 2, 1}, 则cos(a ,^ b )=________.7.设向量a ={2, 1, 2}, 则与a 的方向相同而模为2的向量b =________.8.1. 以向量a =(1, 1, 2)与b =(2, -1, 1)为邻边的平行四边形的面积为________.9.以曲线⎩⎨⎧==+x z zy x 222为准线, 母线平行于z 轴的柱面方程是________.10.2. 以曲线220x y zx y z ⎧+=⎨+-=⎩为准线, 母线平行于z 轴的柱面方程是________.11.2. 曲线⎩⎨⎧==-+00222y z z x 绕z 轴旋转所得的旋转曲面的方程为________.12.2. 曲线2220y z z x ⎧+-=⎨=⎩绕z 轴旋转所得的旋转曲面的方程为________.13.2. 旋转抛物面x 2+y 2=z 与平面x +z =1的交线在xoy 面上的投影方程为________. 14.2.锥面z =x =z 2的交线在xoy 面上的投影方程为_________.15.2. 过点M (1, 2, -1)且与直线2341x t y t z t =-+⎧⎪=-⎨⎪=-⎩垂直的平面方程是________.16.2. 过点M (1, 2, -1)且与直线421131y x z +-+==-垂直的平面方程是________. 17.2. 过点M (1, 2, 1)且与平面2x +3y -z +2=0垂直的直线方程是_________. 18.2. 过点M (1, -1, 2)且与平面x -2y +1=0垂直的直线方程是________.19.函数f (x , y )在点P 0处的偏导数存在是函数f (x , y )在P 0处连续的( ). (A)充分条件; (B)必要条件; (C)充要条件; (D)既非充分又非必要条件. 20.函数f (x , y )在点P 0处连续是函数f (x , y )在P 0处的偏导数存在的( ). (A)充分条件; (B)必要条件; (C)充要条件; (D)既非充分又非必要条件. 21.函数f (x , y )在点P 0处连续是函数f (x , y )在P 0处可微分的( ).(A)充分条件; (B)必要条件; (C)充要条件; (D)既非充分又非必要条件. 22.若f (x , y )在点P 0的某个邻域内( ), 则f (x , y )在P 0处可微.(A)连续; (B)有界; (C)存在两个偏导数; (D)存在连续的一阶偏导数.23.3. 设z =f (x 2+y 2, x 2-y 2, 2xy ), 且f (u , v , w )可微分, 则xz∂∂=________.24.3. 设w =f (u , v ), u =xy , v =x 2+y 2, 且f (u , v )可微分, 则w x∂=∂________.25.3. 设z =ln(1+x 2+y 2), 则d z |(1, 1)= ________.26.设f (x , y , z )=x 2+y 2+z 2, 则梯度grad f (1, -1, 2)= ________. 27.设f (x , y , z )= x 3y 2z , 则梯度grad f (1, 1, 1)= ________.28.函数f (x , y , z )=x 2+y 2+z 2在点(1, -1, 2)处沿方向________的方向导数最大.29.函数f (x , y , z )= x 3y 2z 在点(1, 1, 1)处沿方向_____{3,2,1}_______的方向导数最大. 30.函数f (x , y , z )=x 2+y 2+z 2在点(1, -1, 2)处方向导数的最大值为________. 31.函数f (x , y , z )= x 3y 2z 在点(1, 1, 1)处方向导数的最大值为________. 32.交换二次积分的积分次序, 则100d (,)d yy f x y x ⎰⎰=________. 33.交换二次积分的积分次序, 则11d (,)d xx f x y y ⎰⎰=________.34.交换二次积分的积分次序,则10d (,)d y y x y x ⎰=________.35.交换二次积分的积分次序, 则210d (,)d xxx f x y y ⎰⎰=________.36.设D 为上半圆域x 2+y 2≤4(y ≥0), 则二重积分d Dσ⎰⎰=________.37.