EJ200发动机高压压气机结构设计改进
- 格式:pdf
- 大小:883.57 KB
- 文档页数:5
EJ200EJ200加力涡轮风扇发动机外形牌号EJ200用途军用涡扇发动机类型涡轮风扇发动机国家国际合作厂商欧洲喷气涡轮公司生产现状研制中装机对象欧洲战斗机EF2000研制情况EJ200是欧洲四国联合研制的先进双转子加力式涡轮风扇发动机,用于欧洲联合研制的90年代战斗机EFA(现编号EF2000)。
参加研制工作的有英国罗·罗公司、德国发动机涡轮联合公司、意大利菲亚特公司和西班牙涡轮发动机工业公司,各占份额33%、33%、21%和13%。
1985年8月,先由英、德和意大利三国集团发起EFA计划,同年9月西班牙加入该集团。
1986年12月,负责EJ200发动机研制的欧洲喷气涡轮公司(Eurojet Turbo GmbH)在慕尼黑注册。
1988年11月签订发动机研制合同,同时首台EJ200设计验证机在德国慕尼黑运转。
1989年12月,三台设计验证机共积累运转650h,达到设计验证机要求。
1991年10月EJ200原型机首次运转。
计划将制造20多台原型机用于地面和飞行试验。
预计1996年可能交付生产型EJ200。
在发动机设计要求中,除要达到高推重比(10)和低耗油率外,特别强调高的可靠性,耐久性和维修性以及低的寿命期费用。
例如:平均故障间隔时间大于100EFH*,空中停车率小于0.1/1000EFH,维修工时不大0.5MMH**/EFH。
采用的新技术主要有:损伤容限和高效率的宽弦叶片、三维有粘的叶轮机设计方法、整体叶盘结构的风扇和压气机、单晶气冷涡轮叶片、粉末冶金涡轮盘、刷式封严和具有故障诊断和状态监控能力的FADEC。
在开始执行EJ200研制计划之前英国罗·罗公司专门研制了XG-40验证机,以便在实际发动机环境下验证新的设计技术。
为EJ200打下技术基础。
除欧洲战斗机EF2000外,EJ200发动机其他可能的用途有:垂直/短距起落欧洲战斗机2000、“狂风”战斗机改装、F/A-18、意大利马基航空公司与巴西航空工业公司合作研制的AMX、“阵风”、巴基斯坦的F-7和印度的LCA 战斗机。
1整体叶盘的优势在整体叶盘出现之前,发动机的转子叶片需要通过榫头、榫槽及锁紧装置等连接到轮盘上,但这种结构逐渐无法满足高性能航空发动机的需求。
发动机转子叶片和轮盘一体的整体叶盘随之被设计出来,目前已成为高推重比发动机的必选结构,在军用、民用航空发动机上都得到了广泛应用,主要有以下优点。
1. 减重由于轮盘的轮缘处不需要加工出安装叶片的榫槽,轮缘的径向尺寸可大大减少,从而显著减轻转子质量。
2. 减少零件数目除了因为轮盘和叶片成为一体,锁紧装置的减少也是重要原因。
航空发动机对可靠性的要求极为严苛,简化的转子结构对提高可靠性有很大作用。
3. 减少气流损失消除了传统连接方式中的间隙会造成的逸流损失,提高了发动机工作效率,增加了推力。
既减轻了重量又提高了推力,如此有利于提高推重比的整体叶盘自然也不是容易摘得的“明珠”。
一方面,整体叶盘多使用钛合金、高温合金等难加工材料;另一方面,其叶片薄且叶型复杂,这都对制造技术提出了极高的要求。
另外转子叶片出现损伤时无法单独更换,可能导致整体叶盘报废,修复技术又是另一个难题。
2整体叶盘的制造目前,整体叶盘的制造主要有三大技术。
1. 五轴联动数控铣削加工五轴联动数控铣削加工由于其具有快速反应性、可靠性高、加工柔性好及生产准备周期短等优点,在整体叶盘制造领域得到广泛的应用,主要有侧铣、插铣和摆线铣等铣削方式。
而确保整体叶盘加工成功的关键因素包括:1)具有良好动态特性的五轴联动机床2)优化的专业CAM软件3)专用于钛合金/高温合金加工的刀具和应用知识2. 电化学加工电化学加工法是一种优秀的航空发动机整体叶盘通道加工方法,在电化学加工中主要有电解套料、仿形电解加工以及数控电解加工等几种加工技术。
由于电化学加工主要利用的是金属在电解液中阳极溶解的特性,在应用电化学加工技术时,阴极部分并不会产生损耗,且加工中工件不会受到切削力、加工热等的影响,降低了航空发动机整体叶盘通道加工后的残余应力。