设D 是由两个坐标轴与直线x +y =1所围成的区域, 则二重积分d Dσ⎰⎰=______.38.设D 是由直线x =1、y =x 及x 轴所围成的区域, 则二重积分d Dσ⎰⎰=________.39.设D 是由椭圆221916y x+=所围成的区域, 则二重积分d Dσ⎰⎰=________.40.设L为上半圆y则曲线积分Ls ⎰=________.41.设L 为圆x 2+y 2=1,则曲线积分Ls ⎰=________.42.设L为上半圆y 则曲线积分22ln(1)d Lx y s ++⎰=________. 43.设L 为圆x 2+y 2=1, 则曲线积分22ln(1)d Lx y s ++⎰=________.44.设L 是以O (0, 0), A (1, 1), B (0, 1)为顶点的三角形区域的正向边界, 则22d d Lxy x x y +⎰=________.45.设L 是以O (0, 0), A (1, 1), B (0, 1)为顶点的三角形区域的正向边界, 则 (e cos )d e sin d x x Ly x x y y --⎰=________.46.设L 是以O (0, 0), A (1, 1), B (0, 1)为顶点的三角形区域的正向边界, 则 22d (2)d Lxy x x x y ++⎰=________.47.设L是由上半圆y x 轴所围成的区域的正向边界, 则22d (2)d Lxy x x x y ++⎰=________.48.若p 满足________,则级数n ∞=. 49.若p 满足________,则级数n ∞=收敛.50.若q 满足________, 则级数0()2n n q a ∞=∑收敛.51.若p 满足________, 则级数01()2n n n p ∞=+∑收敛. 52.若p 满足________, 则级数2011()pn n n ∞=+∑收敛. 53.设1n n u ∞=∑是任意项级数, 则lim 0n n u →∞=是级数1n n u ∞=∑收敛的( )条件.(A)充分; (B)必要; (C)充分必要; (D)无关.54.设1n n u ∞=∑是任意项级数, 则级数1n n u ∞=∑收敛是级数1n n ku ∞=∑(k ≠0)收敛的( )条件.(A)充分; (B)必要; (C)充分必要; (D)无关. 55.下列级数中收敛是( A ).(A)11(1)1nn n ∞=-+∑; (B)11n n ∞=∑; (C)111()2n n n ∞=+∑;(D)n ∞=.56.下列级数中绝对收敛的是( C ).(A)1(1)nn ∞=-∑; (B)11(1)n n n ∞=-∑; (C)11(1)2n n n ∞=-∑; (D)11(1)(1)n n n n ∞=-+∑.57.下列级数中绝对收敛的是( D ).(A)1(1)nn ∞=-∑; (B)11(1)n n n ∞=-∑; (C)11(1)(1)nn n n ∞=-+∑; (D)211(1)n n n ∞=-∑.58.设幂级数0nn n a x ∞=∑的收敛半径为R , 则当x =R 时, 幂级数0n n n a x ∞=∑ ( ).(A)条件收敛; (B)发散; (C)绝对收敛; (D)可能收敛, 也可能发散. 59.设幂级数0nn n a x ∞=∑的收敛半径为R , 则当x =-R 时, 幂级数0n n n a x ∞=∑ ( ).(A)条件收敛; (B)发散; (C)绝对收敛; (D)可能收敛, 也可能发散. 60.如果幂级数0n n n a x ∞=∑在x =2处收敛, 则收敛半径为R 满足( ).(A)R =2; (B)R >2; (C)R ≥2; (D)R <2.61.如果幂级数0n n n a x ∞=∑在x =-2处收敛, 则收敛半径为R 满足( C ).(A)R =2; (B)R >2; (C)R ≥2; (D)R <2.62.将函数21()1f x x =+展开为x 的幂级数, 则f (x )=_______.63.将函数21()1f x x =-展开为x 的幂级数, 则f (x )=________.64.将函数1()4f x x =-在区间________可展开为x 的幂级数.65.将函数1()12f x x=+在区间________可展开为x 的幂级数.66.求通过直线113y x z==和点(2, -1, 1)的平面方程.67.求过三点A (1, 0, -1)、B (0, -2, 2)及C (1, -1, 0)的平面的方程.68.