先进航空发动机设计与制造技术综述进入21世纪,世界航空发动机技术取得了巨大进步,并呈现加速发展的趋势。
美国推重比10一级涡扇发动机F119作为第四代战斗机F22的动力装备部队,是当今航空动力技术最具标志性的成就。
在此基础上,美国持续实施了多个技术研究计划,正在推动世界航空发动机技术继续向前发展。
本文从未来高性能航空发动机采用的高级负荷压缩系统、高温升燃烧室、高效冷却涡轮叶片、推力矢量等方面,对其先进设计和制造技术的发展方向和趋势进行初步的分析研究。
高级负荷压缩系统高压压气机技术发展的目标是单级压比高、级数少、推重比高、飞行性能好。
对高级负荷的压缩系统,低展弦比设计、气动前掠设计、整体叶盘、整体叶环、压气机稳定性主动控制等技术是其中具有代表性的新技术。
1低展弦比叶片设计及制造低展弦比叶片即宽弦叶片,它与窄弦叶片相比,增宽了弦长,使压气机的长度缩短,抗外物损伤能力、抗疲劳特性和失速裕度有所提高。
还可使压气机零件数减少,降低生产和制造费用成本(图表1。
90年代以来,英国罗·罗(R·R公司、美国普惠公司和GE 公司、法国SNECMA公司不断研制和改进高压压气机钛合金宽弦叶片的气动和结构性能,广泛应用于大涵道比涡扇发动机和高推重比小涵道涡扇发动机上。
GE 公司TECH56技术计划的验证机和F119发动机、EJ200发动机都采用了这种宽弦叶片。
叶片的低展弦比设计,结合整体叶盘技术使得高压压气机在减少级数和提高叶片强度的同时,具有更好的气动稳定性。
低展弦比叶片需要解决的关键技术问题是因重量增加而导致的轮盘与叶根结合处和轮盘本身的离心力增大问题。
IHPTET计划在大型涡扇和涡喷发动机验证机上验证了该技术,该技术还将在F135和F136发动机上采用。
目前,低展弦比叶片已成为先进航空发动机压缩系统的关键技术,与3D气动掠形、空心结构、整体叶盘结构和更轻的钛金属基复合材料技术相结合,是未来的发展重点。
整体叶盘加工中应用到的特种加工技术1.1绪论现代航空发动机的结构设计和制造技术是发动机研制、发展、使用中的一个重要环节,为满足以FII9、FI20、EJ200为标志的第4 代战斗机用发动机以及未来高推重比新概念发动机的性能要求除采用先进技术、减少飞机机体结构、机载设备的重量外,关键是要求发动机的推重比达到I0 这一级重点突破发动机部件的气动、结构设计、材料、工艺等方面的关键技术。
其中在发动机风扇、压气机、涡轮上采用整体叶盘(Biisk)结构(包括整体叶轮、整体叶环)是重要措施。
1.2整体叶盘结构的特点整体叶盘是航空发动机的一种新型结构部件,它与常规叶盘连接相比有以下特点:(1)不需叶片榫头和榫槽连接的自重和支撑这些重量的结构,减轻了发动机风扇、压气机、涡轮转子的重量。
(2)原轮缘的榫头变为鼓筒;盘变薄,其内孔直径变大;消除了盘与榫头的接触应力,同时也消除了由于榫头安装角引起的力矩产生的挤压应力; 减轻了盘的重量提高了叶片的振动频率。
(3)整体叶盘可消除常规叶盘中气流在榫根与榫槽间缝隙中逸流造成的损失,使发动机工作效率增加,从而使整台发动机推重比显著提高。
(4)由于省去了安装边和螺栓、螺母、锁片等连接件,零件数量大大减少,避免了榫头、榫槽间的微动摩损、微观裂纹、锁片损坏等意外事故,使发动机工作寿命和安全可靠性大大提高。
(5)如整体叶盘叶片损坏,为避免拆换整个转子将整体叶盘与其他级用螺栓相连形成可分解的连接结构。
(6)由于高压压气机叶片短而薄叶片离心力较小,轮缘径向厚度小采用整体叶盘结构减重不显著。
1.3航空发动机整体叶盘结构在研究发展中存在的问题虽然,整体叶盘具有如此多的我优点,但是在整体叶盘的加工和使用过程中,我们也遇到了很多的问题,比如:(1)整体叶盘加工困难,只有制造技术发展到一定水平后,整体叶盘的应用才成为可能。
(2)发动机在使用过程中转子叶片常遇到外物打伤或因振动叶片出现裂纹,整体叶盘要更换叶片非常困难,也有可能因为一个叶片损坏而报废整个整体叶盘,因此风扇的第I\2级一般不用整体叶盘结构。