求通过点(1, 2, -1)且与直线23503240x y z x y z -+-=⎧⎨+--=⎩垂直的平面方程.69.求通过点(1, 2, -1)且与直线23503240x y z x y z -+-=⎧⎨+--=⎩平行的直线方程.70.求通过点(1, 2, -1)且与平面2x -3y +z -5=0和3x +y -2z -4=0都平行的直线方程.71.设z =x sin(x +y )+e xy, 求z y ∂∂, 2z ∂, 2z y x∂∂∂.72.设z =ln(1+xy )+e 2x +y, 求z x ∂∂, 22z x ∂∂, 2z x y ∂∂∂.73.设z =(2x +3y )2+x y, 求z x ∂∂, 22z x∂∂, 2z x y ∂∂∂.74.设z =x y, 求z x ∂∂, 2z x∂∂, 2z x y ∂∂∂.75.设z =x y, 求z ∂, 2z ∂, 2z ∂.76.设z =x sin(2x +3y ), 求z x ∂∂, 22z x∂∂, 2z x y ∂∂∂.77.设z =f (x , y )由方程x e x -y e y =z e z 确定的函数, 求z x ∂∂,z y ∂∂.78.设z =f (x , y )由方程x +y -z =x e x -y -z 确定的函数, 求z x∂∂, zy ∂∂.79.已知z =u 2ln v , 而x u y =, v =3x -2y , 求z x ∂∂, zy∂∂.80.设z =u ⋅sin v , 而u =e x +y , v =x 2y , 求z x ∂∂, zy ∂∂.81.设z =e u sin v , 而u =x -y , v =x 2y , 求z x ∂∂, zy∂∂.82.求曲面z =ln(1+x +y )上点(1, 0, ln2)处的切平面方程. 83.求曲面z =1+2x 2+y 2上点(1, 1, 4)处的切平面方程. 84.求曲面e z -z +xy =3上点(2, 1, 0)处的切平面方程.85.求空间曲线2231y x z x =⎧⎨=+⎩在点M 0(0, 0, 1)处的切线方程.86.求空间曲线x =a cos t , y =a sin t , z =bt 在对应于t =0处的切线方程.87.计算二重积分22()d Dx y x σ+-⎰⎰, 其中D 是由直线y =2, y =x 及y =2x 轴所围成的闭区域.88.计算二重积分2d Dxy σ⎰⎰, 其中D 是由直线y =x , y =0, x =1所围成的区域.89.计算二重积分sin d Dx y σ⎰⎰, 其中D 是由直线y =x , y =0, x =π所围成的区域.90.计算二重积分(e )d y Dxy σ+⎰⎰, 其中D 是由直线y =x , y =1, x =-1所围成的区域.91.计算二重积分3(Dx σ+⎰⎰, 其中D 是由曲线y =x 2, 直线y =1, x =0所围成的区域.92.计算二重积分22e d xy Dσ+⎰⎰, 其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域.93.计算二重积分1d 1Dx yσ++⎰⎰, 其中D 是由圆周x 2+y 2=4及坐标轴所围成的在第一象限内的闭区域.94.计算三重积分d z v Ω⎰⎰⎰, 其中Ω是由曲面z z =0所围成的闭区域.95.计算三重积分d z v Ω⎰⎰⎰, 其中Ω是由曲面z =1-x 2-y 2及平面z =0所围成的闭区域.96.计算三重积分d z v Ω⎰⎰⎰, 其中Ω是由柱面x 2+y 2=1及平面z =0, z =1所围成的闭区域.97.计算曲线积分2(1)d lx s +⎰, 其中l 为圆周x 2+y 2=1.98.计算曲线积分s ⎰,其中l 为抛物线y =x 2(-1≤x ≤1).99.计算曲线积分22()d (2)d CI x y x x y =+++⎰, 其中C 是以O (0, 0), A (1, 0), B (0, 1)为顶点的三角形的正向边界.100.计算曲线积分222()d ()d LI x y x x y y =+++⎰, 其中L 是从O (0, 0)到A (1, 1)的抛物线y =x 2,及从A (1, 1)到O (0, 0)的直线.101.计算曲线积分43224(4)d (65)d LI x xy x x y y y =++-⎰, 其中L 是从(-2, 0)到(2, 0)的半圆x 2+y 2=4(y ≥0).102.