国外推重比10一级军用发动机综述发布时间:2009-9-15 17:24:42发动机是飞机的“心脏”,其重要性不言而喻。
飞行器的发展很大程度上依赖新概念推进系统的实现和改进。
20 世纪60 ~70 年代涡扇发动机的问世,使战斗机的飞行速度、航程和机动性出现了历史性飞跃。
过去几十年,发动机推重比从1~ 2 提高到8 ~10,使飞机的作战推重比从0.4 提高到1.3 左右,耗油率下降约50%。
以F -35 战机为例,其发动机F135、F136 是迄今为止为战斗机研制的推重比10 一级的推力最大的发动机,其最大使用推力可达187kN,其瞬时推力可达222kN。
其采用的航空涡扇发动机,从常规的涡扇发动机F135,到可以应用在各种飞行状态下、最佳热力循环性能和推力更大的F136 变循环发动机,更好地实现了轻型第四代飞机作战的需求。
预计21 世纪前20 年战斗机发动机的推重比有可能达到15 ~20,部件数量减少40%,重量减轻50%,耗油率及研制成本又将下降约30%,为未来的国际第五代作战飞机提供不可或缺的、前所未有的强大动力。
推重比10 一级的军用航空发动机纵观国际上战斗机的发展趋势,21 世纪前30 年,将是第四代战机纵横天下的时代。
作为一种更先进的武器飞行平台,其主要的性能特点有:持续超音速飞行的能力、非常规机动能力、短距起落能力和隐身能力;能进行超视距多目标全向攻击和精确打击。
多任务新型战术飞机F-22 在很大程度上可以代表世界战斗机发展的未来。
尽管在性能指标上尚有某些不确定性,但1997 年9 月7 日首飞成功的F -22,被公认为是具有上述全部特点的典型的第四代的战斗机。
由于F -22 飞机过于昂贵,其生产型出厂单价在1.8 亿美元左右(2001 年币值),连美国也无力大量装备。
2009 年初,奥巴马入主白宫后,否决了F-22 的继续生产,本在预料之中。
尽管这样,按原有的订单,F -22 的交付在2010 年左右仍然将会达到高峰。
3、间隙控制技术现代航空发动机先进的气动设计与试验方法已使压气机效率高达88%以上。
再要进一步提高发动机性能,就要尽量减小气流泄漏,减少流道中的端壁损失。
叶尖间隙损失是通道端壁损失的重要组成部分,这种损失是由动叶和机匣间的间隙造成的。
中等推力、中等增压比的发动机,叶片高度较大,由叶尖间隙造成的损失还不很严重。
随着增压比的增加,叶片高度显著缩短,高压压气机后几级的叶高有的已缩短到20-30mm,这样叶尖间隙造成的损失变得非常显著。
根据实测,叶尖间隙相对值(即间隙/叶片高度)增加1%,效率约降低1%;而效率降低1%,耗油率约增加2%。
因此,为了保持发动机在主要工作状态下间隙最小,在其它状态不发生干扰摩擦,提出了间隙控制问题。
叶尖间隙控制的方法可以分为被动控制和主动控制两种。
被动间隙控制被动间隙控制,即不随发动机工作状况调节的间隙控制技术。
主要对转子和静子在不同工作状态下的受力状况进行认真分析,尤其是对机匣在各种工况下的热变化进行精心设计,以求转、静子之间的热配合恰当,使间隙保持在允许的范围内。
一般过去研制的发动机都采用这种方法。
主要是通过减小装配间隙、采用双层机匣或低线膨胀系数的合金做机匣等途径来减小发动机工作时的径向间隙。
美国GE公司的CF6在前安装节处增加一个切向连杆,使压气机机匣最大局部变形由1.8mm减小到1mm,从而减小压气机间隙。
美国普?惠公司的JT9D在外封气环上喷覆陶瓷涂层,在叶尖上敷以碳化硅涂层,以改善环与叶片之间的可磨合性。
在JT8D高压压气机外环上喷涂镍铬聚酯易磨材料,使转子叶片旋转时,利用叶片在外环上磨出环槽,以减小间隙。
英国罗?罗公司的RB211采用双层结构机匣,保持气流通道的内层机匣仅承受气动载荷,外层机匣则承受并传递结构载荷,刚性较好的外层机匣变形小,可以使RB211在飞行时保持均匀的叶尖间隙。
在设计机匣时,应使机匣在不同的发动机工作状态下直径的变化与转子叶尖的径向膨胀尽可能一致,从而保证巡航状态间隙较小。