计算曲线积分22d d LI xy x x y y =+⎰, 其中L 是曲线y =ln x 上从A (1, 0)到B (e , 1)的一段.∑104.计算曲面积分22()d x y S ∑+⎰⎰, 其中∑为平面x +y +z =1含于柱面x 2+y 2=1内的部分.105.计算曲面积分2d d z x y ∑⎰⎰, 其中∑为上半球面z x 2+y 2=1内的部分的上侧.106.计算曲面积分22d d d d d d y z x y x y z x y z x ∑++⎰⎰, 其中∑是由圆柱面x 2+y 2=R 2和平面x =0,y =0, z =0及z =h (h >0)所围的在第一卦限中的一块立体的表面外侧.107.计算曲面积分22(2)d d d d d d x z y x x y z x xz x y ∑-+-⎰⎰,其中∑是正方体0≤x ≤a , 0≤y ≤a ,0≤z ≤a 的表面的外侧.108.判别级数021!n n n ∞=+∑的敛散性. 109.判别级数213n n n ∞=∑的敛散性.110.判别级数1e()n n π∞=∑的敛散性.111.判别级数∑∞=1!100n nn 的敛散性112.判别级数111(1)2n n n n ∞--=-∑是否收敛?若收敛, 是绝对收敛还是条件收敛?113.求幂级数1(1)nn n ∞-=-∑的收敛半径和收敛区间. 114.求幂级数234 234x x x x -+-+⋅⋅⋅的收敛半径和收敛区间. 115.求幂级数1nn n x n∞=∑的收敛半径和收敛区间.116.将1()2f x x =+展成x 的幂级数, 并写出展开式成立的区间.117.将f (x )=x 3e -x 展成x 的幂级数, 并写出展开式成立的区间.118.将1()2f x x=+展开为(x -1)的幂级数, 并写出展开式成立的区间.119.将1()4f x x=-展开为(x -2)的幂级数, 并写出展开式成立的区间.120.求函数f (x , y )=2x +2y -x 2-y 2的极值. 121.求函数f (x , y )=3x +2y -x 3-y 2的极值.122.求函数f (x , y )=x 2+5y 2-6x +10y +6的极值. 123.求函数f (x , y )=y 3-x 2+6x -12y +5的极值。
重庆大学高等数学Ⅱ-2(重修)课程试卷2009 ~2010 学年 第一学期开课学院: 数理学院 课程号: 考试日期2009年12月考试方式:考试时间:120 分一、 填空题(每空3分,共15分)⒈过点M (2,4,-3)且平行于直线31215yx z --==的直线方程为531422+=-=-z y x 。
2.已知22ln()z x y =+,则(1,1)dz= 1dx+1dy 。
⒊级数01!2n n n ∞=∑的和为 3/2 。
4.设积分区域D 是由曲线2,,1y x y x y ===围成的区域,则 2Ddxdy =⎰⎰ 1/2 。
⒌已知二阶常系数线性齐次微分方程的两个解分别为312,x xy e y e-==,则该微分方程为 032'''=--y y y 。
二、 计算题(共18分)⒈(9分)设sin u z e v =,而,u xy v x y ==+求z z x y∂∂∂∂和。
x v v z x u u z x z ∂∂∙∂∂+∂∂∙∂∂=∂∂=()()y x e y x y e xy xy+++∙∙cos sin 同理里一个结果x y 互换 都带∂即:sin()cos()sin()cos()xy xy xy xyzye x y e x y xz xe x y e x y y∂=+++∂∂=+++∂2.(9分)求函数u xyz =在点(1,1,2)处沿从点(1,1,2)到点(2,4,3)的方向导数。
答案在下一页命题人:组题人:审题人:命题时间:教务处制学院 专业、班 年级 学号 姓名公平竞争、诚实守信、严肃考纪、拒绝作弊封线密119111111321112111cos 113cos 111cos 11)1,3,1(122=∙+∙+∙=∂∂=======∂∂==∂∂==∂∂l u l l xy z uxz y uyz x uχβα三、 计算题(共18分)1.(9分)求螺旋线cos ,sin ,a y a z b x θθθ===在点(,0,0)a 处的切线及法平面方程。